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Abstract
A finite element formulation of neutral solute transport across a contact interface between
deformable porous media is implemented and validated against analytical solutions. By reducing
the integral statements of external virtual work on the two contacting surfaces into a single contact
integral, the algorithm automatically enforces continuity of solute molar flux across the contact
interface, whereas continuity of the effective solute concentration (a measure of the solute
mechano-chemical potential) is achieved using a penalty method. This novel formulation
facilitates the analysis of problems in biomechanics where the transport of metabolites across
contact interfaces of deformable tissues may be of interest. This contact algorithm is the first to
address solute transport across deformable interfaces, and is made available in the public domain,
open-source finite element code FEBio (http://mrl.sci.utah.edu/software).
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1. Introduction
Biological soft tissues may be modeled as deformable porous media to describe the
deformation of their solid matrix as well as the transport of their interstitial fluid (Mow et
al., 1980; Lai et al., 1991). The interstitial fluid typically consists of a solvent and multiple
solutes, which play an important role in tissue metabolism. Finite element modeling of solid
deformation and fluid transport in porous media has been an active topic of research over the
last two decades (Simon et al., 1996; Frijns et al., 1997; Sun et al., 1999; Kaasschieter et al.,
2003; Steck et al., 2003; Sengers et al., 2004; Yao and Gu, 2007). Modeling of contact
interfaces in solid-fluid mixtures under finite deformation has been of particular interest in
certain areas of biomechanics, such as diarthrodial joint mechanics (Donzelli et al., 1999;
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Un and Spilker, 2006; Yang and Spilker, 2007; Ateshian et al., 2010). However, an
algorithm for modeling a deformable contact interface that allows solute transport has not
yet been proposed. The objective of this article is to present a formulation of solute transport
across a contact interface that builds upon our recent algorithm for contact of biphasic
(solid-fluid) mixtures under finite deformation (Ateshian et al., 2010), and our recent
implementation of neutral solute transport in a biphasic medium (Ateshian et al., 2011).
Sample contact problems are presented, which demonstrate the application of this algorithm
to problems involving large solid deformation and solvent and solute transport.

2. Contact Algorithm
A biphasic-solute mixture consists of a mixture of a solid matrix, a solvent and a solute
(Mauck et al., 2003). Each of these constituents is idealized as intrinsincally incompressible,
but the mixture can change in volume as a result of fluid exchanges with the solid matrix
pore space (Bowen, 1980; Mow et al., 1980; Lai et al., 1991). The volume fraction of the
solute is negligible in comparison to that of the solid (ϕs) and solvent (ϕw), so that ϕs + ϕw ≈
1.

The solute concentration (moles per volume of interstitial fluid) is denoted by c. From
principles of physical chemistry, c is not necessarily continuous across a boundary or
contact interface, therefore it is not suitable as a nodal variable in a finite element analysis.
As shown previously (Sun et al., 1999; Ateshian et al., 2011), based on the continuity of the
solute mechano-chemical potential across non-dissipative interfaces (Ateshian, 2007), a
suitable nodal variable is the effective concentration c̃ = c/κ̃, where κ̃ is the effective
solubility (representing the fraction of the pore space actually occupied by the solute).

The fluid pressure, denoted by p, represents a combination of osmotic and mechanical
effects. In the presence of solutes, the fluid pressure is not necessarily continuous across a
boundary or contact interface. Therefore, based on the continuity of the solvent mechano-
chemical potential across non-dissipative interfaces (Ateshian, 2007), a more suitable nodal
variable in a finite element implementation is the effective fluid pressure p̃ = p − RθΦc,
where p̃ represents the mechanical contribution to the pressure. The term RθΦc is the
osmotic contribution to the pressure, where R is the universal gas constant, θ is the absolute
temperature (assumed uniform), and Φ is the osmotic coefficient that describes the deviation
of the osmotic pressure from ideal physico-chemical behavior.

The governing equations for a biphasic-solute mixture (Mauck et al., 2003; Ateshian et al.,
2011) consist of the balance of linear momentum for the mixture,

(2.1)

where T is the mixture Cauchy stress; the balance of mass for the mixture,

(2.2)

where vs is the solid matrix velocity and w is the volumetric flux of solvent relative to the
solid; and the balance of mass for the solute,

(2.3)
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where J = det F, F is the deformation gradient of the solid matrix, Ds/Dt is the material time
derivative in the spatial frame, following the solid, and j is the molar flux of solute relative
to the solid. The dependence of w and j on gradients of fluid pressure and solute
concentration may be derived from the balance of linear momentum for the solvent and
solute (Mauck et al., 2003; Ateshian et al., 2011) (see Supplementary Data). These explicit
relations are not needed for the presentation of the biphasic-solute contact formulation.

