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Abstract
A variable dielectric model based on residue types for better description of protein-ligand
electrostatics in MM-GBSA scoring is reported. The variable dielectric approach provides better
correlation with binding data and reduces the score dynamic range, typically observed in the
standard MM-GB/SA method. The latter supports the view that exaggerated enthalpic separation
between weak and potent compounds due to the lack of shielding effects in the model is greatly
responsible for the wide scoring spread.

Introduction
Molecular Mechanics based scoring methods using all atom force fields coupled with
Poisson-Boltzman (MM-PB/SA)1 or Generalized Born calculations (MM-GB/SA)2 to model
solvation have recently seen an upsurge in popularity. When compared to docking scoring
functions, the physics-based methods provide improved enrichment in the virtual screening
of databases and better correlation between calculated binding affinities and experimental
data.3 Their main purpose is to rescore docking poses in order to circumvent limitations of
the docking scoring functions, in particular the ones associated with desolvation,
intramolecular, and entropy penalties for the ligands upon binding.

We investigated the performance of our own flavor of MM-GB/SA when rescoring docking
poses of congeneric series for pharmaceutically relevant targets.4 The correlations with
experiment obtained with the physics-based scoring were far superior to the ones obtained
with the Glide XP scoring function and competitive with the computationally intensive FEP
methods.4,5 Despite showing good accuracy when applied within a series, much work is
necessary to improve the MM-GB/SA method and gain greater efficiency in drug design.
For example, MM-GB/SA suffers from poor estimation of protein desolvation and a large
dynamic range observed in the scoring when compared to the experimental range.

In the case of the GB/SA protein desolvation, substituting this term by the free energy
associated with displacing binding-site waters upon ligand binding estimated by the
WaterMap method,6 which treats the solvent explicitly, provides superior results.4b,7 As for
the large theoretical dynamic range for the binding energies, that seems to be a direct result
of the degree of sampling since FEP simulations with restricted flexibility as well as MM-
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GB/SA approaches that make use of a single configuration for the protein-ligand complexes
are plagued by this.4a Computational van’t Hoff analysis suggests that the wider scoring
spread is not only affected by missing entropic contributions due to restricted sampling, but
also exaggerated enthalpic separation between compounds.4a

One plausible cause for the exaggerated enthalpic gap is the application of an internal
dielectric constant (εin) of 1 in a model where protein motions and polarization are not taken
into account. Hence, electrostatic interactions are not shielded enough and protein-ligand
electrostatic attractions and repulsions are overestimated, causing the large separation
between potent and weak compounds.4a,4b As previously described, when the protein
permanent dipoles are included explicitly but their relaxation, i.e., the protein
reorganization, and the protein induced dipoles are considered implicitly, the value of εin is
not well defined.8 Warshel and coworkers suggest that εin should be between 4 and 6 for
dipole-charge interactions and 10 for charge-charge interactions.9,10 More recently, a
variable dielectric model has been developed to increase the accuracy in protein side chain
and loop predictions.11 The authors introduced an energy model where εin is allowed to vary
as a function of the interacting residues.

In this work, we explore the use of a variable dielectric model based on residue types to
alleviate the overestimation of electrostatic effects between protein residues and ligands for
improved MM-GBSA scoring. Since poor description of protein-ligand electrostatic
interactions could not only result in a wider scoring spread but also affect the correlation
with experiment, we decided to use binding data to derive the set of variable dielectric
constants. Specifically, the pharmaceutically relevant targets CDK2, FactorXa, p38, and
PDE10A and respective congeneric series were considered in the optimization process that
led to the set of variable dielectric constants, subsequently tested on two additional datasets,
the human Carbonic Anhydrase (hCAII) and a second p38 chemical series.

