Hindawi Publishing Corporation

Clinical and Developmental Immunology
Volume 2012, Article ID 656340, 8 pages
doi:10.1155/2012/656340

Review Article

Programmed Death Ligand 2 in Cancer-Induced

Immune Suppression

Esdy N. Rozali,! Stanleyson V. Hato,?> Bruce W. Robinson,3
Richard A. Lake,"3 and W. Joost Lesterhuis’*

FTumor Immunology Group, School of Medicine and Pharmacology, University of Western Australia, 4th Floor, G-block,
Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009, Australia
2 Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre,

P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

3 National Centre for Asbestos Related Diseases, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
 Department of Medical Oncology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

Correspondence should be addressed to W. Joost Lesterhuis, w.lesterhuis@onco.umcn.nl

Received 25 January 2012; Accepted 13 February 2012

Academic Editor: Nejat Egilmez

Copyright © 2012 Esdy N. Rozali et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Inhibitory molecules of the B7/CD28 family play a key role in the induction of immune tolerance in the tumor microenvironment.
The programmed death-1 receptor (PD-1), with its ligands PD-L1 and PD-L2, constitutes an important member of these
inhibitory pathways. The relevance of the PD-1/PD-L1 pathway in cancer has been extensively studied and therapeutic approaches
targeting PD-1 and PD-L1 have been developed and are undergoing human clinical testing. However, PD-L2 has not received as
much attention and its role in modulating tumor immunity is less clear. Here, we review the literature on the immunobiology
of PD-L2, particularly on its possible roles in cancer-induced immune suppression and we discuss the results of recent studies

targeting PD-L2 in cancer.

1. Introduction

Molecules of the B7-CD28 family play an important role
in T-cell activation and tolerance. These pathways are not
only responsible for providing positive costimulatory signals
to sustain T-cell activity, but also contribute inhibitory
signals that modulate the magnitude of T-cell responses [1].
Useful as this negative feedback may be during physiological
homeostasis, it may be a problem in the context of cancer.
It is now clear that the inhibitory members of the B7-
CD28 family are upregulated by a variety of cells within the
tumor microenvironment [2]. Thus, the selective blockade of
these inhibitory molecules is an attractive approach to cancer
immunotherapy.

The programmed death-1 receptor (PD-1, CD279) with
its ligands PD-L1 (CD274, B7-H1) and PD-L2 (CD273, B7-
DC) constitutes one such inhibitory pathway. Therapeutic
antibodies for blocking PD-1 and PD-L1 have been devel-
oped and are undergoing human clinical testing [3, 4].

Negating the PD-1/PD-L1 interaction is of particular interest
as PD-L1 is upregulated by many human cancers [5]. On
the other hand, the role of PD-L2 in modulating immune
responses is less clear, and its expression is more restricted
compared to PD-L1, thus making it a less obvious target
in cancer immunotherapy. However, in this context, several
aspects of PD-L2 biology deserve attention, including a
partial contextual dependency of PD-L2 expression. Recent
reviews have discussed the importance of PD-L1 in tumor
immunology [4, 6]. Here, we will focus on the immunobiol-
ogy of PD-L2 and particularly on its possible roles in cancer-
induced immune suppression.

2. Expression Pattern of PD-L2

The patterns of expression of PD-L1 and PD-L2 are
quite distinct. PD-L1 is constitutively expressed by a wide
variety of immune cells and nonimmune cells and most
normal tissue cells seem to be able to upregulate PD-L1 in
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the presence of strong inflammatory signals, presumably to
prevent collateral damage induced by potent but potentially
destructive Th1/17 T-cell responses [7-10]. Compared to
PD-LI, constitutive basal expression of PD-L2 is low. PD-
L2 expression was initially thought to be restricted to
antigen-presenting cells such as macrophages and dendritic
cells (DCs) [11]. In recent years however, several groups
have shown that PD-L2 expression can be induced on a
wide variety of other immune cells and nonimmune cells
depending on microenvironmental stimuli [12-17].

