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Abstract
A central challenge in the fMRI based study of functional connectivity is distinguishing
neuronally related signal fluctuations from the effects of motion, physiology, and other nuisance
sources. Conventional techniques for removing nuisance effects include modeling of noise time
courses based on external measurements followed by temporal filtering. These techniques have
limited effectiveness. Previous studies have shown using multi-echo fMRI that neuronally related
fluctuations are Blood Oxygen Level Dependent (BOLD) signals that can be characterized in
terms of changes in R2* and initial signal intensity (S0) based on the analysis of echo-time (TE)
dependence. We hypothesized that if TE-dependence could be used to differentiate BOLD and
non-BOLD signals, non-BOLD signal could be removed to denoise data without conventional
noise modeling. To test this hypothesis, whole brain multi-echo data were acquired at 3 TEs and
decomposed with Independent Components Analysis (ICA) after spatially concatenating data
across space and TE. Components were analyzed for the degree to which their signal changes fit
models for R2* and S0 change, and summary scores were developed to characterize each
component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like
“functional network” components from non BOLD-like components related to motion, pulsatility,
and other nuisance effects. Using non BOLD-like component time courses as noise regressors
dramatically improved seed-based correlation mapping by reducing the effects of high and low
frequency non-BOLD fluctuations. A comparison with seed-based correlation mapping using
conventional noise regressors demonstrated the superiority of the proposed technique for both
individual and group level seed-based connectivity analysis, especially in mapping subcortical-
cortical connectivity. The differentiation of BOLD and non-BOLD components based on TE-
dependence was highly robust, which allowed for the identification of BOLD-like components and
the removal of non BOLD-like components to be implemented as a fully automated procedure.

Corresponding Author: Prantik Kundu, Tel: 301-402-1342, Fax: 301-402-1370, kundup@mail.nih.gov.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2013 April 15.

Published in final edited form as:
Neuroimage. 2012 April 15; 60(3): 1759–1770. doi:10.1016/j.neuroimage.2011.12.028.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Keywords
fMRI; Resting state; Multi-echo; BOLD; TE dependence; ICA; Denoising; Subcortical;
Connectivity

Introduction
The exploration and use of “resting state” functional magnetic resonance imaging (fMRI)
data has shown explosive growth in recent years. Methods for analyzing resting state fMRI
functional networks include the seed-voxel approach, which involves calculation of the
correlation between a signal time course from one brain region and the time courses from
the rest of the brain (Biswal et al., 1995), and the decomposition approach, involving the use
of techniques such as Independent Components Analysis (ICA; Beckmann and Smith,
2004b). The consistency of resting networks in healthy adults is well established
(Damoiseaux, 2006a; review by Van Den Heuvel and Pol, 2010), and the variations of
networks due in several neuropsychiatric conditions have been studied (review by Broyd et
al., 2009). Functional connectivity analysis of data from standard (i.e. single-echo) fMRI
pulse sequences is limited, however, by the fundamental problem that in such experiments,
Blood Oxygen Level Dependent (BOLD) signal arising from spontaneous neuronal activity
is not differentiable from fluctuations arising from cardiac and respiratory physiology,
motion, and many other sources. Several techniques have been developed to remove
artifactual signal, including the use of temporal noise models and band pass filtering
(Jonsson et al., 1999), but these approaches are limited in their effectiveness (Birn et al.,
2006). For this reason, current de-noising techniques can underestimate the effect of non-
neuronal fluctuations, remove neuronally related fluctuations, and require assumptions that
may not be consistent across subjects and scan sites. Here, building on Peltier and Noll
(Peltier and Noll, 2000) and Kruger and Glover (Krüger and Glover, 2001), we introduce a
new method that employs multi-echo acquisition and a TE-dependence test to remove
artifactual fluctuations more effectively than these previous approaches by cleanly
separating BOLD and non-BOLD signal components of resting state data.

A change in BOLD contrast can be described as a change in the transverse relaxation rate or
R2* due to changes in blood oxygenation (Ogawa, 1990a; Menon et al., 1993; Bandettini et
al., 1994). The use of this endogenous contrast has become the primary MRI-based method
by which brain activation is assessed (Ogawa, 1990b; Kwong et al., 1992; Bandettini et al.,
1992). Typical acquisition of time series data involves a single TE that is equal to the resting
transverse relaxation time, T2*, equal to 1/R2* (Menon et al., 1993). Over the years, multi-
echo acquisition has been used to enhance our understanding of fMRI time series. Early
studies acquired multi-echo fMRI during motor and visual stimulation to evaluate the effect
of TE on activation mapping (Barth et al., 1999). They showed that TE influences sensitivity
to various vessel effects, which expanded on findings from previous studies (Bandettini et
al., 1994). Other multi-echo studies characterized baseline and activation-induced changes in
R2*, which was not possible with time series acquisition at a single TE. Some of these
studies utilized the linear TE-dependence of percent change of BOLD signal, which is a
consequence of R2* signal decay (Menon et al., 1993). Barth et al. attempted to denoise data
by incorporating the relationship between TE and signal change with a fuzzy cluster analysis
(Barth et al., 2001). Peltier and Noll later used multi-echo fMRI to demonstrate that the
percent signal changes of resting BOLD fluctuations demonstrate linear TE-dependence
(Peltier and Noll, 2000, 2002).

