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We examine the effect of adaptive foraging behaviour within a tri-trophic food web with
intra-guild predation. The intra-guild prey is allowed to adjust its foraging effort so as to
achieve an optimal per capita growth rate in the face of realized feeding, predation risk
and foraging cost. Adaptive fitness-seeking behaviour of the intra-guild prey has a stabilizing
effect on the tri-trophic food-web dynamics provided that (i) a finite optimal foraging effort
exists and (ii) the trophic transfer efficiency from resource to predator via the intra-guild prey
is greater than that from the resource directly. The latter condition is a general criterion for
the feasibility of intra-guild predation as a trophic mode. Under these conditions, we demon-
strate rigorously that adaptive behaviour will always promote stability of community
dynamics in the sense that the region of parameter space in which stability is achieved
is larger than for the non-adaptive counterpart of the system.
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1. INTRODUCTION

The topology of ecological communities is structured
through the many and varied interactions active in
food webs [1]. Direct trophic interactions, mutualism,
competition, commensalism and parasitism are all
modes that interconnect various elements of a commu-
nity and to a certain extent, govern overall ecosystem
dynamics [2]. There is also a growing realization that
there are subtler, indirect effects in play [3,4] where
third-party actors can be subsumed to play the role of
a bait or a protector. The interaction of direct and indir-
ect effects is most evident in so-called intra-guild
predation, a tri-trophic arrangement where a consumer
and its predator share a common resource [5]. While
ecological communities are often described by the
topology of the connections among species, their
dynamics are controlled by the strength of the inter-
actions these connections represent [6]. Further, the
strength of these interactions is not static. Whatever
the architecture of ecological communities, the inter-
actions that control their function are ultimately
enacted at the level of individuals whose behaviour is
attuned solely to their evolutionary self-interest
[7–10]. In particular, for a given environmental con-
figuration (both its biotic and abiotic components),
the behaviour that an individual is conditioned to
choose is that which maximizes its fitness. Thus, the
dynamics of an ecosystem are governed by the interplay
of its structural topology and the fitness-seeking
strategies of its individual members.
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Adaptive foraging behaviour, in particular, mediates
effects that cascade through ecosystems. Trophic inter-
actions are particularly susceptible to changes in search
behaviour as increased search effort may well increase
encounters with prey, but oftentimes also increases
risk through increasing encounters with predators [11].
Furthermore, increased foraging effort also incurs an
energetic cost. Within a particular ecosystem configur-
ation, evolutionarily consistent search behaviour is
thus one that reflects a trade-off between the benefits,
costs and risks such behaviour elicits for an individual.
Furthermore, as the prevailing ecosystem configuration
changes (e.g. predator and prey abundance), behaviour
adapts so as to maintain this trade-off.

Our particular concern here is how adaptive behaviour
affects the dynamics of tri-trophic systems that exhibit a
degree of intra-guild predation [12]. Omnivory falls into
this category, where a predator feeds off both a consumer
and the consumer’s resource. Seen purely in the light of
direct interactions, such trophic arrangements should
be quite rare, as the intra-guild prey (i.e. the interme-
diate consumer) has to endure both direct predation and
competition from the top predator [13]. This is borne
out in simple dynamic descriptions that suggest that
intra-guild predation systems are highly unstable [13] in
their restricted admittance of stable coexistence [14,15],
large-amplitude limit cycles [14], chaotic dynamics
[16,17] and susceptibility to enrichment-induced extinc-
tions [18]. And yet, tri-trophic arrangements including
omnivory are ubiquitous features of nearly all ecosystems
[5,19–21]. In this context, adaptive foraging behaviour
appears to have an effective role in reconciling theory
This journal is q 2011 The Royal Society