Exposure of DCs and macrophages to Th2 (IL-4) cytoki-
nes increased the expression of PD-L2 as did IFNy and
toll-like receptor ligands [17, 18] (Figure 1). In addition,
cytokines binding to receptors that use the common y-chain
such as IL-2, IL-7, IL-15, and IL-21 upregulated PD-L2 in
these cells [12]. Alveolar epithelial cells express high levels of
PD-L2 in the presence of IL-4 when infected with respiratory
syncytial virus [10]. Constitutive expression of PD-L2 on
human umbilical vein endothelial cells has been observed
and stimulation by IFNy and TNF« in vitro further enhanced
its expression [19]. Also human colonic fibroblasts have been
shown to express PD-L2, resulting in T-cell suppression in
the gut epithelial mucosa [9]. Of special importance to the
field of tumor immunology is the finding that not only
normal fibroblasts, but also cancer-associated fibroblasts can
constitutively express PD-L2 (further discussed below) [20].
Recently, constitutive expression of PD-L2 was found on 50—
70% of mouse peritoneal CD5" B cells and PD-L2 expression
was found to be unique to this particular subset of B cells
[13]. An additional level of complexity was discovered in the
finding that T cells themselves can upregulate PD-L2 upon
activation in vitro [21, 22]. We have shown that this was
predominantly the case for Th2 cells activated in the presence
of IL-4, and less so for Treg, Th1, and Th17 cells [23]. From
these data a new picture is emerging in which the expression
of PD-L2 is much less restricted than previously thought and
at least for some cells partly depends on microenvironmental
cues, with a specific role for Th2 cytokines.

3. Regulation of PD-L2 Expression

From the data discussed above, it can be inferred that
signalling pathways downstream of cytokine receptors and
innate immune activators play an important role in the
regulation of PD-L2 expression. Indeed, two major pathways
that have been reported to regulate PD-L2 expression are
the NFxB-pathway and the signal transducer and activator
of transcription (STAT) 6 pathway (Figure 1). Two groups
have found that macrophages from Stat6~/~ mice are unable
to express PD-L2 [24, 25]. These results were confirmed
in bone-marrow-derived DCs from Stat6~/~ mice and in
human monocyte-derived DCs in which STAT6 was phar-
macologically inhibited [17]. STAT6 is a signaling molecule
and transcription factor that is especially important in the
regulation of Th2 immune responses and it is activated by
ligation of the IL-4 and IL-13 receptor with its ligands IL-
4 or IL-13 [26]. Recently, also the cytokines TSLP and IL-
27 have been shown to activate STAT6, as well as viruses
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F1GURE 1: PD-L2/PD-1 signaling. PD-L2 expression by different cell
types is regulated by STAT6 and NF-«B, although other possible
regulators cannot be excluded. The most potent inducers of PD-
L2 expression appear to be Th2 cytokines, particularly IL-4. Several
new activators of STAT6 (such as viruses) have been found, but
whether they therefore also upregulate PD-L2 is not known yet.
PD-L2/PD-1 interaction results in the suppression of TCR-induced
PI3K/AKT activation and subsequent attenuation of T cell survival,
cytokine production and proliferation.

in a JAK-independent manner, providing the possibility
that these stimuli may also induce PD-L2 expression [27—
29].

NF«B was shown to play a role in the regulation of PD-
L2 expression by Liang and colleagues: although knockdown
of NFxB did not completely abrogate PD-L2 expression,
DCs from NF-xB p50~~ p65~/* mice had lower levels of
expression and were less able to upregulate PD-L2 when
stimulated with exogenous IFNy or LPS [30]. However, NF-
kB p50~/~ mice are severely hampered in the production of
the STAT6 activating cytokines IL-4 and IL-13 [31], possibly
explaining the lowered PD-L2 expression found by Liang
and colleagues. Indeed, in contrast to the findings by Liang
et al., another study found that the PD-L2 promoter could
be activated by IL-4 signaling but not by LPS signaling,
a strong NF-«B inducer [32]. Thus, it seems that NF-
kB does not play a direct role in the induction of PD-
L2 expression. However, an indirect role cannot be ruled
out since at least one study showed that pharmacological
blocking of NF-«B interfered with STAT6 DNA binding but
not phosphorylation or nuclear translocation, indicating that
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NF-«B might have a role in regulating STAT6 DNA binding
activity and thus indirectly controls PD-L2 expression [33].
Together, these findings hint at the possibility that PD-L2
may be of particular importance in the regulation of Th2
type immune responses. Whether the NFxB and STAT6
pathways are the only pathways that are of importance for the
regulation of PD-L2 expression remains an open question.