These governing equations may be solved in a finite element framework by applying the
principle of virtual work and separating the virtual work δW into internal and external parts
using the divergence theorem, as described previously (Bonet and Wood, 1997). For contact
analyses (Laursen and Simo, 1993; Yang and Spilker, 2007; Ateshian et al., 2010), only the
external virtual work is needed, which is given by

(2.4)

where δv is the virtual velocity of the solid, δp̃ is the virtual effective fluid pressure, and δc̃
is the virtual molar energy of the solute; b represents the mixture domain in the spatial frame
and ∂b is the boundary of b; da is an elemental mixture area on ∂b. Here, t = T · n is the
mixture traction, with n representing the unit outward normal on ∂b; wn = w · n is the
normal component of the relative solvent flux; and jn = j·n is the normal component of the
relative solute flux. According to axioms of mass and momentum balance across surfaces
(Eringen and Ingram, 1965), t, wn and jn must be continuous across boundaries and contact
interfaces.

Because of the close similarity between the terms δp̃wn and δc̃jn, the finite element
treatment of contact of biphasic-solute media is a natural extension to that of contacting
biphasic media as presented in our earlier study (Ateshian et al., 2010). Therefore we forgo
the detailed derivation and summarize the salient equations. A contact interface is defined
between two surfaces, ∂b(1) and ∂b(2). The portions of these surfaces which are in contact are
respectively denoted by γ(1) and γ (2). The external virtual work produced at the contact
interface is the sum of two expressions of the form given in (2.4), evaluated on γ(1) and γ(2).

Accounting for the continuity conditions t(1) + t(2) = 0, , and , the
contact virtual work, denoted by δGc, may be reduced to an evaluation on the first of the two
surfaces,

(2.5)

By substituting these traction and normal flux continuity conditions in the formulation of a
single contact integral, these conditions become enforced automatically, since equal and
opposite values become prescribed on opposing contact surfaces.

In a finite element implementation the solution for the displacement of the solid matrix, u,
effective fluid pressure p̃, and effective solute concentration c̃ is obtained at the nodes of the
finite element mesh by letting δW = 0. Since δW is a nonlinear function of these variables,
the solution is obtained iteratively using the linearization of δW along incremental changes
Δu, Δp̃, and Δc̃. When applied to δGc, this linearization has the general form

(2.6)
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where Df [Δq] represents the directional derivative of the function f along Δq (Bonet and
Wood, 1997). Clearly, the linearization needs to be performed by accounting for
deformation, pressure and concentration on both of the contacting surfaces.

The linearization process involves the evaluation of Dt(1), Dwn (1) and jn (1), since they
appear in (2.5). A standard approach for evaluating these directional derivatives is to employ
the penalty method for relating the traction (Laursen and Simo, 1993) and fluxes (Ateshian
et al., 2010) to the deformation, pressure and concentration, in a manner that helps enforce
continuity requirements on these nodal variables. For a frictionless contact interface, as
considered here, let t(1) = tnn(1). Then the penalty method provides that

(2.7)

where the gap function g measures the distance between γ(1) and γ(2). εn is a parameter that
penalizes large values of g to prevent unacceptable overlap (g < 0) of the contacting
surfaces. By choosing εn to be sufficiently large, the gap function g will tend toward zero,
enforcing the continuity of the normal component of solid velocity across the contact
interface (Laursen and Simo, 1993).

Similarly, the penalty method may be used to help enforce continuity of the effective fluid
pressure and effective solute concentration, by letting

(2.8)

and

(2.9)

where wn = w(1) ·n(1), jn = j(1) ·n(1); εp and εc are penalty parameters for the solvent and
solute flux, respectively; and p̃* and c̃* are the ambient pressure and concentration outside
the contact interface. By choosing sufficiently large values for εp and εc, the continuity
requirements p̃(1) = p̃(2) and c̃(1) = c̃(2) are enforced to within an acceptable tolerance. The
units of εc and εp are those of diffusivity per unit length (e.g., m/s) and hydraulic
permeability per unit length (e.g., m3/N · s), respectively. For contact interfaces where one
of the contacting surfaces is impermeable to the solute (or solvent), it suffices to let jn = 0
(or wn = 0) on γ(1); this is done simply by not enforcing any boundary condition explicitly,
since jn = 0 (wn = 0) is a natural boundary condition for the solute (solvent). Therefore this
algorithm may also be adapted for contact of a biphasic-solute material against a biphasic
material (jn = 0), and against an impermeable elastic or rigid solid (wn = 0 and jn = 0).