mailto:awv@aqua.dtu.dk


u2 v2spc

scru

fsprv

+

Figure 1. Sketch of a tri-trophic food web with intra-guild pre-
dation. The resource r is preyed upon by both an intra-guild
predator p and an intra-guild consumer c. The predator p
further feeds on the consumer at a rate dependent on its
encounter rate and an omnivory parameter f. The consumer
is allowed to adapt its foraging effort u so as to optimize its
instantaneous per capita growth rate with repercussion for
both its encounter rate and thus its interaction strength
with both its resource and predator.
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with the observed prevalence of intra-guild predation.
For instance, the effect of adaptive behaviour has been
shown to stabilize linear food chains [22] and to promote
the coexistence of competing predators [23] and prey
[24] and have a general stabilizing effect on food webs
[25–27]. With regard to intra-guild predation, adap-
tive, fitness-seeking behaviour of intra-guild predator
yields a relatively small effect in facilitating coexistence
[28], whereas the effect of adaptive behaviour of the
intra-guild prey appears to be more pronounced [29,30].

In thiswork,we examine the general properties and con-
ditions under which adaptive fitness-seeking behaviour
tends to stabilize tri-trophic food webs. Previous works
have established that depending on system producti-
vity, stable coexistence depends on two complementary
(necessary but not sufficient) conditions: (i) the intermedi-
ate consumer is a superior competitor in exploiting the
common resource and (ii) the predator gains significantly
more from its consumption of the intermediate consumer
than the common resource [14]. The focus is on the adap-
tive behaviour of the intra-guild prey, as its investment
in foraging effort is subject to clear trade-offs in terms of
the benefits, costs and risks such behaviour imposes on
the individual. Further, while previous numerical investi-
gations concentrated on the effect of such adaptive
behaviour in promoting system stability [29,30], our aims
here are to uncover the generality of these results and the
conditions under which stability is promoted.
2. RESULTS AND DISCUSSION

2.1. A tri-trophic web

The conceptual arena we consider is a simple planktonic
ecosystem (figure 1) where the resource is a non-motile
phytoplankter (e.g. diatom) the carrying capacity of
which is set by some limiting nutrient. Both the consu-
mer (e.g. ciliate) and predator (e.g. copepod) are motile
and the trophic interaction between individuals is
determined by their encounter rate. We endow the
intra-guild prey with adaptive behaviour in that it
adjusts its foraging effort (swimming speed) so as to
maximize its fitness as expressed in its net per capita
growth rate. The underlying trade-off is in terms of
benefit (ingestion of prey), cost (hydrodynamics of
swimming) and risk (contacts with predators).

For simplicity, we assume that both the consumer
and the predator move ballistically in a uniformly
random direction in three-dimensional space. The con-
sumer can detect resource organisms at a distance Rcr,
while the predator can detect the resource at a distance
Rpr and consumer organisms at a distance Rpc. Further
we assume that resource, consumer and predator are
well mixed (i.e. Poisson-distributed), that contacts
lead to a fixed probability of ingestion and that the
handling time is much shorter than the mean search
interval between encounters. Given these assumptions,
the clearance rate of the consumer on resource is
bcr ¼ pR2

cru=bc ¼ scru while that of predators on
resource is bpr ¼ fpR2

prv=bp ¼ fsprv: Here, f rep-
resents the degree of omnivory practiced by the top
predator (i.e. selectivity of p on r). That is, at f ¼ 0,
the top predator feeds solely on the consumer and the
J. R. Soc. Interface (2012)
trophic interaction becomes a simple food chain; at
f ¼ 1, the predator p ingests all resource r encountered.
The clearance rate of predator on consumer is
bpc ¼ pR2

pcðu2 þ v2Þ1=2=bp¼ spcðu2 þ v2Þ1=2 ¼ spcwðuÞ.
The latter assumes that swimming speeds of both the
consumer and the predator follow a Rayleigh prob-
ability distribution, with u and v defined as the mean
swimming speed of consumer and predator, respectively
[31], and is a relatively general formulation for the
encounter rate process in plankton. The factors bc and
bp are the biomass per individual of the consumer
and predator, respectively, so that the interaction
cross sections (s) have dimensions L2 M21, while the
clearance rates (b) have dimensions L3 T21M21.

