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We present a computer simulation study, via lattice
Boltzmann simulations, of a microscopic model for cyto-
plasmic streaming in algal cells such as those of Chara
corallina. We modelled myosin motors tracking along
actin lanes as spheres undergoing directed motion
along fixed lines. The sphere dimension takes into
account the fact that motors drag vesicles or other orga-
nelles, and, unlike previous work, we model the boundary
close to which the motors move as walls with a finite slip
layer. By using realistic parameter values for actin lane
and myosin density, as well as for endoplasmic and vacu-
ole viscosity and the slip layer close to the wall, we find
that this simplified view, which does not rely on any
coupling between motors, cytoplasm and vacuole other
than that provided by viscous Stokes flow, is enough to
account for the observed magnitude of streaming
velocities in intracellular fluid in living plant cells.
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1. INTRODUCTION

Within eukaryotic cells, intracellular flows are often unre-
markable: typical Reynolds numbers are low, and cells
are tiny enough to quench most fluid motion within
them. An important exception is provided by cytoplasmic
streaming, which is the name given to the approximately
80–100mm s21 directed flow of cytosol and organelles
around large plant and fungal cells [1–3].1 Unlike typical
mammalian cells, which are tens of micrometres in size,
the internode stalks of the Chara corallina algae, for
instance, are single cells that are about a millimetre in
diameter and several centimetres long. Giant single
cells such as these need to overcome a highly non-trivial
transport problem in order to deliver nutrients and
other chemicals throughout their interior. Given such
*Author for correspondence (dmarendu@ph.ed.ac.uk).

1Cytoplasmic streaming may also be observed in non-plant cells—for
instance, in the nematode Caenorhabditis elegans [4].
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length scales, thermal diffusion does not provide a
viable option to move things around quickly enough:
for instance, given typical intracellular diffusion coeffi-
cients, it would take months for even highly mobile
ions to traverse the cell length. Cytoplasmic streaming
gives a very efficient alternative, as it sets the whole
fluid within the cell in motion, thereby readily advect-
ing proteins and nutrients which happen to be there—
in other words while the Reynolds number may be
infinitesimally small, the Peclet number is instead
rather large [5,6].

Understanding the basic biophysical mechanism
underpinning cytoplasmic streaming has been the sub-
ject of an ongoing debate at the interface between fluid
dynamics and cell biology. To introduce the competing
scenarios proposed in the literature, it is useful to recall
the geometry of algal cells such as Chara corallina. The
basic components are the ‘internodes’ or internode
stalks, which are extra-long single cells as mentioned ear-
lier. Each of these internodes has an approximately
cylindrical symmetry, and may be thought of as consist-
ing of two concentric layers: the external one is a
micrometre-thick cellular layer, filled with cytosol (endo-
plasm) and separated from the large interior, known as
the vacuole, by a fluid membrane. The vacuole is made
up of an aqueous solvent, and contains no internal struc-
ture. The inner surface of the external wall of the
internode cell is instead covered by actin bundles,
which act as conveyor belts along which myosin motors
walk. The actin bundles, or lanes, follow helical paths on
the cylindrical walls of Chara, and they are organized
into alternating bands having opposite directions of vel-
ocity. The bands are separated by a so-called indifferent
zone. The hypothesized mechanism for cytoplasmic
streaming is that the directed motion of myosin motors
on the actin bundle tracks can somehow entrain the cyto-
plasmic fluid, and that this in turn sets the vacuole into
motion by transferring momentum through the fluid
membrane separating it from the cytoplasm. According
to this view, the myosin traffic provides an effective shear
boundary condition on a Stokes equation for the velocity
inside the vacuole. The fact that ‘the tracks along which
motors move are helicoidal’ leads to an interesting fluid
dynamics problem. Its solution, presented in van de
Meent et al. [5], includes a secondary flow along the
planes perpendicular to the cylindrical axis, which helps
nutrient and chemical mixing along the flow gradient
direction as well—mixing is a notoriously hard require-
ment to fulfil at zero Reynolds number. More recently,
direct nuclear magnetic resonance velocimetry exper-
iments of flow inside the vacuole of single internodal cells
have quantitatively validated this analytical solution [7].

Earlier experiments on cytoplasmic streaming based
on laser light scattering experiments on Nitella [8,9] and
Chara [10] cells showed that the fluid velocity distri-
bution is quite narrow. While Sattelle & Buchan [10]
speak of plug-like motion for both Chara and Nitella,
Mustacich & Ware [9] emphasize the fact that the
peak in the spectrum of scattered light is not sharp
enough for the streaming flow of a plug but indicates
that most particle velocities are within 10 per cent of
the most likely velocity. Experiments support that it
is unlikely that any particles move at substantially
larger velocities than those carried by cytoplasmic
streaming—in other words, the fluid velocity has to be
This journal is q 2012 The Royal Society
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Figure 1. Illustration of spherical vesicles moving through the
cytoplasm (dragged by molecular motors not shown). The
illustration is roughly to scale with vesicle diameters 1mm,
height of the cytoplasm 10 mm and thickness of actin bundles
100 nm. The shaded tonoplast membrane separates cytoplasm
and vacuole, which extends beyond the figure. In the simu-
lations, the motors and the membrane are not modelled
explicitly. (Online version in colour.)
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very close to that of the vesicles dragged along by the
motors and driving the flow.