This penalty method may also be incorporated within an augmented Lagrangian algorithm
(Laursen and Simo, 1993; Yang and Spilker, 2007) to provide a more stable numerical
scheme for enforcing these continuity requirements, when the choice of large penalty
parameters compromises the convergence of iterative solution schemes. Since the derivation
of DδGc and the formulation of the matrix form of the discretized contact equations is a
natural extension of the biphasic contact algorithm (Ateshian et al., 2010), only salient
equations are provided in the Supplementary Data section.
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3. Validations and Examples
Classical diffusion problems can be recovered in the framework of solute transport in
deformable porous media when assuming that there is no solid deformation, that κ̃ = 1 and
Φ = 1, and that solute diffusivity in the porous medium is the same as in free solution (see
Supplementary Data). Analytical solutions are readily available for various canonical
diffusion problems, such as the one-dimensional transient diffusion and steady-state
convection problems considered here.

3.1. 1-D Transient Diffusion
The canonical problem of one-dimensional diffusion through a porous medium, exposed to a
well-stirred bathing solution on one face and an impermeable wall on the opposite face, has
a closed-form solution for the concentration c (Crank, 1979),

(3.1)

where t is the time, z is the spatial dimension, h is the height, c* is the bath concentration
and d is the diffusivity. If the medium is split in half at z = 0 to produce a contact interface
(Fig. 3.1), the analytical solution for diffusion through the entire medium, including the
contact interface, remains unchanged. Therefore this canonical problem may be used toward
the validation of the finite element contact algorithm.

Consider that the two contacting porous media are cubical in geometry, with each cube
being 1 mm on the side (h = 2 mm). Let the external solute concentration on the exposed
face of the bottom cube (z = −1 mm) be c* = 1 mM. Assume that the effective solubility is κ̃
= 1 (thus c̃ = c), the osmotic coefficient is Φ = 1, and the fluid volume fraction is ϕw = 0.8.
The ambient pressure is p = 0 and ambient temperature is θ = 298 K. Therefore, in the finite
element analysis, the boundary conditions on the face exposed to the bathing solution are t =
0, p̃ = −Rθc* = −2.5 kPa, and c̃ = c*. The stress-strain response of the solid matrix is neo-
Hookean, with a Young’s modulus of 10 MPa and Poisson’s ratio of 0. Since the osmotic
pressure difference between the external bath and the porous medium prior to solute uptake
is much smaller than the solid matrix modulus, negligible solid deformation occurs in this
problem. The hydraulic permeability of the solid matrix to the solvent is k = 10−4 mm4/N · s.
The solute diffusivity in the porous medium is d = 5 × 10−4 mm2/s. The contact penalty
parameters for this analysis are εn = 1400 N/mm, εp = 10−3 mm3/N · s, and εc = 4 × 10−4

mm/s. Since the contact interface needs to be engaged to enforce interface conditions in the
finite element analysis, a small displacement of 10−3 mm is prescribed at z = h/2 to push the
two blocks together and produce nominal contact.

The transient response of the concentration is shown in Fig. 3.2. The spatial distribution of
the concentration c (z, t) at four representative time points provides evidence of continuity of
the concentration across the contact interface at z = 0. A comparison of the concentration
profiles from the analytical and finite element solutions also demonstrates agreement
between the two methods.

3.2. 1-D Steady-State Convection
Consider one-dimensional steady-state convection of solute and solvent through a porous
medium of thickness h and porosity ϕw. The fluid pressure and solute concentration are
prescribed upstream (pu and cu, respectively) and downstream (pd and cd). For the given

Ateshian et al. Page 5

J Biomech. Author manuscript; available in PMC 2013 April 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



conditions, the uniform solvent flux, w0, is related to the pressure gradient according to
Darcy’s law,

(3.2)

The steady-state concentration distribution over the range −h/2 ≤ z ≤ h/2 is given by

(3.3)

where Pe = hw0/dϕw is the Peclet number, representing the ratio of convective solvent
velocity to diffusive solute velocity. Also note that

(3.4)

The finite element model consists of two cubes, 1 mm on the side (h = 2 mm), with the
contact interface located at z = 0. The solid matrix of each cube is described by a neo-
Hookean constitutive model, with Young’s modulus= 100 MPa and Poisson’s ratio= 0. The
porosity is ϕw = 0.8, the solute diffusivity is d = 5 × 10−4 mm2/s and the hydraulic
permeability is k = 10−3 mm4/N · s. The fluid pressure downstram is pd = 0 MPa. The solute
concentrations are cu = 1 mM and cd = 0 mM. For these values, the Peclet number is given
by Pe = 2.5 pu and may be varied by changing the value of the upstream pressure. The
values of pu = 0, 0.4 and 4 MPa are used to produce Pe = 0, 1 and 10. As done in the
diffusion problem, a small displacement of 10−3 mm is prescribed at z = h/2 to push the two
blocks together and produce nominal contact.