Provided that all individuals within the resource,
consumer and predator populations behave similarly,
we can write the population dynamics as a coupled
Lotka–Volterra system:

dr
dt
¼ rfr ¼ r r 1� r

k

� �
� scruc � fsprvp

n o
;

dc
dt
¼ cfc ¼ cf1crscrur � spcwðuÞp� kðuÞg

and
dp
dt
¼ pfp ¼ pf1prfsprvr þ 1pcspcwðuÞc � mpg;

9>>>>>>>=
>>>>>>>;

ð2:1Þ

where r, c and p are biomass density (dimensions
ML23) for resource, consumer and predator species,
respectively.

Here, the carrying capacity of the resource is k, mp

the mortality rate of the predator, k(u) the mortality
rate of the consumer in the absence of direct predation
(an as yet unspecified function of swimming speed u)
and 1ij represents the trophic conversion efficiency of
consumed biomass of species j into new biomass of
species i.

The dynamics of a tri-trophic food web consistent with
the system (equation (2.1)) have been previously reported
[14]. This system contains six fixed points (i.e. where
d(r,c,p)/dt ¼ 0). We focus on one of them, denoted
s* ¼ (r*, c*, p*), corresponding to coexistence of all
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three components. Specifically, the three components can
coexist provided the following three conditions hold:

r� ¼ k
rspc1pcw þ fk1pcsprv � mpscru

r1pcspcw þ fkscrspruvð1cr1pc � 1prÞ

� �
. 0;

c� ¼
mp � f1prsprvr�

1pcspcw
. 0

and p� ¼
1crscrur� � k

spcw
. 0:

9>>>>>>>>=
>>>>>>>>;
ð2:2Þ

Since all coefficients are positive, the latter two conditions
can be rewritten as

f1prsprvr� , mp;

1crscrur� . k

or

1crscru
k

.
f1prsprv

mp
:

This condition can be interpreted as requiring that
for a given resource abundance, the consumer must be
able to produce more surviving offspring over its
expected lifetime (k21) in the absence of predation
than the predator can for the same resource abundance
over its expected lifetime (m�1

p ). This is generally stated
as the condition that in order for stable coexistence,
the consumer must be able to outcompete the predator
for the resource [14,32].
Figure 2. (a) Optimal swimming speed and (b) per capita
growth rate of the consumer c as a function of predator p
and prey resource concentration within the tri-trophic
system. Parameters for this example are v ¼ 1; 1rc ¼ 1; src ¼ 1;
scp ¼ 1; q ¼ 1; mc ¼ 0.
2.2. Adaptive behaviour

We now come to the role of adaptive behaviour. In par-
ticular, we assume that the consumer (ciliate) can
adjust its swimming speed u in such a way so as to
maximize its instantaneous per capita growth rate.
That is, maximize the function

fcðuÞ ¼ 1crscrur � spcpwðuÞ � kðuÞ: ð2:3Þ

While the optimization of per capita growth rate is not
always the best proxy for fitness [33], it has been used
extensively in previous works of this kind [23,27,28], par-
ticularly since different fitness estimates such as those
based on growth rate or reproductive value converge for
stable populations. To investigate the behaviour in a
mechanistic context, we assume that the consumer ‘mor-
tality rate’ includes a function reflecting the cost of
swimming. Specifically, we set k(u)¼ mc þ qu2, where
mc is the actual mortality rate and qu2 reflects the diver-
sion of energy (resources) to foraging which would
otherwise fuel reproduction. Its u2 dependence arises
from the power requirements of a small organism pro-
pelling itself against hydrodynamic drag in a fluid, while
the factor q involves various contributions from hydrodyn-
amics, biochemical power efficiency and energy to
assimilated biomass conversion [34].