The idea that myosin motion can provide an effectively
smooth boundary condition for the fluid dynamics inside
the vacuole by necessity requires a strong hydrodynamic
coupling between actin–myosin motion on the cell sur-
face and fluid flow in the vacuole. Finding exactly what
structure can provide this coupling is however a non-
trivial task. In an interesting contribution, Nothnagel &
Webb [11] analysed the hydrodynamic feasibility of
three models for momentum transfer from myosin to
endoplasm and vacuole. Their calculation shows that
individual myosin molecules running on the actin tracks
are by themselves ineffective in setting the cytosol or
the vacuole into motion. A second model considered
attachment of myosin to organelles and vesicles in the
endoplasm: while this much improves the viscous coup-
ling, the calculations in the study of Nothnagel &
Webb [11] still suggested that if this mechanism was at
the origin of cytoplasmic streaming it would require
very packed traffic of motors along the actin lanes,
which is unlikely in the real system. The final model,
favoured by the semianalytical estimates in the work of
Nothnagel & Webb [11], envisages the existence of an
elastic network, or gel, incorporating the moving motors
and extending into the endoplasm: in this framework,
the movement of the motors pulls the network forward
in a plug-like fashion and the coupling to the vacuole is
readily achieved.

Subsequent experiments (video-enhanced light
microscopy and fast-freezing electron microscopy)
further suggested that the myosin motors may actually
be attached to the endoplasmic reticulum, which then
performs a sliding motion over the actin cables [12].
In some later papers, this view has been adopted [13],
while others are less definite and speak only of cargoes
in general [14] or state that the organelles associated
with myosins have not been identified [2].

Here, we revisit the view that the myosin motors need
not be directly associated with a network structure but
that the high viscosity of the cytoplasm together with
a thin slip layer are sufficient to make it move with a
very flat velocity gradient at roughly the same velocity
as the active particles. We perform lattice Boltzmann
(LB) simulations of micrometre-sized spherical vesicles
moving close to a planar wall (dragged by the motors)
and show that, depending on the slip allowed at the
wall, this simpler picture can explain the uniform stream-
ing profile also for realistic densities of spherical particles.
The effect of the endoplasmic reticulum and all other cell
contents is incorporated into the high viscosity of the
cytoplasm, but our results suggest that it is not necessary
to invoke a physical tethering of the motors to any net-
work in order to explain the known phenomenology of
cytoplasm streaming.
2. MODEL AND METHODS

2.1. Lattice Boltzmann simulations of colloidal
spheres in a fluid

Rather than address the cylindrical geometry suggested
by the Chara system, we address here a simpler, planar
J. R. Soc. Interface (2012)
model (figure 1). This allows us to address the issues of
principle outlined earlier while avoiding the numerical
difficulties of a curved geometry. Moreover, as detailed
later, the physics of interest to us concerns the cytosol
and only a thin region of the vacuole containing the
endoplasm–vacuole interface: this region is almost
planar. We consider a slab of material made up of two
layers with different viscosities, hI and hII . hI, corre-
sponding to, respectively, the vacuole and the
endoplasm, modelled here as a Newtonian fluid with
high viscosity, as in the semianalytical treatment in
Nothnagel & Webb [11]. In each of the layers, the
fluid obeys the Navier–Stokes equation,

rð@t þ ub@bÞua ¼ �@apþ @bð@aub þ hi@buaÞ; ð2:1Þ

where r denotes fluid density, u is fluid velocity, p is
pressure, hi is the fluid viscosity and i ¼ I,II labels
the layer under consideration. In our formalism, Greek
letters denote Cartesian components and summation
over repeated indices is implied. In order to solve
equation (2.1), we employ our Ludwig code, which is
based on an LB algorithm (see Cates et al. [15] for details).
Briefly, the LB method is based on a set of mesoscopic vel-
ocity distribution functions, fi(x,t), which depend on
some lattice velocity vectors ei. In our three-dimensional
case, we consider 19 velocity vectors (see appendix A);
this is known as a D3Q19 lattice. The density and velocity
fields of the fluid may be recovered as moments of such
distribution functions, as follows:

rðx; tÞ ¼
X

i

fiðx; tÞ

and

rðx; tÞuaðx; tÞ ¼
X

i

fiðx; tÞei;a:

9>>>>>=
>>>>>;

ð2:2Þ

In our LB algorithm, the distribution functions evolve
according to the following discretized, or lattice,
Boltzmann equation:

fiðxþ eiDt; t þ DtÞ ¼ fiðx; tÞ

þ f eq
i ðx; tÞ � fiðx; tÞ

t
; ð2:3Þ
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where Dt is the time step (normally unity in LB), t is a
relaxation parameter related to the fluid viscosity h via
h ¼ (r/3)(t 2 Dt/2), and fi

eq is a set of equilibrium dis-
tribution functions. Note that t differs in the vacuole
and cytoplasm as the viscosities differ. The macroscopic
equations of motion obeyed by r and ua may be found
by taking moments of equation (2.3) and expanding
for small Dt—a formal procedure known as the Chap-
man–Enskog expansion. The LB method defines some
dynamical rules for the distribution functions that cor-
respond to a continuity equation for the fluid density
and equation (2.1) for its velocity field. It can be
shown that this is the case, provided the following con-
straints on the moments of the equilibrium distribution
are satisfied:X

i

f eq
i ðx; tÞ ¼ rðx; tÞ;

X
i

f eq
i ðx; tÞei;a ¼ rðx; tÞuaðx; tÞ

and
X

i

f eq
i ðx; tÞei;aei;b ¼ pðx; tÞuaðx; tÞubðx; tÞ:

9>>>>>>>=
>>>>>>>;
ð2:4Þ

At this point, it should be noted that any set of equili-
brium distribution functions satisfying these constraints
leads to a viable LB algorithm to solve the fluid
dynamics problem we are interested in. A popular
choice in the literature is to expand the equilibrium dis-
tribution functions as a power series in the velocity
vectors, with the coefficients being determined, in gen-
eral in a non-unique way, through the constraints. Note
that as we want to model a two-layered fluid, made up
by a more viscous endoplasm and a less viscous vacuole,
we considered a generalization of the LB equation given
earlier, to allow for a spatially dependent value of the
relaxation constant t. We found that this simple pro-
cedure describes our two-layered system well, but we
anticipate that this may not hold in more complicated
systems where the interface is not planar.