Results for the steady-state response (Fig. 3.3) demonstrate continuity of the concentration
across the contact interface and agreement with the analytical solutions in (3.3) and (3.4).

3.3. 2-D Transient Contact
Consider the two-dimensional contact of a semi-cylindrical deformable porous slab (radius=
3 mm) displaced against a rectangular slab (3 mm wide × 2 mm high) (Fig. 3.4). The solute
concentration is initially 1 mM in the rectangular slab, and zero in the semi-cylinder. The
ambient bath, whose concentration is 0 mM, wets the exposed portions of the contact
surfaces as shown in Fig. 3.4. The solute solubility is κ̃ = 1; the osmotic coefficient is Φ = 1;
the diffusivity inside the porous medium is 5 × 10−4 mm2/s and the diffusivity in free
solution is 10−3 mm2/s. The hydraulic permeability is 10−3 mm4/N · s. The solid matrix is
neo-Hookean with a Young’s modulus of 1 MPa and a Poisson’s ratio of 0.3. The semi-
cylindrical slab is displaced downward by 2 mm over a ramp time of 1 s, then maintained
there for 6000 s.

In the early time response, there is only limited solute transport out of the rectangular slab,
in a narrow boundary layer near its top surface (Fig. 3.4). Over time, substantial solute
transport from the rectangular slab into the semi-cylindrical slab takes place, progressively
evening the solute distribution between the two contacting bodies. This solute transport
occurs at the same time as solvent transports out of the two bodies, producing a stress-
relaxation and recoiling behavior of the solid matrixes. Eventually all of the solute diffuses
out of both contacting bodies, producing a steady-state concentration of zero. Contour plots
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of the concentration exhibit continuity across the contact interface throughout the large
range of deformation of the solid.

4. Discussion
This study provides what appears to be the first finite element implementation of solute
transport across contact interfaces in deformable porous media. It is shown that this novel
implementation is a natural extension of our recently formulated biphasic contact algorithm
(Ateshian et al., 2010). A validation of the finite element code is achieved by comparing
results against available analytical solutions for solute diffusion (Fig. 3.2) and convection
(Fig. 3.3), using canonical problems where solid deformation is negligible. In addition, an
illustration is provided for a two-dimensional contact problem where large deformations
occur (Fig. 3.4).

Biological soft tissues often interact closely in crowded environments in situ, such as
cartilage contacting cartilage, or cartilage contacting synovium, fat pads or ligaments in
diarthrodial joints. Various metabolites may be exchanged between these tissues as a result
of contact interactions. Therefore the ability to model solute transport across contact
interfaces enhances the tool set available for bioengineers in their investigation of problems
that combine mechanics and transport. This contact algorithm is made available in the open-
source FEBio code (http://mrl.sci.utah.edu/software/febio), available in the public domain,
to enhance its dissemination.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 3.1.
1-D transient diffusion across a contact interface. All faces are impermeable to the solvent
and solute, except where facing the bathing solution (z = −h/2).
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Figure 3.2.
Analytical (solid curves) and finite element (symbols) solutions to the 1-D transient
diffusion problem across a contact interface, at four representative time points. Solid circles
represent nodal values of the concentration in the range −h/2 ≤ z ≤ 0 and solid squares
represent corresponding values in the range 0 ≤ z ≤ h/2. Continuity of the concentration
across the contact interface, z = 0, is enforced by the contact interface algorithm. Agreement
with the analytical solution serves to further validate the finite element implementation.
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Figure 3.3.
Analytical (solid curves) and finite element (symbols) solutions to the 1-D steady-state
convection problem across a contact interface, at three representative values of the Peclet
number. Solid circles represent nodal values of the concentration in the range −h/2 ≤ z ≤ 0
and solid squares represent corresponding values in the range 0 ≤ z ≤ h/2. Continuity of the
concentration across the contact interface, z = 0, is enforced by the contact interface
algorithm. Agreement with the analytical solution serves to further validate the finite
element implementation.
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Figure 3.4.
Two-dimensional contact with solute transport. The semi-cylindrical slab has a radius of 3
mm and an initial solute concentration of 0 mM (t = 0). The bottom rectangular slab
dimensions are 3 mm × 2 mm and the initial solute concentration is 1 mM. The top slab is
displaced downward by 2 mm in 1 s, then allowed to relax. Solute transports from the
bottom slab to the top slab, while also diffusing out into the ambient bath. In the early time
response (t = 1 s), solute transport occurs over a thin boundary layer across the contact
interface. Over time, the solute concentration decreases in both slabs, eventually reducing to
zero. Contour plots demonstrate continuity of the (effective) concentration across the contact
interface.
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