4. Molecular Consequences of
PD-L2/PD-1 Interactions

The structures of PD-1/PD-L1 [34] and PD-1/PD-L2 [35]
reveal differences in the binding modalities, which helps
explain the distinct molecular mechanisms of interaction
between PD-1 and its ligands. By investigating PD-1 inter-
actions with its ligands by surface plasmon resonance and
cell surface binding, Ghiotto et al. showed that while PD-L2
interact in a direct manner with PD-1, PD-L1 binding to PD-
1 involves complex conformational changes. The notion of
PD-L1 and PD-L2 simultaneously binding to PD-1 was also
dispelled, indicating that the two ligands cross-compete to
bind to the receptor [36]. Furthermore, the relative affinity
of PD-L2 to PD-1 was calculated to be 2—-6-fold higher than
that of PD-L1 [37]. If expressed at the same level, PD-L2
would be expected to outcompete PD-L1 for binding PD-1,
but the physiological relevance of this competition is not yet
fully clear [38]. The fact that PD-L2 is generally expressed
at a lower level may favour PD-L1 as the primary binding
ligand of PD-1, except for during Th2 responses when PD-
L2 is upregulated.

PD-1/PD-L interactions lead to phosphorylation of two
tyrosines at the intracellular tail of PD-1. These tyrosines are
part of an Immunoreceptor Tyrosine-based Inhibitory Motif
(ITIM) and an Immunoreceptor Tyrosine-based Switch
Motif (ITSM). ITSM then recruits either of two structurally
related protein tyrosine phosphatases, SH2-domain contain-
ing tyrosine phosphatase 1 (SHP-1) and SHP-2 [39], which
suppress activation of PI3K/Akt [40]. Consequently, the
survival factor Bcl-xL is downregulated [40] and expression
of transcription factors associated with effector cell function
including GATA-3, T-bet and Eomes are lost [41]. The net
result of these PD-1-induced cascades is an impairment of
proliferation, cytokine production, cytolytic function, and
survival of the T cell [42].

Whether PD-L2 can induce signalling downstream of
its intracellular domain has not been well characterized.
Using magnetic beads coated with anti-CD3 and anti-CD28
as artificial antigen-presenting cells, Messal and colleagues
found that when PD-L2 on T cells was ligated with the
same beads coated with anti-PD-L2, T-cell proliferation
and production of IL-2, IL-10, and IFNy was significantly
decreased [21]. Studies from a different group demonstrated
that cross-linking of PD-L2 on T cells that were transduced
with PD-L2 siRNA resulted in the elimination of the negative
effect on IFNy production [22]. These data indicate that
indeed PD-L2 does induce signalling downstream and as
such plays a role in the modulation of T-cell function, but
the exact molecular pathway is yet to be elucidated.

Of note, PD-1 may not be the only receptor for PD-L2.
This can be inferred from helminth infection and allergic
animal models, showing enhanced disease severity when
PD-L2 blocking antibodies were used, but not when PD-1
blocking antibodies were used [43, 44]. Furthermore, PD-
L2 mutants with abolished PD-1 binding capacity could still
exert functional effects on T cells from normal and PD-
1-deficient mice [45]. Thus, although for PD-L1 another
receptor has been found in B7.1, for PD-L2 this still remains
enigmatic [46].

5. Physiological Function of PD-L2

The initial finding of enhanced expression of PD-L2 on
activated professional antigen-presenting cells suggested that
PD-L2 mainly functioned in the induction phase of T-
cell immunity, whereas PD-L1 which is much more widely
expressed, played an important role in constraining activated
T cells at the effector site. However, the above-mentioned
data showing a wider inducible expression of PD-L2 as well
as in vivo animal studies have demonstrated that PD-L2
probably functions both at the induction phase as well as
the effector phase of T-cell responses. For example, antigen-
presenting cells from PD-L27~/~ mice displayed an enhanced
T-cell activating potential both in vitro and in vivo [47].
Inducible experimental autoimmune encephalitis models
have shown that therapeutic blockade of PD-L2 results in
enhanced disease severity not only when the antibodies were
administered at the time of disease initiation, but also in the
chronic phase [48, 49].