The LB method, in the formulation which we adopt,
has been developed to allow consistent coupling
between the fluid dynamics of a Newtonian fluid and
the dynamics of spherical colloidal particles embedded
in it. The coupling is through the well-known method
of bounce-back on links, which accurately enforces no-
slip boundary conditions for the velocity field on the
surface of each particle. Instead of repeating the dis-
cussion of these colloidal boundary conditions here,
we refer the interested reader to Cates et al. [15] and
Nguyen & Ladd [16] for details. In our case, the solid
particles represent the motors with their associated
cargoes (vesicles and organelles). They are positioned
at a fixed distance from the bottom wall, and are sub-
jected to a strong harmonic potential that virtually
confines their motion to fixed one-dimensional lines,
which represent the actin bundles.

A noteworthy advantage of the LB methodology we
use is that, as it fully handles the boundary conditions
for the velocity fields both on the particle surface and
on the walls, both near- and far-field effects are correctly
included. With respect to, for example, Stokesian
J. R. Soc. Interface (2012)
dynamics, which would be another perfectly valid
choice for the problem at hand, LB requires one to intro-
duce both an inertial term and a finite compressibility:
both these terms need to be kept small so that they do
not effectively contribute to the physics of our system.
On the other hand, LB allows one to reach much larger
systems than Stokesian dynamics, at least for the
non-uniform geometry addressed here. Finally, we note
that an analytical approximation based on modelling
the vesicles as Stokeslets near a wall would not incor-
porate near-field interactions that are important in our
simulations, as particles may come into close contact.
2.2. Boundary conditions for slip and
no-slip walls

In this section,we discuss in some detail how to implement
slip boundary conditions at the bottom wall (see geometry
in figure 1), which is important for our work. Here, we out-
line the main equations that we use in our algorithm,
whereas a full derivation is given in appendix A.

In order to model slip at a solid wall in LB simulations,
a partial slip parameter p can be introduced that intui-
tively corresponds to the ‘fraction of slip’ at the wall.
More accurately, p is the fraction of each of the distri-
bution functions that is ‘bounced forward’ at the wall,
whereas 1 2 p is the fraction that is ‘bounced back’
(see appendix A). The limit of p! 0 corresponds to
the commonly employed no-slip boundary condition.
The amount of wall slip may also be related to the Knud-
sen number of the fluid [17]. In our scheme, we use it as a
parameter to be determined, in practice, from the knowl-
edge of the slip length, u(0)/u0(0), which we assume
comes from either experiment or theory.

Our choice of a slip wall for the bottom boundary is
motivated by the need to model the fluid dynamics in
the endoplasm close to the dragged cargo. We assume
that below the cargo lies a thin aqueous low-viscosity
layer, as the viscosity in the endoplasm derives either
from the presence of a labile reticular network with mesh
size smaller than the distance between sphere and wall
or from macromolecular crowding in the endoplasm.
Either way, the network or crowding agents, which are
coarse-grained into a high-viscosity fluid for the bulk
endoplasm, are depleted in the vicinity of the wall, and
this accounts for the thin layer of lower viscosity. If the be-
haviour of the thin layer itself is not of interest, all it does is
to introduce effective slip for the main system, which can
be simulated using the slip parameter p.

To make progress, we start by writing down the vel-
ocity profile of the fluid as a power series in the distance
from the bottom wall z,

uðzÞ ¼

PN
n¼0

anzn 0 � z � 1

PN
n¼0

bnzn 1 , z � R:

8>>><
>>>:

The slip length u(0)/u0(0) can be determined analyti-
cally for 1� R, where R is the total system size and 1

is the thickness of the low-viscosity layer. By enforcing
no slip at the bottom wall, together with continuity of
the stress and velocity fields at z ¼ 1, and subsequently
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taking the limit 1! 0 (see appendix A), we obtain the
form for the slip length,

uð0Þ
u0ð0Þ ¼ 1

hII

hI
� 1

� �
ð2:5Þ

to first order in 1, where hI is the (lower) viscosity of the
thin layer close to the wall and hII is the (higher) vis-
cosity in the bulk of the system. Here, we assume that
the viscosity of the thin layer is the same as that of
the vacuole as both are basically aqueous fluids. This
is however only a conceptual simplification and not
necessary for the derivation of the boundary condition.

The slip length u(0)/u0(0) and slip parameter p may
be shown to be related by the following formula
(derived in appendix A):

uð0Þ
u0ð0Þ ¼

ð2t� 1Þ
2

p
1� p

¼ 3hII
p

1� p
: ð2:6Þ

The last two equations also lead to the following
explicit formula for p:

p ¼ 1ðhII � hIÞ
3hIhII þ 1ðhII � hIÞ

: ð2:7Þ

As demonstrated in appendix A, numerical simulations of
simple test cases performed with a given p indeed lead to a
flow profile that agrees with our analytical calculation. In
the formulae given earlier, all quantities are given in terms
of lattice, or simulation, units. To convert these to phys-
ical units, 1 has to be multiplied by the lattice spacing
Dx, while h should be multiplied by the fluid density r

and by Dx2, and divided by the time step Dt. In lattice,
or simulation, units, r ¼ Dx ¼ Dt ¼ 1.