One major application of multi-echo fMRI has been for BOLD contrast optimization by
combining time courses of different TEs using a weighting scheme. Several weighting
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schemes have been proposed (Poser et al., 2006). Simple schemes use estimates of contrast-
to-noise ratio as weights. More robust schemes use weights from contrast curves that are
modeled for each voxel after estimating T2* from multi-echo fMRI data (Posse et al., 1999).
Benefits of contrast optimization, as described by Posse et al., include reduction of
susceptibility artifact and thermal noise. De-noising constitutes another application of multi-
echo fMRI. Dual-echo fMRI de-noising approaches involve the regression of short TE,
minimally BOLD weighted time series from longer TE, BOLD sensitive time series (Glover
et al., 1996). Buur showed that both general least squares and ICA approaches weighted by
TE-dependence factors could decouple the effects of collinear head motion from BOLD
signal in multi-echo data (Buur et al., 2008, 2009). Most recently, the subtraction of early
TE from late TE time series was shown to remove the effect of signal drift (Beissner et al.,
2010). In summary, substantial information is uniquely available in multi-echo fMRI data
that can be used to improve data quality.

Classification of ICA Components Based on TE-Dependence
In this study, resting state data were acquired with multi-echo fMRI to allow for
differentiation of BOLD from non-BOLD signal components based simply on a goodness of
fit to a R2* change model for multi-echo data. Components were first identified using
decomposition of multi-echo data with ICA. Components were then analyzed to determine if
signal changes were associated with R2* changes. Scores to summarize the overall
component-level modulation as R2* change were computed. Sorting components according
to these scores identified BOLD fluctuations without anatomical templates or time course
priors and identified artifact fluctuations without time course models for motion or
physiology. Removing non-BOLD fluctuations from time series data enabled data de-
noising, which significantly improved seed-based functional connectivity measures,
especially between subcortical and cortical regions.

Theory
Assuming mono-exponential decay, the signal across multiple echo times, TEn, where n is
the echo number, varies as a function of initial signal intensity when the TE = 0 (S0) and
relaxation-rate (R2*) according to Equation 1,

(1)

where R2* is the inverse of relaxation time or 1/T2*. S0 can be modulated by changes in T1
(longitudinal relaxation rate), inflow, and motion. R2* varies as a function of magnetic field
homogeneity, and specifically is modulated by changes in microscopic susceptibility due to
changes in blood oxygenation. Figure 1 shows how changes in S0 (left column) and R2*
(right column) affect the signal decay (top row) as a function of TE as well as the signal
difference (middle row) and percent signal change (bottom row). Note that these difference
and percent change curves can be used to differentiate whether or not the source of the
signal change is BOLD (i.e. R2* change) or non-BOLD (i.e. S0 change) Expanding Equation
1 with a first order approximation for a small change in R2* gives:

(2)

Equation 2 shows that the linear relationship in Figure 1f is solely a function of TE and has
slope equal to ΔR2*. The equation also shows that for mono-exponential decay and small
changes in ΔR2*, the signal changes from modulations in S0 and R2* are linearly separable.
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Multi-echo measurements can be acquired in fMRI using a single-shot, multiple gradient-
echo EPI (echo planar imaging) sequence. For each time point in the fMRI time series,
images are acquired at two or more different echo times (TEs). Figure 2a shows images
from acquisition at 3 TEs. Figure 2b shows the three time series corresponding to each TE.
From these three time series, the mean R2* and S0 are estimated from a fit to Equation 1.

The changes from mean R2* and S0 that underlie a signal fluctuation can also be estimated.
To estimate changes in mean R2* and S0, a reference function, such as for a task design or
resting fluctuation, is first regressed to the signal time course of each TE. TE-specific signal
changes can be fit to the TE-dependence model in Equation 2, which estimates both ΔR2*
and ΔS0 with one least squares fit. Fitting both ΔR2* and ΔS0, rather than one at a time, is
unstable (Gowland and Bowtell, 2007). Therefore we separate Equation 2 into two sub-
models, one for estimation of ΔR2* and one for ΔS0:

(3)

Fitting signal changes to these sub-models has greater stability than fitting for both
parameters simultaneously. This approach is critical for multi-echo acquisition when signals
are acquired at a small number of TEs in the presence of the typical noise levels in fMRI.
Some physiological or motion artifacts may produce coupled R2* and S0 changes, in which
case the precise values of R2* and S0 signal change cannot be computed using this approach
(Wu, 2005). However, for the purposes of classifying a fluctuation as mainly an R2*
fluctuation and not an S0 fluctuation, the proposed approach is sufficient.