The optimal swimming speed is thus a solution of

2qu0 þ pspcu0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ v2
p ¼ r1crscr;
J. R. Soc. Interface (2012)
which gives a per capita growth rate for the consumer of

fcðu0Þ ¼ qu0
2 � pspcv2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u02 þ v2
p :

The values of the optimal swimming speed and its
corresponding per capita growth rate are represented in
figure 2 as a function of the resource and predator den-
sities. Optimal swimming speed (figure 2a) is an
increasing function of r and a decreasing function of p.
While u0 is positive for all values of r and p, the per
captia growth rate is not (figure 2b), suggesting that
optimality in these cases (i.e. where fc , 0) should be
interpreted as the least detrimental option.
2.3. Stability

Ouraim is to show that adaptive dynamics has a stabilizing
effect on the tri-trophic omnivory system, independent of
the interaction details. In order to do that, we study the
growth rates in equation (2.3). The optimal swimming
speed condition can be written as

@fc
@u
¼ 1crscrr � spcp

@w
@u
� @k
@u
¼ 0: ð2:4Þ
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Figure 3. The coexistence of r–c–p (s*) for system (2.1) as
a function of the degree of omnivory f, and 1pr, the trophic
conversion efficiency of resource to p. For the fixed case
(a) the parameters are: r ¼ 1; k ¼ 10; u ¼ 1; v ¼ 1; mp ¼ 0.5;
1rc ¼ 1; 1cp ¼ 1; srp ¼ 1; src ¼ 1; scp ¼ 0.7071; q ¼ 0.05;
mc ¼ 0.05. The choice of these parameters is consistent with
the example given in Holt & Polis [14]. For the adaptive
case (b), the consumer swimming speed u is allowed to vary
so as to maximize fitness. The light grey shaded area indicates
where consumer becomes extinct. Coexistence is possible
everywhere else. The dark grey shaded area in (a), i.e. the
fixed system, indicates where the fixed point is unstable—
describing either limit cycle or chaotic dynamics. For the
adaptive case, there is no unstable region and all coexistence
points are stable.
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Considering the optimal swimming speed as a function
of the predator and resource density, u¼ u(r,p) and
evaluating its derivatives, one can show that assuming

@w
@u

. 0;
@2w
@u2 . 0 and

@2k

@u2 � 0 ð2:5Þ

the optimal swimming speed is an increasing function of
resource and a decreasing function of predator as we
should expect. The above relations constitute our first
set of assumptions. In general equation (2.5) implies
that fitness is a dome-shaped function of foraging effort
and that a finite optimal value exists. Specifically, both
the cost (proportional to k) and the risk (proportional
to w) have a greater than linear dependence on foraging
effort (proportional to u).

We proceed by studying the properties of the Jaco-
bian matrix Ĵ of the non-adaptive system and of its
adaptive counterpart, Ĵ 0 (details in appendix A).
From the signs of the factors involved, one can immedi-
ately show that trðĴ 0Þ , trðĴ Þ , 0, where the Jacobian
is evaluated at the fixed point (equation (2.2)). This
result already suggests that the stability of the fixed
point is enhanced by the effect of adaptation.

A more rigorous proof of stability comes from the
analysis of the eigenvalues of the Jacobian matrix, i.e.
the roots of the characteristic polynomial

l3 þ al2 þ blþ g ¼ 0; ð2:6Þ

where (a, b and g) are coefficients whose detailed
expressions are given in appendix A. The fixed point
s* is stable when all roots of the characteristic poly-
nomial have negative real parts. As a consequence of
the Routh–Hurwitz stability criterion [35], this con-
dition is met when a . 0, b . 0 and ab . g . 0. By
examining the expression of the coefficients, it can
be readily deduced that a and b are always positive.
The positivity of g is ensured when the following
condition holds:

1cr1pc . 1pr: ð2:7Þ

The above equation is our second assumption and has
been recognized as a general feature promoting the exist-
ence of intra-guild predation as a feasible trophic mode
[14,36,37]. Notice how this assumption can be linked to
the concept of ‘trophic upgrading’ [38], namely the feasi-
bility of omnivory as a trophic mode is assured provided
that the net trophic efficiency to the omnivore via intra-
guild predation exceeds that of feeding on the resource
directly. Trophic upgrading is relatively common in plank-
tonic food webs [39–41] and arises through two distinct
processes, either biochemically where protist consumers
synthesize essential fatty acids to be passed to higher
trophic levels or through repackaging biomass into larger,
more easily captured and assimilated food parcels.