In physical units, we choose Dx ¼ 0.4 mm, Dt ¼
0.08 ms and r � 2.5 � 107 kg m23. With these values,
our vesicle size and vacuole viscosity map to 0.5 mm
and 1cP, respectively, as in the experiments. Further-
more, a velocity of 0.01 in LU, typically used in our
simulations, maps to a velocity of 50 mm s21. However,
our chosen density is much higher than that of water.2
2.3. Choice of parameters

Simulations were run for colloidal particles of radius
a0 ¼ 1.25 LU, whereas the size of the cytoplasm was
varied within a physically meaningful regime. In keep-
ing with the parameters of Nothnagel & Webb [11],
vesicles are assumed to have a radius of 0.5mm, mean-
ing that 1 LU ¼ 0.4mm (see above). The spacing
between actin cables (or ‘lanes’) was fixed to dl – l ¼

2 mm ¼ 5 LU. For computational reasons, it is desirable
for the distance of particles from the wall to be such
that there is at least one fluid node between the wall
and the particle surface (otherwise, lubrication forces
need to be considered). Particle centres are therefore
placed at zp ¼ 2.35 LU (and they do not extend below
z ¼ 1.1 LU). The distance between the wall (mid-
grid at zw ¼ 0.5) and the particle surface is thus
2This is typical in LB work [15,18]. Because the LB algorithm uses fluid
inertia to update the dynamics, the most efficient discretization uses the
highest density compatible with still remaining in the low Reynolds
number regime. With our chosen density, the Reynolds number
associated with the vesicle size never exceeds 0.1.
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dw–p ¼ 0.6 LU. This agrees well with the actual distance
in the biological system: diameters of actin cables are
between 100 and 200 nm [19], and the size of Chara
myosin is estimated to be about 100 nm [14], much
larger than typical animal myosin motors. This results
in about dw–p ¼ 0.2 2 0.3mm ¼ 0.5 2 0.75 LU. Initial
spacing between particles (centre to centre) varies with
density: a separation dp–p ¼ 12.5 LU for instance corre-
sponds to a line density of 0.2 (in units where 1
corresponds to a solid line of particles within a lane).

We fixed the vacuole viscosity to hI ¼ 0.02 and varied
hII in line with existing estimates—see Nothnagel &
Webb [11], who assumed a ratio hII/hI of between 6
and 250. In simulations, the vacuole has thickness 75
LU¼ 30mm. While this is much too small as the vacuole
thickness can be approximately 500mm, the location of
the upper boundary has virtually no effect on the vel-
ocities on the endoplasm–vacuole interface, which we
are ultimately interested in. We also note that moving
the upper vacuole boundary further away would, if any-
thing, only increase the cytoplasm’s velocity with respect
to particle velocities.

Finally, we note that herewe assume that the viscosity
of the thin layer in the cytoplasm that cannot be reached
by the crowding agents is the same as that of the vacuole.
This results in a slip layer of thickness equal to 220 nm,
when p ¼ 0.9. The thickness of the low-viscosity layer
is not known but is restricted by the particle-to-wall dis-
tance (dw–p) being equal to 0.6 LU, because the particles
have to move within the high-viscosity region to provide
effective drag on the main endoplasm layer.
3. RESULTS

Figure 1 shows the geometry of our simulations, which
we recall consists in a two-layer fluid, modelling the
endoplasm–vacuole system, with a slip length boundary
condition (equation (2.6)). A two-dimensional carpet of
molecular motors with their attached cargoes is arranged
along regularly spaced actin cables and each of the
motors is further subject to a constant external forcing
that drives it along the lane.

3.1. Allowing for a finite wall slip can reproduce
the phenomenology of cytoplasmic
streaming

Figure 2 shows the mean fluid velocity u(z) as a function
of z, averaged over x and y and normalized by the average
velocities of the motor carpet—the latter are recom-
puted for each simulation as they may vary. Figure 2a
considers no-slip boundary conditions, p ¼ 0. Our
direct simulations of the three-dimensional flow within
the endoplasm suggest that the velocities within the
fluid sharply drop to about 50 per cent of the motor–
cargo velocities close to the wall. Interestingly, this is
very much in line with the semianalytical calculations
presented in the study of Nothnagel & Webb [11] and
relying on more assumptions than our LB simulations.
As observed in the work by Nothnagel & Webb [11],
this is not compatible with experimental measurements
that suggest that the velocity distribution within the
endoplasm is within 10 per cent of the motor velocities
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on the actin cables. The no-slip simulations also show a
small peak in u(z), just above the particles. If the size of
the particles is increased, such a peak disappears, so this
is probably a discretization artefact.

Figure 2b instead shows what happens if we allow for
wall slip. As mentioned in §2, in the simplest approxi-
mation, the slip may be characterized by a single
length scale, henceforth denoted as the slip layer thick-
ness. This is equal to 220 nm in figure 2b, which is a
reasonable value given the size of the cargoes, and corre-
sponds to a slip parameter p ¼ 0.9 in our LB simulations.
The cytoplasmic flow is now markedly different and
much faster with respect to the no-slip case, and a
tracer would move at over 90 per cent of the mean
motor speed, in agreement with the observations.