Goodness of fit statistics can be computed for the fits to these TE-dependence models. This
computation can be performed voxel-wise with an F-test comparing the residual from the fit
of a model to the residual of the null (zero) model (equal to the sum of the squares of signal
changes). A separate F-value is computed for the ΔR2* sub-model and for the ΔS0 sub-
model. F values are computed for 1 degree of freedom used and n-1 degrees of freedom
remaining, where n is the number of echoes. The cumulative distribution function for
F(1,n-1) can be used to compute p-values corresponding to F-values. For a given time series
reference function, the maps of ΔR2* and ΔS0 can be thresholded according to these p-
values. Furthermore, these F-values can be averaged, weighted by total signal power

(4)

where i is the TE index, n is the total number of echoes, and ΔSTE_i is the coefficient of the
reference function and the time course at TEi. This produces two summary statistics, κ and
ρ,

(4a)
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(4b)

where v is the voxel index, m is the number of voxels in the brain. κ and ρ reflect the
goodness of fit to ΔR2* and ΔS0 models respectively and convey a representative F value
for the voxels with the largest signal changes. F-values are weighted by signal power so that
κ and ρ are less representative of F-values for the small component signal changes, which
are more affected by ICA estimation error. κ and ρ are used to rank how well components of
linear models (here corresponding to ICA component time courses) agree with signal
changes described by ΔR2* and ΔS0 signal models.

Methods
Subjects

Nine right-handed healthy volunteers participated in the study (7 male, 2 female). Informed
consent was obtained under an approved National Institute of Mental Health protocol.

Data Acquisition
Imaging was performed on a General Electric (GE) 3 Tesla Signa HDx MRI scanner
(Waukesha, WI). The scanner’s body coil was used for RF transmission, and an 8-channel
receive-only head coil (GE, Waukesha, WI) was used for signal reception. High-order
shimming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE sequence (FOV 240mm,
224×224 in-plane resolution, TI 725 ms, SENSE (GE ASSET) acceleration factor 2).
Functional images were acquired with a multi-echo EPI sequence (TR 2.5 s, flip angle 90,
matrix size 64×64, in-plane resolution 3.75 mm, FOV 240 mm, 31 axial slices, slice
thickness 4.2 mm with 0.3mm gap, acceleration factor 2). Three echoes were acquired with
the shortest possible echo times, TE = 15ms, 39ms, and 63ms. The readout window width
for each image was 24 ms, and receiver bandwidth was 125 KHz. Images were
reconstructed off-line using a C implementation of SENSE (Pruessmann et al., 1999). A
separate fast gradient echo scan (TR 150 ms, TE 2.1ms) with the same coverage as the
multi-echo acquisition was used for SENSE calibration. The subjects were instructed to rest
with eyes open and fixate on a cross-hair. Two resting functional runs of 148 images (time
series duration = 6 min 10 sec) were acquired. Pulse and respiration data were acquired
using scanner-integrated photoplethysmograph and respiratory bellows.

Data Pre-processing
Data pre-processing was performed using AFNI (Cox, 1996). Each of the steps mentioned
below includes the corresponding AFNI function italicized in parentheses. Each functional
run was pre-processed separately as follows. For the standard analysis pathway,
RETROICOR corrections were applied first, based on the pulse and respiration data
(3dretroicor) (Glover et al., 2000). For the ME-ICA analysis pathway, the following
preprocessing was performed on unprocessed time series data. The first four time points
were discarded to allow for magnetization to reach steady state. Slice time correction was
applied (3dTShift). Motion correction parameters were estimated for each time point by
aligning the middle TE (39ms) images to corresponding first time point image using a rigid-
body (6 parameter) alignment procedure (3dvolreg). The functional to structural co-
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registration parameters were estimated by registering the skull-stripped middle TE image
from the first time point to the skull-stripped anatomical image using an affine (12
parameter) alignment procedure with the local Pearson correlation cost-functional
(3dSkullStip, 3dAllineate) (Saad et al., 2009). Motion correction and anatomical co-
registration parameters were then applied in one step (3dAllineate). A brain mask was
computed from the mean image of the shortest TE (15ms) time series (3dskullstrip) and
applied to all images. Each image was spatially smoothed with a 5 mm FWHM Gaussian
kernel within the functional mask (3dBlurInMask). Finally, all voxel time series were high-
pass filtered for frequencies above 0.02 Hz.

The processing sequence branches at this point. The above-mentioned pre-processed data
was used in the following two ways. First, as is typical for multi-echo fMRI data, the three
echoes were combined to form a single time series. Regression analysis was performed on
this data. Second, to de-noise this data, nuisance regressors were obtained from our novel
multi-echo (ME)-ICA component sorting method described below.