The physiological role of dampening and regulating
T-cell responsiveness seems especially important in the
mucosal immune response against environmental antigens
[50]. For example, in PD-L2~/~ mice experimentally induced
oral tolerance to chicken ovalbumin was abrogated, and
animal models using exposure to environmental allergens
through the lung mucosa demonstrate enhanced airway
hypersensitivity when PD-L2 (but not PD-L1) is knocked
out or pharmacologically blocked [43, 47, 51]. Experimental
colitis models, however, have thus far not demonstrated
a role for PD-L2 in controlling disease severity [52]. A
possible explanation for this lack of effect could be that
the colitis induction in these models (adoptive transfer of
CD4*CD45RB"8" T cells into SCID mice) probably does not
involve a Th2-skewed microenvironment. Although immune
infiltrates in human ulcerative colitis have been shown to
highly express PD-L1 [52], this has not been investigated for
PD-L2.

As can be inferred from the above-mentioned asthma
models, as well as from helmintic infection animal models
demonstrating enhanced disease severity in the absence of
PD-L2 signalling [44], PD-L2 appears to predominantly
be of significance in the modulation of Th2 immune
responses. Animal models of Thl-driven diseases, without
a dominant Th2 component, such as autoimmune diabetes
have generally shown a more dominant role of PD-L1
over PD-L2 in restraining T-cell activity and prevention of
subsequent collateral tissue damage [53, 54].



Intriguingly, in a PD-L2 knock out mouse model dif-
ferent from the previously discussed ones [47, 51], IFNy-
production by T-helper cells as well as IFNy-dependent
humoral responses and antigen-specific CTL responses were
impaired, indicating that PD-L2 also functions as a tuning
molecule that can even augment CTL and Thl responses
[55]. However, using an in vitro system of engineered T-cell
stimulator cells that detached PD-L2/PD-1 interactions from
the context of other molecules regulating T-cell activation,
no positive costimulatory role for PD-L2 was found [56].

Although the final verdict is still out, and PD-L1 and
2 do appear to have overlapping effects, together these
data indicate that the main physiological function of PD-
L2 could lie in the dampening and regulation of Th2-
driven T-cell immune responses both during the induction
and the effector phase, with possibly special significance in
mucosal responses against environmental antigens. However,
given the fact that PD-L2 also inhibits IFNy production
by Thl cells, and Th2 responses appear to prevent acute
tissue damage by Th1 or Th17 cells, as has been shown very
recently in a helminth model [57], it could be hypothesized
that although the Th2 response is the “driver” of PD-L2
expression, the potentially destructive Th1/17 component of
the local immune response is the eventual target.

6. PD-L2 in Cancer

Since PD-L2 appears to play an important role in the
modulation of Th2 responses, while in the context of
antitumor immunity Thl responses are the most potent, it
does not seem obvious to choose PD-L2 as a target in cancer.
However, in recent years evidence has accumulated showing
that tumor microenvironments are often deviated towards an
ineffective Th2 type of immune milieu, resulting in cancer
cell escape from immune surveillance. For example, breast
cancer cells have been shown to produce 1L-13 themselves,
resulting not only in autocrine STAT6-phosphorylation but
also in the instruction of DCs to skew CD4 T cells towards a
Th2 phenotype with high production of IL-4 and IL-13 [58].
In addition, human and murine studies in pancreatic cancer
have shown high local production of TSLP (another STAT6-
activating cytokine [27]), resulting in Th2 skewing and
enhanced tumor outgrowth [59, 60]. PD-L2 upregulation
in response to local Th2 cytokines may thus affect tumor-
specific CTL reactivity, either in the induction phase in the
tumor-draining lymph node or in the effector phase in the
tumor. Hence, there is a clear rationale to further investigate
the relevance of PD-L2 in cancer.