Turning to the final criterion ab . g; if it holds, then
stability is ensured. This condition does not hold in
general and its breakdown is the route to several
kinds of unstable behaviours, including oscillations,
period doubling and chaos [14–16,42]. While its val-
idity cannot be demonstrated in general, it is possible
to show that the presence of adaptation always
enhances the stability of the system. Defining a 0, b 0
J. R. Soc. Interface (2012)
and g 0 as the coefficients of the adaptive system and
a, b and g those of their non-adaptive counterpart,
one can show that the inequality is more likely to be
satisfied for the adaptive system, i.e. one always has
a 0b 0 2 g 0 . ab 2 g. Further, the other inequalities are
also strengthened by the presence of adaptation, i.e.
a 0 . a . 0, b 0 . b . 0 and g 0 . g . 0.

If a fixed point with non-negative values for the three
species exists, then condition (2.7) is sufficient for its stab-
ility [14]. When this assumption is violated, the system
can show alternative states of simple food chains (r2p
or r2c only), but also stable coexistence [43]. In this
case, when the adaptive counterpart is considered, the
stability of the system is not constrained anymore since
the positiveness of b 0 and a 0b 0 2 g 0 is not guaranteed
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Figure 4. Bifurcation diagram (a) for system (2.1) plotting the value of p when c ¼ c* as a function of the degree of omnivory f.
Other parameters are: r ¼ 5; k ¼ 12.5; u ¼ 2; v ¼ 2; mp ¼ 1.2; 1rc ¼ 1; 1cp ¼ 1; 1pr¼ 0.01; srp¼ 10; src ¼ 0.5; scp¼ 0.3536;
q ¼ 0.175; mc ¼ 0.175, and are consistent with the parameter space explored by Tanabe & Namba [16]. The corresponding dynamics
of the adaptive system is stable, and its fixed point p* is plotted as a function of f (solid line). The corresponding Jacobian analyses
for the system with 1pr¼ [1023 to 1] (note logarithmic scale) are presented for (b) non-adaptive and (c) adaptive cases. Light grey
indicates regions where the inter-guild prey is excluded, and the dark grey regions where the system is linearly unstable at its fixed
point s*.
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but will depend on the specific parameters used in the
model (see appendix A).
2.4. Examples

The stabilizing effect of adaptive behaviour is illus-
trated in figure 3 for parameter values consistent with
one of the classic cases presented by Holt & Polis [14]
in their seminal work. Staring with the non-adaptive
system, we use condition (2.2) to determine for what
region the fixed point s* exists. Next, where s* exists,
its linear stability is determined from the eigenvalues
of the Jacobian (equation (A 1)). For the adaptive
system, we follow the same procedure except that it is
embedded in a loop, where an optimal u is successively
calculated for which new existence and linear stability
conditions on s 0* are evaluated. This iterative pro-
cedure is terminated when the relative difference in
successive evaluations of u is less than 0.01 per cent.
J. R. Soc. Interface (2012)
For the non-adaptive system (figure 3a), the unstable
region of parameter space is characterized by large-
amplitude oscillations. When fitness-seeking adaptive
behaviour is introduced (figure 3b), this unstable region
disappears as the fixed point s 0* becomes an attractor
for all values of the parameter space. Although not as
dramatic, there is also a small decease in the region
where the intra-guild prey is excluded. Thus, the general
result of the above analysis is borne out in this simple
numerical model. A similar stabilizing effect can be
shown for other well-documented systems whether cast
in terms of the effects of omnivory [14] or enrichment [18].

As a final example, we turn to a parameter spacewhich
displays all the hallmarks of chaotic instabilities [16,17].
For fixed parameters, system (2.1) exhibits large-ampli-
tude oscillations, period doubling and chaos over a
large region of parameter space as can be seen in the
bifurcation diagram (figure 4a) over the range of omniv-
ory strength f and for a fixed value of the trophic
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efficiency 1pr ¼ 1022. This is supplemented by the analy-
sis of the corresponding Jacobian matrix (figure 4b)
which shows instability over a large region of (f, 1pr)
space. When the intra-guild prey is allowed to adapt its
foraging effort in order to maximize its per capita
growth rate, the region of instability and chaos shrinks
dramatically (figure 4c), and evidence of large-amplitude
oscillations, period doubling and chaos disappears
(figure 4a) as the system relaxes to a stable equilibrium.
3. CONCLUSIONS