Multi-echo Combination
Following the above preprocessing steps, we combined multi-echo time courses with a T2*
weighting scheme (Posse et al., 1999) to produce a single time series data set. This
weighting scheme enabled the application of the same weights to raw data and data denoised
with different strategies. For each voxel, the mean of each of the three time courses was
computed and used to estimate the overall baseline S0 and baseline T2

* by fitting to
Equation 1 with log-linear regression. The time courses were then optimally combined by
weighted summation by a factor, w, described in Equation 6.

(6)

On this data set, functional connectivity analysis using a seed voxel approach was performed
using either standard de-noising or ME-ICA de-noising, as described below.

Nuisance Regressor Selection with ME-ICA
To find time series that are common across both TE and spatial location, TE was treated as a
fourth spatial variable for spatial ICA. The data were decomposed as described in Equation
7:

(7)

Where D are the time series data, Nx, Ny, and Nz are the coordinates of voxels within the
functional brain mask, Ne is the number of echoes, Nt is the number of time points, M is the
mixing matrix (i.e. ICA component time courses), Nc is the number of components, and C
are the component maps. To implement this spatial decomposition using MELODIC ICA
(Beckmann and Smith, 2004b), the multi-echo data were concatenated over space. For each
time point, the three volumes corresponding to each TE were combined into a single volume
of size Nx, Ny, [Nz × Ne] (3dZcat). Each time course was de-meaned and variance-
normalized. Dimensionality was then automatically estimated using probabilistic PCA,
followed by dimensionality reduction to the estimated number of components (Beckmann
and Smith, 2004a). FastICA (Hyvarinen, 1999) was applied to dimensionally reduced data to
produce the mixing matrix, M.
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For each ICA component, the TE-dependence of the component time series was mapped to
localize where the component represented an S0 or an R2* modulation (as described in the
Theory section). For each voxel, the TE-specific signal changes for the ICA component and
TE-specific signal means were fit to compute ΔR2* or ΔS0:

(8)

using weighted ordinary least squares. Equation 8 is the formulation of Equation 2 under the
assumption that thermal noise variance is independent of TE. For each sub-model, fit
parameters, goodness of fit statistics F{ΔR2*} or F{ΔS0}, and p-values were mapped.
Alpha probability simulations were computed for p(F)<0.05, and used to threshold the maps
at p<0.05, cluster corrected for α<0.01. To summarize the overall ΔR2* and ΔS0 effects of
the component, the averages of F weighted by total power of signal changes (sum of
squares) were computed. κ represents the weighted average of F{ΔR2*} and ρ represents
F{ΔS0}. High κ indicated strong ΔR2*-like character (BOLD-like), and high ρ indicated
strong ΔS0-like character (non BOLD-like).

The ICA components were rank-ordered based on their κ and ρ scores. These two rank
orderings (κ-spectrum and ρ-spectrum) were used to differentiate BOLD components from
non-BOLD components. Both κ and ρ spectra were found to be L-curves with well-defined
elbows distinguishing high score and low score regimes. This inherent separation was used
to identify BOLD components in an automated procedure. First, the elbows of κ and ρ
spectra were identified. The spectra were scanned from right to left to identify an abruptly
increased score following a series of similarly valued low scores. The κ and ρ scores
marking abrupt changes were used as thresholds. Those components with κ greater than the
κ threshold and ρ less than the ρ threshold were considered BOLD components. All other
components were considered non-BOLD components. These were used as noise regressors
in time course de-noising.

De-noising and Functional Connectivity Analysis
De-noising by removing the nuisance regressors identified by ME-ICA was compared to de-
noising by subtracting the fits of standard noise regressors and band pass filtering. Standard
noise regressors included polynomial drifts, motion parameters, RETROICOR (Glover et
al., 2000) and RVT (respiration variation over time) (Birn et al., 2006). These were fit to
optimally combined time courses using multiple regression. Residuals were band pass
filtered to a frequency range of 0.02 Hz to 0.1 Hz to produce data for functional connectivity
analysis. The number of degrees of freedom used for de-noising was calculated as the
number of noise regressors, excluding drift terms, plus the number of Fourier terms removed
in the band pass filtering.

For seed-based connectivity analysis with standard de-noising (i.e. motion parameters,
RETROICOR, RVT, and band-pass filtering), a seed time course was first extracted for a
region of interest from the de-noised and band passed data. The seed time course was then
regressed to all other de-noised and filtered time courses in a multiple regression model. To
properly account for the degrees of freedom used in de-noising and band-pass filtering, a
zero-column for each degree of freedom was included in the regression model.

For ME-ICA de-noising, nuisance regressors (low κ, high ρ) were removed from optimally
combined data by first fitting the multiple regression model including all component time
courses (the mixing matrix) and polynomial drifts, then subtracting the partial fit of the
nuisance regressors and drifts to produce ME-ICA de-noised time courses. This is equivalent
to the component removal procedure implemented in the FSL function fsl_regfilt. No other
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filtering was applied. The number of degrees of freedom used in de-noising was the number
of nuisance regressors removed plus the number of drifts removed.