To further compare experiments and simulations, it is
useful to go beyond averages and map out the velocity dis-
tribution in the cytoplasm. The distribution of velocities
of organelles in the cytoplasm is available indirectly
from light scattering experiments measuring Doppler
shift in algal cells in vivo: these suggest that the distri-
bution is sharply peaked with only about 10 per cent
variation close to the estimated myosin velocity [8].
Figure 3 shows the distributions of the velocities in our
simulations, computed on a regular array of points
inside the endoplasm, which may be ascribed to tracer
organelles within the cell. It can be seen that, in the case
where slip is allowed, our simulated distribution is sharply
J. R. Soc. Interface (2012)
peaked, and the standard deviation is about 10 per cent or
less of the mean value, in good semiquantitative agree-
ment with experiments. In the no-slip case, the
distribution of the endoplasmic velocities is still sharply
peaked, but at a much lower velocity than that of the
motors, at odds with experiments.
3.2. The flow inside the endoplasm is quasi-one
dimensional

Our simulations consider a fully three-dimensional flow,
with a typical simulation volume being equal to 25 �
20 � 100 in LU (see §2.3 for a mapping to real units).
As we directly model the two-dimensional carpet of
moving motors, together with the interaction with
the wall, it is reasonable to expect that close to the
motors there will be significant inhomogeneities of the
fluid velocity. This may be further increased by any
hydrodynamic clustering of the motors. It is then
useful to ask how deep inside the endoplasm the corre-
lations and fluctuations in the fluid velocity imparted
on the intracellular solvent by the motor dynamics per-
sist, and what the decay of such correlations is. Figure 4
shows a cut of the fluid velocity profile on different
planes, stacked along the velocity gradient direction.

As can be seen in figure 4, close to the particles the
flow is indeed inhomogeneous, but surprisingly weakly
so. The square root of the velocity variance is only
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about 1–10% of the typical fluid velocity even close to
the motors; it then decays exponentially with distance
and becomes negligible beyond 10 LU away from the
walls. In other words, our simulations show that the
flow is quasi-one dimensional, corroborating the analy-
sis of Nothnagel & Webb [11], who assumed this
geometry at the outset, and also justifying the use of
uniform velocity boundary conditions for the vacuole
in the study of van de Meent et al. [5].
20 40 60 80 1000
height z in LU

Figure 5. Influence of thickness of slip layer 1 with all other
parameters (hII/hI, f, Dy and Hcyto) being held constant.
Thicknesses of over 200 nm for the low-viscosity layer are
necessary to explain the high �uðzÞ=vp ratio of over 90%.
(Online version in colour.)
3.3. Experiments constrain the model values of
viscosities, motor density and slip layer
thickness

While figures 2 and 3 show that the key features of cyto-
plasmic streaming in plant cells may be reproduced by a
reasonable set of values for cytoplasm viscosities, motor
geometry, density and slip layer thickness, it should be
noted that some of these control parameters are not
known with high accuracy from experiments. It is there-
fore important to assess how our results and conclusions
are affected if these are changed, within a biologically
relevant range. In this section, we therefore analyse
the impact of parameter variation on the fluid velocity
within the endoplasm.

We first consider the effect of the thickness of the slip
layer, 1. Figure 2b refers to 1 ¼ 220 nm, and figure 2a to
1 ¼ 0, with only the former data accounting for a realis-
tic streaming within the cytoplasm. Figure 5 shows the
effect of varying the slip layer, from 50 nm, which is
smaller than the size of the motor, to 500 nm, the size
of the cargoes. Within this slip layer, we assume that
J. R. Soc. Interface (2012)
the cytosol is basically an aqueous fluid—motivated
by the view that the larger viscosity inside is essentially
due to macromolecular crowding with crowding agents
that do not reach up to the wall, thus resulting in a
lower viscosity close to the wall. The mean velocity
shows a saturation behaviour as a function of 1, with
essentially any value larger than 200 nm enough to
account for experimental values. The lower values for
slip layer thickness, while geometrically consistent, lead
to a velocity of the fluid that is about 80 per cent of
the motor velocity—this is slightly too low given current
measurements, although the corresponding values of 1

cannot be definitely discarded.
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Figure 6. Variation of surface coverage f and spacing of actin
bundles Dy. Unsurprisingly, a denser coverage with particles
entrains the cytoplasm to higher velocities. A surface coverage
of 0.1 is necessary to reach high enough velocities, all other
parameters being equal. The distribution of particles on
the surface also plays a role: if the particles are dense in the
x-direction but spaced further apart in the y-direction, the
ratio �uðzÞ=vp is lower than if particles are denser in y and spar-
ser in x (at constant overall f). This effect is due to channels
of slower fluid between actin bundles if they are spaced further
apart. (Online version in colour.)
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Figure 7. Variation of viscosity (ratio of viscosities). Aviscosity
ratio of hII/hI ¼ 50 can account for fluid velocities above 90%
of particle velocities, while a ratio of hII/hI ¼ 20 is not quite
enough. For velocity ratios larger than hII/hI ¼ 100, the ratio
�uðzÞ=vp does not change much anymore. Note that, for low vis-
cosity ratios, the velocity gradient in the cytoplasm also
increases such that the velocity at the membrane becomes
notably different from that at the bottom wall. (Online version
in colour.)
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Figure 8. Plot of the mean velocity profiles as a function of height
along z, for different thicknesses of the cytoplasm, Hcyto. One may
observe that the thickness of the cytoplasm plays no role in the
ratio �uðzÞ=vp as long as the top wall is in the far field and the
viscosity of the vacuole is much lower than that of the cytoplasm.
Note that in the curve referring to Hcyto ¼ 20mm, the size of the
vacuole has been increased to the minimal one, which did not
affect the fluid dynamics in the cytoplasm. (Online version
in colour.)
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Figure 6 shows the effect of changing the density
of motors, measured by their surface coverage f ¼
Aocc/Atot, where Aocc is the surface area occupied by
cargo beads and Atot is the maximum area available
to them without blocking cargoes on adjacent lanes
(i.e. cargoes placed on a rectangular lattice just touch-
ing their neighbouring cargoes on the same lane and
on adjacent lanes). It is interesting to note that, once
the slip layer thickness is large enough, even a surface
density equal to 0.1, i.e. 10 times smaller than full cov-
erage, is enough to account for the experimental
velocities. Figure 6 also shows that the distribution of
particles on the surface plays a role. For instance, one
may achieve the same surface coverage f ¼ 0.1 by
using fewer actin lanes with more myosin motors on
each. The largest ratio between fluid and particle
velocity is obtained when actin lanes are closely
spaced. This effect is due to the creation of channels
of slower fluid between actin lanes if the lanes are
spaced further apart.