The above examples thus serve to illustrate the general
stabilizing effects of adaptive fitness-seeking behaviour
on tri-trophic food webs. This is not to say that adap-
tive behaviour always implies stability, rather that for
any given parameter space, adaptive behaviour will
always ensure that the system is stable over a larger
region of parameter space than its non-adaptive
counterpart. Further, the stable region of the non-
adaptive system is always contained within the stable
region of the adaptive system. In other words, the
adaptive behaviour of an intra-guild prey will never
push a stable system towards instability.

The stability of food webs has been an engaging topic
in ecology over the last four decades. Its fascination stems
largely from the seeming mismatch between real-world
observations and the theory of how we understand food
webs to work: the so-called paradox of omnivory [5] and
the paradox of enrichment [44] to name but a few of
these disparities. Attempts at reconciliation have illumi-
nated a host of mechanisms that govern the behaviour
of organisms and the dynamics of the populations and
communities within which they live [25,45]. Adaptive fit-
ness-seeking behaviour appears to have enduring
repercussions for the stability (in its varied forms of esti-
mation) of communities from simple food chains and
webs to complex ecological networks [25,27]. Our contri-
bution here is to highlight the generality of this
stabilizing effect in simple tri-tophic food webs. Namely
that provided intra-guild predation is a feasible trophic
mode and there exists an optimal foraging effort for the
intra-guild prey, adaptive behaviour will always drive
the system towards stability (although whether stability
is actually reached is not assured). It is noteworthy that
while the adaptive behaviour of the omnivore exerts
some control on the stability of tri-trophic systems [28],
our results and others [29,30] suggest that the adaptive
behaviour of the seemingly most vulnerable member of
the tri-trophic food web exerts a strong control on the
dynamics of such systems. The underlying mechanism
appears to be the ability of adaptive behaviour to buffer
the system from rapid fluctuations, damping out large-
amplitude oscillations and bringing a semblance of
stability to the system.

This work was supported by the Danish Research Council
grant no. 272-07-0485.
APPENDIX A. STABILITY ANALYSIS

Here we provide details of the stability analysis sket-
ched in §2. We start from a more generalized form of
J. R. Soc. Interface (2012)
equation (2.3):

fcðuÞ ¼ 1crscrrsðuÞ � spcpwðuÞ � kðuÞ;

where s(u) represents the dependence of ingestion rate
on foraging effort, a function assumed to be linear in
the proceeding development but generalized here with
the very reasonable condition that it is an increasing
function of effort. The optimal foraging effort u(r, p)
is a solution of @fc/@u ¼ 0. The dependence of u on
resource and predator thus follows from

@u
@r
¼ �1crscr

ð@s=@uÞ
ð@2fc=@u2Þ � 0

and
@u
@p
¼ spc

ð@w=@uÞ
ð@2fc=@u2Þ � 0;

9>>>=
>>>;

ðA 1Þ

where the sign dependence follows from the condition
that fc(u) is a local maximum, and an optimal foraging
effort exists. In particular, plugging assumptions from
equation (2.5) into the above expressions, it can be seen
that they ensure the proper monotonic behaviour of u.
We now study the property of the Jacobian matrix:

Ĵ
0 ¼

r @fr
@r þ

@fr
@u

@u
@r

� �
r @fr
@c r @fr

@p þ
@fr
@u

@u
@p

� �
c @fc
@r 0 c @fc

@p

p @fp
@r þ

@fp
@u

@u
@r

� �
p @fp
@c p @fp

@u
@u
@p

0
BBB@

1
CCCA; ðA2Þ

where Ĵ can be seen as a special case of Ĵ 0 by setting @u/
@r ¼ @u/@p ¼ 0. Note that we have used the optimality
condition (equation (2.4)) to simplify this expression.
Linear stability is equivalent to assuming that the
characteristic polynomial (equation (2.6)) should be
stable, i.e. all its roots must have negative real parts.
We write explicitly the coefficients for the non-adaptive
system as

a ¼ �r
@fr
@r

;

b ¼ �cp
@fc
@p

@fp
@c
� rc

@fr
@c
@fc
@r
� rp

@fr
@p

@fp
@r

and g ¼ �rcp
@fr
@c

@fc
@p

@fp
@r
þ @fr
@p

@fp
@c

@fc
@r
� @fr
@r

@fc
@p

@fp
@c

� �
:

The conditions a . 0 and b . 0 follow from the sign
of the derivatives of the growth rates with respect to
the different arguments. Specifically,

@fc
@r
¼ �1cr

@fr
@c

. 0;
@fp
@c
¼ �1pc

@fc
@p

. 0 and

@fp
@r
¼ �1pr

@fr
@p

. 0;

which further highlights the symmetries inherent in the
trophic interactions. To evaluate g, we can make use of
these symmetries to obtain

g ¼ �rcp
@fc
@p

@fr
@c
@fr
@p
ð1cr1pc � 1prÞ þ

@fr
@r

@fc
@p

1pc

� �
;

ðA 3Þ

where the condition that g . 0 follows from our second
assumption (equation (2.7)). At this point, stability
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depends on the condition that ab 2 g. 0, a condition
that does not generally hold. To show the stabilizing
effect of adaptation, we can examine the difference
between the adaptive and non-adaptive systems. That is

a0 �a¼�r
@fr
@u
@u
@r
�p

@fp
@u

@u
@p
;

b0 �b¼ rp
@fr
@r
@fp
@u

@u
@p
�@fp
@r
@fr
@u
@u
@p
�@fr
@p
@fp
@u

@u
@r

� �

and g0 �g¼ rcp
@fp
@u

@fr
@c
�@fr
@u
@fp
@c

� �
@fc
@r
@u
@p
�@fc
@p
@u
@r

� �

9>>>>>>>>=
>>>>>>>>;

ðA4Þ

together with

@fr
@u

, 0 and
@fp
@u

. 0:

The conditions a 0 . a . 0 and g 0 . g . 0 readily follow
from our first set of assumptions (equation (2.5)) via
their impact on the foraging effort relationship (equation
(A 1)). The condition b 0 . b . 0 is further reliant on
our second assumption (equation (2.7)) regarding
trophic efficiency.

The final condition concerning the sign of a 0b 0 2 g 0

can be examined in relationship to the same function for
the non-adaptive system. Namely,

a0b0 �ab�ðg 0 �gÞ¼
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ðþÞ
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;

where we have explicitly written the sign of each of the
components. An examination of the above shows that
under both previously encountered assumptions in
equations (2.5) and (2.7), we have

a 0b 0 � g 0 . ab� g:

That is, while we cannot state with certainty that the
adaptive system is universally stable, we can assert
that it is stable over a greater range of parameter
space than the non-adaptive system.

One additional observation we can make is for the
case when assumption (2.7) does not hold and when
alternative states may exist [43]. A governing parameter
J. R. Soc. Interface (2012)
[14] for both the existence and stability of coexistence
solutions in the tri-trophic system is

D ¼ r1pcspcw þ fkscrspruvð1cr1pc � 1prÞ:

D . 0 is a sufficient condition for coexistence, but more
importantly, it is a necessary condition for stability.
This can be readily shown from equation (A 3), in that
g . 0 (a necessary condition for stability) when D . 0.
Defining D 0 as the corresponding parameter for the
adaptive system, it can be shown from equation (A 4)
that g 0 2 g. 0 when

wðu0ÞD 0 . wðuÞD;

where w(u) represents the relative speed of the predator
and the intermediate consumer. Therefore, the effect
on stability of the adaptive behaviour will depend on
the actual values of the parameters used in the model.
All things being equal, it is more likely for D 0 . D
when w(u) . w(u0). That is, when going from the
non-adaptive system to its adaptive counterpart,
the predator biomass at coexistence (p*) decreases
or the common resource biomass (r*) increases (figure 2a).
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