For seed-based connectivity analysis with de-noised ME-ICA data, a seed time course was
extracted for a region of interest from ME-ICA de-noised data. This was regressed to all
other de-noised, optimally combined time courses in a multiple regression model that
included a zero-column for each degree of freedom used. R2 and T statistics were computed
for all fits. T values accounted for degrees of freedom used. Group analysis of seed-based
connectivity was done by transforming R values to Z values using the Fischer Z-transform,
warping Z maps to Talairach space (auto_tlrc), and performing a one-sample T-test (3dttest).

Results
TE-dependence of BOLD-like and non BOLD-like components

The TE-dependence mapping is demonstrated for a BOLD-like and non BOLD-like related
component in Figure 3. The BOLD-like component has a low-frequency time course and
high percent signal change localized to the middle frontal and inferior parietal regions.
There is clear correspondence between the localization of high percent signal changes, high
ΔR2*, and strong goodness of fit to the ΔR2* model, F{ΔR2*}. Thresholding ΔR2* by
F{ΔR2*} for p<0.05 and alpha<0.01 cleanly localizes BOLD-like signal fluctuations. In
contrast, there is no correspondence between the localization of percent signal change and
either ΔS0 or goodness of fit to the ΔS0 model, F{ΔS0}. Thresholding S0 by F{ΔS0} for
p<0.05 and alpha<0.01 results in an empty map. κ for the BOLD-like component was 184,
and ρ was 15.

The non BOLD-like component has a high frequency time course with localization along the
brain edges. TE-dependence mapping of the artifact contrasts with TE-dependence mapping
of the functional network. There is little correspondence between the localization of large
percent signal changes and high ΔR2*, and no correspondence with strong goodness of fit to
the ΔR2* model. Thresholding ΔR2* by F{ΔR2*} results in an empty map. There is good
correspondence between localization of high percent signal change, percent S0 change, and
goodness of fit to the S0 model. Thresholding ΔS0 by F{ΔS0} clearly localizes the artifact
to brain edges. κ for the artifact component was 22, and ρ was 90.

Ranking ME-ICA components by κ
Figure 4a shows κ score vs the rank according to variance explained (i.e. ICA rank). This
shows that the correspondence between these two measures is low. Figure 4b shows κ score
vs. the rank according to κ. The rank ordering of κ scores, (the κ spectrum), show a clear L-
curve behavior with distinct high κ and low κ regimes. Figure 4c shows that this distinct
behavior is highly reproducible across subjects. Low κ values had mean of 21.9±0.5. High κ
scores had a mean of 91.5±2.9. Figure 4d shows that the maps corresponding to the high κ
scores appear to be similar to previously identified resting state network components
(Damoiseaux, 2006b). The thresholded ΔR2* maps are shown for the top 12 components as
ordered by κ scores. Representative high κ components include the default mode (IC 23),
the sensory network (IC 13), and the motor network (IC 35). BOLD-like component time
courses are not necessarily low frequency (< 0.1 Hz). For example, the time course for IC 30
has a higher κ score than the time course for IC 13.

Ranking ME-ICA components by ρ
Figure 5a shows ρ score vs the rank according to variance explained. This shows that the
correspondence between these two measures higher than that of κ with variance explained.
Figure 5b shows ρ vs. the rank according to ρ. The rank-ordering of ρ scores, (the ρ
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spectrum), show a clear L-curve behavior with high ρ and low ρ regimes. Figure 5c shows
that this distinct behavior is highly reproducible across subjects. Low ρ scores had mean of
24.3±0.8. High ρ scores had a mean of 53±3.1. Figure 5d shows thresholded ΔS0 maps for
the top 8 components as ordered by ρ scores. Some of the representative high ρ components
have high ΔS0 at brain edges (IC 3, 18, 4) and appear to be motion related. Some non
BOLD-like component time courses have low frequency (> 0.1 Hz) contributions.

Components at the Elbow
Most components were unambiguously classified into high and low regimes for κ and ρ
using the elbows of the corresponding spectra. Inevitably, a number of κ values were near
the cutoff threshold (the elbow of the ranking curve). Figure 6 shows the TE-dependence
maps for the ΔR2* and ΔS0 models for two of these components. IC 2 localizes high ΔR2*
to the Circle of Willis and surrounding areas, and IC 17 localizes high ΔR2* to white matter
and/or cerebral spinal fluid (CSF). The time courses of these components were low
frequency. Comparing component time courses to RVT regressors showed strong correlation
with two of the standard RVT regressors. This indicates that a component with a near-
threshold κ score could reflect ΔR2* modulation from respiratory variation or related
BOLD-like effects of no interest. The component with high ΔR2* near the Circle of Willis
and surrounding area, IC 2, was selected as a regressor of no interest on the basis of having a
high ρ score. The component with high ΔR2* in white matter/CSF was not selected as such
due having a low ρ score.