Finally, figures 7 and 8 show the effects of cytoplasm
viscosity and thickness, respectively. The viscosity of
the cytoplasm has been measured by several authors
and values in the range 6–250 cP have been reported,
whereas the viscosity of the vacuole may be taken to
be close to that of water, 1 cP. The cytoplasm viscosity
may actually depend on probe size and this makes it dif-
ficult to assess. For our case, as organelles were used in
the original experiments to track the flow, it may be
more appropriate to use viscosities observed with
probes of about the same size, hence towards the top
end of the range quoted earlier. Figure 7 shows that
the cytoplasm viscosity does have a sizeable effect on
the average cytoplasmic streaming velocity: the
threshold beyond which realistic streaming may be
achieved via cargo dragging is about 20 cP, for which
the average fluid velocity is approximately 90 per cent
of the average motor velocity. Figure 8, on the other
J. R. Soc. Interface (2012)
hand, shows that the thickness of the cytoplasm plays
a comparatively much less important role.
4. DISCUSSION AND CONCLUSIONS

The work we have presented provides a microscopic
simulation of cytoplasmic streaming in a geometry
relevant to that of plant cells, where there is an endo-
plasmic layer surrounding a much larger vacuole, and
the flow inside the endoplasm is driven by molecular
motors that run on actin lanes dragging vesicles. There-
fore, our calculations can probe the viability of current
continuum fluid dynamic theories of cytoplasmic
streaming, which often lump the microscopic detail of
the motor motion into a shear velocity boundary con-
dition for a purely continuum problem inside the
vacuole [5].
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Figure 9. Velocity populations impinging on the wall are partially reflected forwards (fraction p) and partially bounced back
(fraction q ¼ 1 2 p). (Online version in colour.)
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Our main conclusion is that, if motors on the cyto-
plasm are attached to vesicles or organelles, the drag
exerted on the fluid through their motion is enough to
lead to an essentially continuum flow within the endo-
plasm and the vacuole, with average fluid velocity
fully consistent with those observed in cytoplasmic
streaming. This conclusion holds for a range of realistic
parameters, and suggests that there is no need to invoke
a solid-like coupling between the motors moving along
the subcortical actin tracks and the cytoskeletal network,
or endoplasmic reticulum. Such an elastic coupling was
deemed necessary in order to account for the experimen-
tal velocities in the previous work [11], and it is therefore
useful to point out some key differences between our
approaches. Most important is the fact that our work
presents direct hydrodynamic simulations of the
motion of solid spheres close to a boundary in a two-
layered fluid mimicking the endoplasm–vacuole of an
algal cell. As such, we fully take into account sphere–
sphere and sphere–wall interactions, and crucially also
consider slip at the wall. The hydrodynamic treatment
in the study of Nothnagel & Webb [11], on the other
hand, neglected these interactions, and this is probably
at the origin of the quantitative discrepancy between
our conclusions (although it should be noted that
even the results of Nothnagel & Webb [11] did not defi-
nitely rule out the purely viscous coupling advocated in
our work). Indeed, many-body hydrodynamics leads to
a collective effect, which increases the drag exerted on
the fluid by a moving carpet of motors, whereas the
wall, which could counteract that effect in principle,
does not counteract it in our simulations owing to the
inclusion of a slip boundary condition. Our approach
of introducing slip boundary conditions can probably
be generalized to a range of biological solvents whose
high effective viscosity is due to macromolecular crowd-
ing, so that a layer of lower effective viscosity forms
close to walls, where the crowding agents (which are
macromolecules and biopolymers) are depleted [20].