Methods
Datasets and System Setup

The crystal structures for CDK2 (PDB ID: 1E9H), FactorXa (PDB ID: 1FJS), PDE10A
(unpublished structure), both p38 chemical series (PDB ID’s: 1KV1 and 1OUY), and hCAII
(PDB ID: 2WEJ) were selected. The 1E9H CDK2 structure was modified as described
before4c as it is not consistent with the conditions for the biological assay. All complexes
were submitted to a series of restrained, partial minimizations using the OPLS_2005 force
field12 within Macromodel.13 Prior to the docking calculations using Glide XP,14 the
selected congeneric series of CDK2,15 FactorXa,16 PDE10A,17 p38,18,19 hCAII,20 were
submitted to a pre-energy minimization using the OPLS_2005 force field and the GB/SA
method as the implicit water model.21 Representative structures for each chemical series are
illustrated in Figure 1. Tables with all derivatives and binding data can be found in the
supporting information. In order to accommodate for the fact that the protein structure used
for docking will not in general be optimized to fit a particular ligand, the van der Waals radii
for non-polar protein atoms were scaled by a factor of 0.8, while those for the ligands were
not scaled.

MM-GB/SA Rescoring
Our implementation of the MM-GB/SA rescoring procedure (eq 1) has been described in
details elsewhere.4 In eq 1, ΔEintra and ΔGsolv are the intramolecular strain and desolvation
penalty for each ligand upon binding. The conformational entropies (Sconf) in solution were
computed from the probabilities (Pi) assuming a Boltzmann distribution (eq 2), where kB is
the Boltzmann constant. In the bound state, it was assumed that there was only one
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conformation accessible to each ligand; its conformational entropy is therefore zero. Thus,
−TΔSconf is the ligand conformational entropy penalty, multiplied by the temperature to
convert it into energy. EVDW and EElect are the protein-ligand intermolecular van der Waals
and electrostatic interaction energies, respectively. EPTN, the protein energy in the bound
state, describes the protein deformation or strain imposed by each ligand. EGB is the solvent
shielding of protein-ligand electrostatic interactions estimated by the GB model. This term,
generally not included in the scoring as it has no significant impact on the MM-GB/SA

results,4 is necessary here as it depends on εin. Finally,  is the protein desolvation term
calculated by the continuum model. The final ranking is obtained by calculating relative
binding energies, ΔΔGbind, using the top-scoring inhibitor as reference.

(1)

(2)

The conformational search for the inhibitors in the unbound state and energy minimization
for the complexes were performed with BOSS and MCPRO,22 respectively, instead of
Macromodel.13 This was done with the purpose of facilitating the implementation of the
variable dielectric approach. The Z matrixes for the complexes obtained from the docking
calculations and ligands in the unbound state were prepared using the pepz program.22 The
proteins were considered in their entirety. The protonation states of histidine side chains
were assigned with the assistance of the software PROPKA 2.0.23 Charge neutrality for the
protein systems in MCPRO was imposed by assigning normal protonation states at
physiological pH to basic and acidic residues near the active site and making the
adjustments for neutrality to the most distant residues. The OPLS-AA force field was used
for the protein.12a The energetics for the ligands were represented with the OPLS/CM1A
force field.24 The CM1A atomic charges for the neutral ligands were scaled by 1.14.25 The
GB/SA solvation model implemented in BOSS and MCPRO was used.26

The variable dielectric formalism and implementation
The focus here is to obtain a set of dielectric constants based on residue types that improves
MM-GB/SA scoring. Protein intramolecular electrostatic interactions were not considered in
the optimization process as the set of optimal dielectric constants for each residue-residue
pair is not necessarily the best it can be obtained to improve the description of ligand-residue
electrostatic interactions. In addition, the EPTN values within a congeneric series generally
fall in a very narrow range due to the constrains applied in the energy minimizations for the
complexes.4 As this term behaves almost like a constant, it was excluded from the scoring

equation used to develop the variable dielectric formalism. Although , like EPTN,
depends on εin, it was also excluded from the scoring equation as it is usually very noisy and
deteriorates the correlation with experimental data.4b,4c The energy minimizations for the
complexes, however, are performed using GB/SA.