De-noising Resting Data in a Single Subject
Figure 7 shows the use of the ME-ICA nuisance regressors to de-noising the data. Figure 7a
shows a comparison of time series from the corresponding single voxels in the center of the
red boxes corresponding to the right insula, left hippocampus, and brain stem respectively.
The top row of plots have only drifts removed. The second row shows the plots after drifts
were removed, RETROICOR applied, and RVT and motion regressed out. The third row of
plots shows the above time course with band-pass filtering applied. The fourth row of plots
shows the time courses with drifts and ME-ICA derived nuisance time series (low κ and
high ρ) regressed out. Time courses from these areas after removal of drifts show substantial
high frequency noise and spiking. Standard de-noising by removing RETROICOR, RVT,
and motion regressors reduces high frequency noise. These time courses are somewhat
smoothed by band-pass filtering. ME-ICA de-noising reduces high frequency noise, spiking,
as well as some low frequency fluctuations, without the use of physiological noise modeling
or band-pass filtering.

Figure 7b shows seed-based functional connectivity maps obtained using seed time courses
from the de-noised data. R2 correlation maps show that ME-ICA de-noising, without band
pass filtering, reveals greater functional connectivity to gray matter clusters than de-noising
with standard noise regressors and band pass filtering. Axial views of R2 maps for insula
and hippocampus connectivity show that the de-noising methods produce similar
connectivity patterns proximal to the seed, but ME-ICA de-noising exposes greater long
distance correlation. With ME-ICA de-noising, the insula shows greater correlation to
premotor and cingulate regions, hippocampus shows greater correlation to premotor and
sensory regions, and brainstem shows greater correlation to frontal and parietal regions. T-
maps show that T-statistics are much higher for correlation with ME-ICA de-noising than
for correlation with standard de-noising and band pass filtering.

Application to Group Level Correlation Maps
Group-level connectivity was evaluated using one-sample T-tests of the individual-level
correlation maps from standard and ME-ICA based de-noising. Unthresholded group T-
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maps for hippocampus and brainstem connectivity are shown in Figure 8 for ME-ICA and
standard de-noising. The group T-maps based on low κ de-noising showed much higher T-
statistics for connected regions than the group T-maps based on standard de-noising. This
indicated that (Z-transformed) correlation coefficients based on ME-ICA were more
consistent across subjects than Z-transformed correlation coefficients based on standard de-
noising. Comparing Figures 7 and 8 show that for maps based on ME-ICA de-noising, the
regions of higher group T-value correspond to the regions of higher individual level T-
values from regression analysis (white arrows). Figure 9 shows thresholded axial views of
the connectivity maps in Figure 8. The brainstem shows clear connectivity to putamen and
caudate nuclei in the basal ganglia and to bilateral premotor and parietal cortical areas. The
hippocampus shows clear connectivity to bilateral sensory (dorsal and ventral postcentral
gyrus), temporal, and premotor cortical areas. Thresholding group-level connectivity maps
that were based on standard de-noising produces empty maps at FDR corrected q<10−4,
which is the significance level used in Figure 9.

Discussion
The differentiation of BOLD and non-BOLD signal is a fundamental problem in resting
state fMRI analysis. In the past, approaches to this problem have included regression of
temporal models derived from motion and physiologic signals. Here, an approach is
introduced that involves acquiring resting state data with multi-echo EPI, identifying
BOLD-like (high κ, low ρ) non-BOLD-like (low κ, high ρ) components directly from the
data, and using these non BOLD-like components to obtain nuisance regressors. This
approach to selecting components and de-noising does not require external physiologic
measures, temporal noise models, or anatomical templates, and is fully automated. It is
based instead on ICA and the principle that the BOLD signals of resting neural activity are
characteristically TE-dependent.

The current study benefits from previous research on TE-dependence and multi-echo fMRI.
The TE-dependence of activation-induced signal changes has been demonstrated multiple
times since 1992 (Ogawa et al., 1992; Bandettini et al., 1994; Menon et al., 1995). Speck
and Henning mapped T2* and S0 for activation corresponding to visual stimulation (Speck
and Hennig, 1998). De-noising with dual-echo acquisition has been demonstrated in several
instances (Glover et al., 1996; Buur et al., 2008; Beissner et al., 2010, 2011). The TE-
dependence of low-frequency resting state fluctuations was demonstrated with 4-echo
acquisition (Peltier and Noll, 2002). Poser et al. introduced accelerated acquisition of multi-
echo EPI using parallel imaging (Poser, 2006), which enabled the acquisition of whole brain
multi-echo fMRI within a conventional TR.