It is also important to recognize some remaining
limitations of our calculation. First, the interior of the
plant cell we wish to model is actually cylindrical,
while we have modelled a slab of fluid. This is perhaps
not too important as the radius of curvature of the
cell is much larger than the thickness of the endoplasm,
which is the region of interest, as this is where the coup-
ling between motor motion and vacuolar fluid dynamics
occurs. Second, we have neglected all details of the
intracellular fluid and just modelled the cytoplasm/
endoplasm as a Newtonian viscous fluid. In reality,
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the cytoplasm is non-Newtonian, shear thinning, and
it would be interesting to see how a more careful
model of the intracellular solvent may affect our results.
To this end, we should however make a decision as to
whether to model the endoplasm as simply a crowded
medium or to include the endoplasmic reticulum as a
polymer network. Given the uncertainty with which
several of the parameters we use are known, this does
not yet seem appropriate and might have to await
more detailed experimental study of the rheological
propertites of the endoplasm. In this context, it is also
interesting to note that in the work of Niwayama
et al. [4], who studied cytoplasmic streaming in
C. elegans, simulations at constant viscosity proved
sufficient to quantitatively reproduce the streaming
motion of the (actually non-Newtonian) cytoplasm.
A final simplification of our treatment is that the
membrane separating endoplasm and vacuole was
computationally treated as an infinitesimally thin inter-
face where the fluid velocity was continuous, whereas,
in reality, this membrane is better described as a
viscoelastic membrane.

This work was supported by a DAAD post-doctoral fellowship
to K.W. and by EPSRC grant EP/E030173. M.E.C. holds a
Royal Society Professorship.
APPENDIX A

In this appendix, we give additional information on our
numerical framework and on the derivation of the for-
mulae determining the partial slip parameter in our
simulations (see equations (2.5)–(2.7)).

In order to model slip at a solid wall in LB simu-
lations, a partial slip parameter p can be introduced
that specifies the reflectivity of the wall. This parameter
determines the fraction of a velocity population that is
reflected specularly (or bounced forward) at the wall
in an LB streaming step (figure 9). Note that p ¼ 0 cor-
responds to full no-slip boundary conditions for the
velocity field at the wall, whereas p ¼ 1 corresponds to
full slip—we refer to any value of p in between as partial
slip. The wall reflectivity can be interpreted physically
in terms of the Knudsen number, which enters the
simulation via the relaxation time t [17]. Another pos-
sibility is to interpret the wall slip in a more general
way where p is simply an open parameter that can be
determined if the slip length u(0)/u0(0) is known from
experiment or theory.
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Figure 10. (a) Set of two-dimensional velocities ei with i ¼ 0 to 8, D2Q9, used in the following derivations. (b) Set of three-
dimensional velocities ei with i ¼ 0 to 18, D3Q19, used in the simulations. (Online version in colour.)
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One particular setting that can be described in this
way is that of a two-viscosity system where a thin
low-viscosity layer is situated close to the wall and a
bulk fluid of higher viscosity beyond. If the behaviour
of the thin layer itself is not of interest, all the layer
does is introduce effective slip for the bulk system
which can be simulated using the slip parameter p.

Assuming the velocity profile of the fluid to be of
the form

uðzÞ ¼

PN
n¼0

anzn 0 � z � 1

PN
n¼0

bnzn 1 , z � R;

8>>><
>>>:

the slip length u(0)/u0(0) can be determined analyti-
cally for 1� R, where R is the total system size and 1

is the thickness of the low-viscosity layer. Various
conditions on u give

uð0Þ¼0)a0¼0 no slip atwall

uð1þÞ¼uð1�Þ)b0¼
XN
n¼1

ðan�bnÞ1n¼ða1�b1Þ1

þOð12Þ continuity of u

hIIu
0ð1þÞ¼hIu

0ð1�Þ)a1¼
hII

hI
b1

þOð1Þ continuity of stress

and therefore

b0 ¼ b1
hII

hI
� 1

� �
1þ Oð12Þ:

Observing that u(0) ¼ b0 and u0(0) ¼ b1, we arrive at

uð0Þ
u0ð0Þ ¼ 1

hII

hI
� 1

� �
ðA 1Þ

to first order in 1, where hI is the (lower) viscosity of the
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thin layer close to the wall and hII is the (higher) vis-
cosity of the bulk system.

In order to relate slip length u(0)/u0(0) and slip par-
ameter p and relaxation time t in the LB method, we
consider the D2Q9 model. All simulations have been
performed in the D3Q19 model where the derivation
works in exactly the same way but the algebra is more
cumbersome (figure 10).

In a collision step, velocity populations of the same
node collide and relax towards their local and
instantaneous equilibrium population fi

eq (t, x)

fiðt;xÞ ¼ f �i ðt;xÞ �
1
t
ð f �i ðt;xÞ � f eq

i ðt;xÞÞ

¼ f �i ðt;xÞ 1� 1
t

� �
þ 1

t
f eq
i ðt;xÞ: ðA 2Þ

Here, fi(t, x) is the velocity population of direction i at
time t and node x after collision and fi*(t, x) is the popu-
lation before collision. The relaxation time t determines
how far the population relaxes in each step and is related
to viscosity by t ¼ (1 þ 6hII)/2. Here only the bulk vis-
cosity hII enters the formula as it is the bulk fluid that
is simulated in LB, whereas the low-viscosity layer, and
hence hI, is incorporated into the boundary condition.