Eqs 3 and 4 describe the protein-ligand electrostatic interactions and the solvent shielding
estimated by the GB model, respectively, where qi and qj are charges on atom i belonging to
the protein and j belonging to ligand, rij is their distance, εin is the internal dielectric
constant, εsol is the dielectric constant in water, and αij is the geometric average of the Born
radii αi and αj.
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(3)

(4)

If εin adopts different values depending on the residue type k interacting with the ligand, eqs
3 and 4 have to be rewritten as shown in eqs 5 and 6. The dielectric constant εin(k) is
assigned for the interactions between all atoms i belonging to the residue type k and the
ligand atoms j. The side chains for all polar (Ser, Thr, Asn, Gln) and ionizable residues (His,
Lys, Arg, Asp, Glu), which are expected to be more polarizing, were considered individually
in the optimization. All remaining residue side chains and backbone atoms were bundled in
a group called “other”. For simplicity, neutral and protonated states of the ionizable residues
were not treated separately. The dielectric constant εin(k) for a given residue-ligand pair is
the same whether the residue interacts with a neutral or charged ligand.

(5)

(6)

Five different values (1, 2, 4, 8, and 20) were considered for every residue type (Ser, Thr,
Asn, Gln, His, Lys, Arg, Asp, Glu, and other). Computational efficiency was achieved by
obtaining the inner summation terms in eqs 5 and 6 for every residue k through one single
point calculation per complex using the geometries obtained with εin equals 1. No cutoffs
were applied to the protein-ligand electrostatic interactions. The inner summation terms
were then combined with 510 dielectric constant permutations outside of MCPRO to
generate the MM-GB/SA scores corresponding to each set of EElect and EGB values. Their
performance against the experimental data was judged based on correlation coefficients (R2)
and predictive indices (PI).19 The latter is a measure of how accurate the predicted rank
order is compared to the experiment, with −1, 0, and +1 meaning opposite, random, or
perfect predictions, respectively. The set of dielectric constants that overall provided the best
R2 and PI values for the training set targets and ligands was selected and then tested on two
additional datasets.

Results and Discussion
Residue-based dielectric constant optimization

In the optimization process, 510 combinations of dielectric constants based on the residue
type were generated for each system in the training set, CDK2, FactorXa, PEDE10A, and
the p38 urea series (p38_u). The combinations that provided the MM-GB/SA scores with the
best agreement with binding data based on R2 and PI values for each target individually
were set aside. Table 1 illustrates the combinations for each target that maximized R2 and PI
separately. Although the combinations listed on Table 1 are the very best for each system
according to each metric, there were few other solutions that provided just slightly worse
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results. The set of optimal dielectrics constants for all targets simultaneously was derived by
verifying the combination whose R2 and PI values deviated the least from each individual’s
best (Table 1).

Figure 2 shows the polar and ionizable residues within 6 Å from the ligands depicted in
Figure 1 for not only the systems that belong to the training set, but also to the test set,
hCAII and the p38 pyridazo-pyrimidinone (p38_pp) series. As electrostatic interactions are
very long range, it is obvious that polar and ionizable residues beyond 6 Å are also relevant;
their interactions with the ligands are included in EElect and EGB. Although the optimal set
of dielectric constants is a function of the specific residue-ligand interactions in the training
set and inaccuracies in the charges of the force-field of choice, it is tempting to physically
interpret the εin(k) values obtained. Here, Arg and Glu have the largest εin(k) values, 20 and
8, respectively, which seems reasonable since those residues, very flexible and polarizing,
can be more easily shielded. The optimal value for Asp, with a shorter side chain and
reduced flexibility when compared to Glu, is 2. Interestingly, a much smaller dielectric
constant was obtained for Lys in contrast to the one for Arg. In a study of residue density in
proteins,27 it became evident that in spite of evolutionary relatedness, Arg is more buried,
more frequently involved in salt bridges, hydrogen bonds, and cationic-aromatic contacts. It
is then plausible that a larger εin(k) value than Lys emerges for Arg in the optimization
process. In the case of the polar and the ionizable His residues, found to be in its neutral
state in the majority of the cases here, the εin(k) values are fairly small, ranging from 1 to 4.
For three of the five residues, the dielectric constants seem to be correlated with the
magnitude of the side chain dipole moments, with the εin(k) value for His > Asn > Ser. As
for Gln and Thr, the dielectric constants obtained seem to be counterintuitive when
compared to their closest analogs, Asn and Ser, respectively. The optimal εin(k) value for the
more flexible side chain of the pair is actually smaller; this might be a function of the
specific residue distributions for the targets in the training set. Finally, the εin(k) value of 4
for the set that contains all remaining side chains might be somewhat high because it also
contains all backbone atoms.