Wu et al. had demonstrated that essentially all fMRI artifacts, regardless of their origins in
motion, physiology, or other sources could be expressed in terms of R2*, S0, and
combinations thereof (Wu and Li, 2005). The current method extends that framework to the
classification of ICA components as R2*, S0 or coupled components. It also differs from
previous approaches such as the estimation of ΔR2* and/or ΔS0 at each time point to
produce parameter time courses (Speck and Hennig, 1998). Simulations demonstrated that
point wise fits produce ΔR2* time courses with higher levels of noise than signal time
courses of a single echo (Gowland and Bowtell, 2007). In our approach, regression weights
were fit to ΔR2* and ΔS0 models, which is similar to the approach of Peltier and Noll
(Peltier and Noll, 2002). The robustness of the fits in their study and in ours is attributed to
the averaging effect of using a fluctuation over time to estimate ΔR2*. Our approach is also
similar to that of Buur et al. (Buur et al., 2008), in which task-related BOLD signal was
separated from co-linear head motion artifact by un-mixing using ICA with TE-dependence
weights. Buur et al. concluded that combining ICA and linear TE-dependence analysis is
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more robust than other methods of extracting BOLD fluctuations from multi-echo data. Our
results show that TE-dependence separates BOLD fluctuations from many kinds of non-
BOLD artifacts, including both motion and physiology. Furthermore, the results observed
after ME-ICA de-noising at the individual level are reflected at the group level.

fMRI artifacts arising via non-R2* mechanisms include S0 fluctuations as well as coupled
R2* and S0 fluctuations such as RVT-like components. Non-R2* components were clearly
distinguished as low-κ components, and specifically S0 fluctuations were further
characterized with high ρ values. The intermediate κ and ρ values for RVT components
were due to signal changes of these components fitting both R2* and S0 models. Wu et. al
had previously suggested that some sources of fMRI artifact would produce coupled R2*
and S0 changes (Wu and Li, 2005). The results showed that components of coupled origin
could be identified by their rankings on κ and ρ-spectra.

Prior studies have denoised task-based fMRI by removing ICA components that have poor
correlation to task reference functions (Thomas et al., 2002). Other studies have proposed
de-noising resting state fMRI by removing those ICA components that do not correspond to
atlases for “functional networks” (De Martino et al., 2007; Perlbarg et al., 2007). This is a
questionable procedure because removing components that are neither networks nor obvious
artifacts (McKeown et al., 1998; Beckmann and Smith, 2004b) depends on a circular
argument. We show for the first time using ICA of multi-echo fMRI that network-like ICA
components fit well to a BOLD TE-dependence model, which would be expected, but also
that all other components fall into a well-defined non-BOLD regime, which is a novel and
important finding. This separation was remarkably stable across subjects, enabling fully
automated identification of network-like components and robust time course de-noising
without spatial templates or time course models for noise.

Using data that was de-noised with ME-ICA nuisance regressors in seed-based correlation
analysis resulted in significantly improved correlation maps in individual subjects and in
groups. Studying functional connectivity of subcortical regions is challenging due to low
functional contrast-to-noise due to CSF and blood flow pulsatility and distance from
receiver elements. Where standard de-noising showed no clear correlation patterns for the
hippocampal and brain stem seeds, ME-ICA de-noising revealed robust correlation patterns.
The brain stem seed was localized to the anterior pons that contains corticospinal
(pyramindal) tracts connecting to premotor, parietal, and motor regions (Kiernan, 2009).
This pattern of anatomical connectivity agrees well with the pattern of functional
connectivity exposed after ME-ICA de-noising. The hippocampus seed was localized to the
head of the right hippocampus that has anatomical connectivity to sensory regions via
temporal and entorhinal cortices (Kiernan, 2009). The pattern of functional connectivity
exposed after ME-ICA denoising agreed with this pattern of anatomical connectivity. These
enhancements can be attributed to the robustness of using information across both space and
TE to extract components and then identifying component origin by evaluating goodness of
fit to the BOLD TE-dependence model.

Overall, analysis of ΔR2* and ΔS0 for ME-ICA components was shown to be a powerful
approach to differentiating BOLD and non-BOLD signal in resting state data for both the
seed-based and ICA approaches to connectivity analysis. In particular, the proposed method
shows considerable promise in removing the pulsatile artifactual signal in subcortical
regions such that subcortical-cortical connectivity can be studied more effectively. The
benefits also extend beyond the application to resting state data. The improved contrast to
noise will have direct impact on the repeatability and quality of activation-related fMRI
studies. This method will be particularly beneficial for clinical fMRI of patients who exhibit
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a high amount of movement. It also holds potential for reducing the effects of stimulus
correlated motion as in studies of overt speech production.

In the present study, an 8 channel head coil, 3T scanner, and accelerated imaging (SENSE
factor 2) was used to acquire whole brain images at 3 TEs with a 3.75 mm × 3.75 mm × 4.5
mm resolution and a 2.5s TR. Recent advances in coil technology (Wiggins et al., 2006) and
multi-slice excitation (Feinberg et al., 2010; Moeller et al., 2010; Setsompop et al., 2011)
should allow for substantial increases in resolution and efficiency. These advances will
allow for acceleration factors of 3 in plane and 3 in the slice direction, enabling the
acquisition of whole brain images at 3 TEs with a 2mm × 2mm × 2mm resolution and a 2s
TR. Acquiring more than 3 TEs for the purposes of the proposed analysis is a subject of
further study. Given the good differentiation of components at the current resolution with 3
TEs, the use of more TEs could be redundant. For lower SNR regimes that are associated
with higher resolution acquisition, acquiring more TEs could be beneficial. Given a
particular TR, however, increasing resolution competes with acquiring more TEs, so this
trade-off defines a limitation of the proposed approach.