6.1. Clinical Relevance of PD-L2 Expression in Cancer. Given
the possible immune evasion to antigen-specific T cells by
PD-L2-expressing tumor cells, several groups have investi-
gated the possible correlation between tumor PD-L expres-
sion and clinical outcome in retrospective patient cohorts.
These studies were performed before the observation was
made that also cancer-associated fibroblasts upregulate both
PD-L1 and 2 [20], and therefore a clear distinction between
tumor cell and tumor stroma expression may not have been
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made. Ohigashi et al. [61] investigated the expression of PD-
L1 and PD-L2 in human esophageal cancer to determine
their clinical significance in patients prognosis after surgery.
Using RT-qPCR and immunohistochemistry, the authors
showed that both PD-L1 and PD-L2 are expressed in frozen
tissue samples of esophageal cancer patients and PD-L2-
positive patients had a poorer prognosis than the negative
patients, as was the case for PD-L1 [61]. Interestingly,
there was a significant inverse correlation between PD-
L2 expression and CD8 TILs but not CD4 TILs. In a
retrospective study involving 51 patients with pancreatic
cancer, 27% of the analyzed tumors expressed PD-L2 versus
39% expressing PD-L1. No correlation was found between
PD-L2 expression and survival, whereas PD-L1 expression
correlated with an impaired survival [62]. Similarly, in a
cohort of 70 patients with ovarian cancer, the majority of
the tumors were negative or weakly positive and although
PD-L12 expression was correlated with an impaired survival,
this did not reach statistical significance [63]. And lastly, in
a study involving 125 patients with hepatocellular carcinoma
a minority had high PD-L2 expression, and again, although
PD-L2 expression was correlated with an impaired disease-
free survival, this difference was not statistically significant
[64].

Thus, the majority of studies have found a significant
correlation between impaired survival and PD-L1 expres-
sion, but much less so for PD-L2. Although several studies
have found an impaired survival in patients with PD-L2
expressing tumors, this reached statistical difference in only
one of these studies [61]. However, it is important to note
that in the majority of studies PD-L2 was expressed in only a
minority of patients. In addition, it is not inconceivable that
PD-L2 expression is more dependent on environmental cues
than PD-L1, which seems to be expressed in a more con-
stitutive manner, although this can be further upregulated
with proinflammatory stimuli [65]. In fact, if the PD-Ls are
induced in response to IFNy that is produced by antigen-
specific tumor-infiltrating T cells, a process recently termed
adaptive resistance [4], this may actually reflect a positive
event in the context of antitumor immunity, but this does
make the data more difficult to interpret. Finally, there are
some technical issues with different findings depending on
whether frozen sections or paraffin-embedded slides were
used, with a higher percentage of positive tumors from
frozen sections, as has been shown for PD-L1 [66]. Thus
for these reasons, although PD-L1 may indeed be the more
dominant negative inhibitory molecule in the context of
tumor immunology, PD-L2 should not yet be dismissed as
a possible second important suppressive molecule in the
tumor microenvironment.

It is also important to note here that perhaps not
only PD-L2 expression by the tumor cells themselves, but
rather by stromal cells is of importance. Nazareth and
colleagues found constitutively high PD-L1 and 2 expression
in fibroblasts that were cultured from human non-small-
cell lung cancers [20]. This expression appeared to be
functional, since in vitro blocking studies demonstrated that
the fibroblasts inhibited IFNy-production by autologous T
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cells in a PD-L1- and 2-dependent manner. For this reason,
future studies should not only focus on PD-L expression by
tumor cells only, but also by the tumor stroma.

6.2. Therapeutic Studies Targeting PD-L2 in Cancer. Given
its potential role in cancer-associated immune suppression
in the tumor microenvironment, targeting the PD-1/PD-
L pathway seems an attractive treatment strategy. Several
studies have investigated the therapeutic effect of blocking
antibodies against the PD-1/PD-L pathway in murine can-
cer models, demonstrating enhanced tumor control rates,
though in none of these studies the blocking of PD-L2
was used as a defined treatment strategy [67—70]. Although
in a few studies PD-L2 blocking strategies were used, this
was always in combination with the targeting of PD-L1
[71, 72]. In these studies again impaired tumor outgrowth
was demonstrated. The true additive value of adding anti-
PD-L2 on top of anti-PD-L1 cannot be assessed based on
these studies, since separate single-antibody treatments were
not tested.