The equilibrium populations are given by

f eq
i ðzÞ ¼ rvið1þ 3eiuðt;xÞ þ

9
2
ðeiuðt;xÞÞ2

� 3
2
uðt;xÞ2Þ; ðA 3Þ

with v1 ¼ v3 ¼ v5 ¼ v7 ¼ 1/9 ¼ :w1 and v2 ¼ v4 ¼

v6 ¼ v8 ¼ 1/36 ¼ :w2. Density r is assumed to be
constant, and fluid velocity is given by

ruðt;xÞ ¼
X

i

eifiðt;xÞ: ðA 4Þ

We next need to make a couple of assumptions on
the velocity profile. First, we assume that u(t, x) ¼
u(t,z)ex is parallel to the wall and that it only depends
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on the distance to the wall z. So, for the velocity in the
x-direction, we have

ruðzÞ ¼ f �1 ðzÞ þ f �2 ðzÞ � f �4 ðzÞ � f �5 ðzÞ
� f �6 ðzÞ þ f �8 ðzÞ: ðA 5Þ

In the streaming step, velocity populations from time
step t are passed on to neighbouring nodes and become
pre-collision populations of time step t þ 1. Below,
streaming is given for the layer of fluid nodes just
above the wall (i.e. those experiencing reflection from
the wall as follows). As velocities are assumed to be
homogeneous in the x- and y-directions, those indices
are omitted altogether and fi,k denotes velocity popu-
lation i in layer k above the first fluid layer. For the
first layer, k ¼ 0 will be omitted,

f �1 ðt þ 1Þ ¼ f1ðtÞ;
f �2 ðt þ 1Þ ¼ qf6ðtÞ þ pf8ðtÞ;
f �3 ðt þ 1Þ ¼ f7ðtÞ;
f �4 ðt þ 1Þ ¼ pf6ðtÞ þ qf8ðtÞ;
f �5 ðt þ 1Þ ¼ f5ðtÞ;
f �6 ðt þ 1Þ ¼ f6;1ðtÞ;
f �7 ðt þ 1Þ ¼ f7;1ðtÞ

and f �8 ðt þ 1Þ ¼ f8;1ðtÞ:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðA 6Þ

The next assumption to be made is that a steady state
has been reached and the velocity profile and all popu-
lations no longer change with time, meaning that all
reference to t can be dropped.

Plugging streaming (equation (A 6)) and collision
(equation (A 2)) into equation (A 5) yields

ru ¼ f1 þ qf6 þ pf8 � pf6 � qf8 � f5 � f6;1 þ f8;1

¼ f �1 1� 1
t

� �
þ 1

t
f eq
1 þ 1� 2pð Þ f �6 1� 1

t

� �
þ 1

t
f eq
6

� �

þ 2p� 1ð Þ f �8 1� 1
t

� �
þ 1

t
f eq
8

� �
� f �5 1� 1

t

� �
� 1

t
f eq
5

� f �6;1 1� 1
t

� �
� 1

t
f eq
6;1 þ f �8;1 1� 1

t

� �
þ 1

t
f eq
8;1:

To close this equation, we need to express the pre-
collision populations fi* in terms of equilibrium
populations fi

eq as for those we have equation (A 3)
relating them to r and u.

For populations f1* and f5*, this is easy as no populations
from higher layers (larger z) are involved and the profile is
assumed to be homogeneous in x, meaning that after
many iterations f1* and f5* simply relax to f1

eq and f5
eq.

For f6* and f8*, this is more complicated, as populations
from higher and higher layers will be involved

f �6 ðt þ nÞ ¼ f �6;nðtÞ 1� 1
t

� �n

þ 1
t

Xn

k¼1

1� 1
t

� �k�1

f eq
6;k : ðA 7Þ

For large enough n, the term involving 1� 1
t

� �n
can be

disregarded and using the earlier mentioned expression
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and equation (A 3) in the equation for ru leaves us with

ru0 ¼ f eq
1 þ ð2p� 1Þ 1

t

Xn

k¼0

1� 1
t

� �k

f eq
8;k � f eq

6;k

� � !

þ 1
t

Xn

k¼0

1� 1
t

� �k

ð f eq
8;kþ1 � f eq

6;kþ1Þ � f eq
5

¼ rw16u0 þ
1
t
w26

Xn

k¼0

1� 1
t

� �k

2puk þ ukþ1 � ukð Þ;

where u0 is the velocity in the layer of fluid nodes closest
to the wall and uk is the velocities in higher layers.

Using Taylor expansions uk ¼
P1

j¼1
kj

j!u
ðjÞ
0 for velocities

at higher layers and combining subsequent terms of uk and
ukþ1 in the sum above finally results in

u0 ¼ w16u0 þ
1
t
w26

2pþ 1
t� 1

� �X1
j¼1

uðjÞ0

j!

Xn

k¼0

kj 1� 1
t

� �k

�u0
t

t� 1

 !
:

ðA 8Þ

In principle,
Pn

k¼0 kjð1� 1=tÞk can be evaluated for
arbitrary j but then more and more derivatives u0

( j )

have to be known in advance. We therefore truncated
after the linear term and checked that the resulting for-
mula still holds within our numerical precision for
Poiseuille flow where the velocity profile in the channel
is quadratic.

In the linear approximation u0
( j) ¼ 0 for j . 1, we

obtain

u0 ¼ w16u0 þ
1
t
w26ðt2pu0 þ ðt2 � tÞ2pu00 þ tu00Þ

¼ 2
3

u0 þ
1
3

pu0 þ
1
6

u00 þ
1
3
ðt� 1Þpu00:

At this point, it is important to note that, in line with
standard LB algorithms working within the Euler scheme
that we use, the wall is implemented between two nodes,
so that it is mid-grid. Therefore, u(0) from equation (2.5)
does not correspond to the velocity at the first layer of
fluid nodes u0 but lies half a lattice spacing below
u(0) ¼ u0 2 1/2u00. As u00 is assumed constant, it is of
course the same as u0(0) and we get

uð0Þ
u0ð0Þ ¼

2t� 1
2

p
1� p

; ðA 9Þ

which can be used together with equation (A 1) to
obtain the formula relating slip parameter p and
physical quantities 1, hI and hII in equation (2.7) of §2.
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