ME-ICA allows for robust assessment of resting state correlation, producing maps from
individual subjects where multi-subject averaging was previously required. This increase in
functional contrast to noise in time series will likely lead to more robust clustering and
segmentation of individual subject resting state data (Cohen et al., 2008) and substantially
improve the power of multi-subject studies (Biswal et al., 2010).
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Highlights

• ICA components were analyzed for TE-dependence

• Component-level TE-dependence scores identified BOLD components

• BOLD networks were identified without spatial templates or frequency
thresholds

• Removing non-BOLD components dramatically denoised data

• Robust subcortial-cortical connectivity was revealed after denoising.
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Figure 1.
Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change)
signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects.
The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different
manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y − x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows
the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.

Kundu et al. Page 17

Neuroimage. Author manuscript; available in PMC 2013 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
(a) Multi-echo EPI images acquired at TE values of 15ms, 39ms, and 63ms. Image intensity
decreases exponentially with TE. (b). Left: multi-echo EPI time courses from a voxel in
visual cortex (center of yellow box in (a)) during periodic visual stimulation plotted as
percent signal change. Right: percent signal change amplitude as a function of TE (black),
with linear fit, i.e. change in R2* (gold). The fit is significant (p<0.01), with ΔT2*=0.3ms.
(c) Left: multi-echo EPI time courses from a single precuneus voxel (center of white box in
(a)) during rest, plotted as percent signal change. TE is indicated by the color. Right: percent
signal change amplitude as a function of TE (black), with linear fit, i.e. change in T2*
(gold). The fit is significant (p<0.01), with dT2*=0.3ms.
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Figure 3.
TE-dependence maps of ICA components from ME-ICA. (a) A BOLD-like and (b) a non
BOLD-like component. For each component (a and b), the left panel shows percent signal
change maps for three TEs 15ms, 39ms, 63ms (above), and the component time course
(below). The right panel shows results of fitting to the ΔT2* change model (above) and the
S0 change model (below). Goodness of fit maps, F{ΔT2*} and F{ΔS0}, are used to
threshold parameter maps α<0.01 (p<0.05). (a) BOLD-like component: High percent
signal change in gray matter scales linearly with TE. The component time course exhibits
low frequency fluctuations. (b) non BOLD-like component: High percent signal change at
the edge of brain is constant with TE. The component time course exhibits high frequency
fluctuations.
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Figure 4.
For a representative subject, κ score vs (a) ICA rank (variance explained), and (b) rank by κ
(κ spectrum). The κ spectrum, is an L-curve with two distinct regimes: high κ (κ >20) and
low κ (κ <20), with low κ components on a linear tail. (c) κ spectra for 8 subjects. (d) First
12 ME-ICA components ranked by κ for a representative subject. Each panel shows the time
course and thresholded ΔR2* map. Components are annotated with κ-score, ρ-score, and
ICA component number. All high κ components are clearly functional networks.
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Figure 5.
For a representative subject, ρ score vs (a) ICA rank (variance explained), and (b) ρ rank (ρ
spectrum). The ρ spectrum, like the k-spectrum, is an L-curve with two distinct regimes:
high ρ (appx. ρ >20) and a linear tail with low ρ (appx. ρ <20). (c) ρ spectra for 8 subjects.
(d) First 8 ME-ICA components ranked by ρ for a representative subject. Each panel shows
the time course and thresholded %ΔS0 map. Components are annotated with κ-score,
ρscore, and ICA component number. All high ρ components are clearly artifacts.
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Figure 6.
Components with κ scores near κ thresholds are correlated to low-frequency RVT time
courses. Components are annotated with κ score, ρ score, and ICA component number. TE-
dependence maps for ΔR2* and ΔS0 models show high ΔR2* localized to non-gray matter
regions.
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Figure 7.
Signal from three regions of interest from a representative subject: the right insula, left
hippocampus, and brainstem. (a) shows de-noising by removing: drifts only; drifts,
physiology, and motion (the standard); drifts and low κ components (ME-ICA). (b) Seed
based connectivity measured by R2 and T values, with baseline regression for: motion and
physiology, then band pass filtering for 0.02–0.1 Hz; drifts and low κ components, without
band pass filtering.
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Figure 8.
Group T-maps of subcortical connectivity with hippocampus and brainstem computed from
individual maps with baseline regression for: motion and physiology, then band pass
filtering; drifts and low κ components, without band pass filtering.
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Figure 9.
Group maps for subcortical connectivity with hippocampus and brainstem after removal of
drifts and low κ and/or high ρ components. Overlay is map of mean Z-value, thresholded by
T-value corresponding to FDR corrected p<10−4. Underlay is template brain in Talairach
space.
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