In one study using the Panc02 murine pancreatic tumor
model, decreased tumor outgrowth rates on day 21 were
seen when the animals were treated with PD-L2 blocking
antibodies, comparable to that seen with blocking PD-
L1 or PD-1 alone [73]. In contrast with these data, in
a hepatic metastasis model of CT-26 colon cancer, PD-
L2/~ mice displayed impaired survival and increased tumor
outgrowth in combination with a decreased tumor-specific
CTL response [55]. It is difficult to reconcile these conflicting
data, but the difference in outcome may be the result of
a difference in mouse strain backgrounds or differences in
the local tumor microenvironment and cytokine milieu that
influence PD-L2 expression by its several constituent cell
types.

Human data about targeting PD-L2 in cancer are scarce.
Currently a phase I study is ongoing investigating AMP-224,
a recombinant fusion protein of PD-L2 and the Fc portion
of IgG1 (http://ClinicalTrials.gov Identifier NCT01352884)
[74]. Although there are no results to date about specifically
targeting PD-L2 in humans, promising results have been
seen with antibodies targeting PD-1 with objective responses
in several types of cancer and with tolerable toxicity,
specifically autoimmune-related adverse events [3, 4]. In
addition, several groups have used approaches other then
antibodies to target PD-L2 in humans. Hobo and colleagues
used siRNA to knock down PD-L1 and PD-L2 in DCs,
with the ultimate goal of incorporating this approach in
DC-based cancer vaccines. PD-L2-silenced DCs modestly
improved IFNy production by allogeneic T cells, but double
knockdown of both PD-Ls resulted in a synergistic increase
of IFNy production and proliferation capacity of antigen-
specific T cells in vitro [75]. This was also followed by a
synergistic improvement of cytokine production in double
PD-L blockade compared to single PD-L1 knockdown or
PD-L2 knockdown [75].

Recently, we found that platinum-based chemotherapeu-
tic drugs that form the cornerstone in the medical treat-
ment of many cancers, dephosphorylate STAT®6, resulting in
downregulation of PD-L2 by DCs [17]. We found that this

resulted in an enhanced T-cell activating potential of the
DCs in vitro. Moreover, also tumor cells downregulated PD-
L2 when treated with platinum drugs, resulting in enhanced
CTL recognition. Indeed tumor STAT6 expression correlated
strongly with an enhanced recurrence-free survival in a
cohort of patients with head and neck cancer that had been
treated with cisplatin-based chemoradiation. Conversely, in
a cohort of patients that had been treated with radiotherapy
alone, STAT6 expression showed a clear trend towards a poor
clinical outcome, which could be explained by the immune-
evasive potential of STAT6-expressing tumor cells, if not
attacked by platinum. Although in this study it could not
be ruled out that STAT6-dependent effects other than PD-
L2 upregulation also played a role, these results indicate
that we may in fact already be targeting PD-L2 in cancer
patients with one of the clinically most widely used groups
of chemotherapeutics [76].

However, to truly determine whether PD-L2 is a relevant
molecule to target in cancer immunotherapy, more studies
are necessary. Given the dependency of PD-L2 expression
on environmental cues, the outcomes may differ between
tumor models and tumor types in animals and humans, or
even between patients with the same tumor type. Future
studies should investigate whether it is possible to predict
which patients might respond to PD-L2 blockage by first
defining the type of immune response occurring in the tissue,
for example, whether it is Th2 or not. In addition, double
blockade combining PD-L1 and 2, or combining anti-PD-
L2 with anti-CTLA4, which blocks an immune checkpoint
more during the induction phase could potentially be
more efficient [67]. Finally, since several forms of cancer
chemotherapy have been shown not only to induce antigen
release but also subsequent immune activation [77, 78],
the therapeutic efficacy of these drugs could potentially be
further enhanced by combining it with PD-L2 blockade.

7. Conclusion

It has now been demonstrated that PD-L2 is principally
an inhibitory molecule, expressed not only by antigen-
presenting cells, but also by other immune cells including
T cells themselves and nonimmune cells in an inducible
manner, mainly through Th2-associated cytokines. Based on
the current literature, it is not yet possible to draw a definite
conclusion on the relevance of PD-L2 in the immune-
suppressive tumor microenvironment, although there are
some encouraging data indicating that targeting PD-L2 in
cancer may be a viable treatment approach. Therefore,
more studies targeting PD-L2 in the context of antitumor
immunity are urgently needed.
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