Standard versus variable dielectric MM-GB/SA scoring
It should be noted that the variable dielectric approach was unable to recover some outliers
in the training set in the preliminary rounds of dielectric constant optimization. Those
compounds had to be ultimately excluded before the optimization round that led to the εin(k)
values in Table 1. The number of outliers removed, both in the training and test sets, is listed
in Table 2. Except for CDK2, the outliers represent between 0% and 15% of the compounds
in each series and are highlighted in the Tables provided in the supporting information. The
balance between the number of remaining binding datapoints in the training set (110) and
the number of adjustable εin(k) values (10), a 11:1 ratio, seems appropriate and suggests that
the set of dielectric constants obtained might be applied more widely. Table 2 illustrates the
R2 and PI values obtained using the standard and variable dielectric MM-GB/SA scoring
procedures, the latter using the optimal εin(k) values in Table 1. The results where EElect and
EGB are removed from the scoring equation are also included for comparison. They provide
a baseline for the cases where the standard dielectric MM-GB/SA performs poorly. In those
cases, the variable dielectric approach should at least outperform the scoring equation with
EElect and EGB removed.

It is disturbing that the scoring equation with no protein-ligand electrostatics performs better
than the standard MM-GB/SA in four out of the six systems (Table 2). Factor Xa, where
EElect and EGB are critical, and CDK2, where they marginally improve the results, are the
only exceptions. In Factor Xa, the most potent compounds of the series establish a key
hydrogen bond with the catalytic triad Ser residue (Figure 2), unable to be described without
the electrostatic terms. Although it is difficult to pinpoint whether the deterioration of the
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correlation with experimental data when EElect and EGB are introduced has its origin in the
force field charges, the lack of explicit polarization, or the lack of dynamical screening due
to the use of a single structure for the complex, it is clear that the variable dielectric
approach improves the description of protein-ligand electrostatics. It performs better than
standard dielectrics in all cases, including the two systems in the test set, hCAII and p38_pp.
Figure 3 illustrates the results for Factor Xa and p38_u using the different MM-GB/SA
scoring approaches. Plots for all systems can be found in the supporting information.

It is also reassuring that the performance of the variable dielectric approach is at least
equivalent or superior to the scoring equation with EElect and EGB removed. A scoring
method that describes protein-ligand electrostatic interactions properly as well as the fine
balance with the desolvation penalty process is highly desirable since the introduction of
polarity, which drives the compound to a better property space,28 often kills or attenuates
binding affinity. One should note that the variable dielectric approach will not necessarily
provide significant improvements over the standard electrostatic treatment for all cases. This
is illustrated in Table 2 for a couple of systems, PDE10A and p38_pp. In those instances, the
residues around the ligand are mostly non-polar, and the electrostatic interactions between
them are not appreciably large (Figure 2). Specifically, the combined EElect and EGB terms
for all ligands in the congeneric series obtained with εin equals 1 range from −1.9 to −0.2
kcal/mol and −3.6 to 0.0 kcal/mol for PDE10A and p38_pp, respectively. In other words,
protein-ligand electrostatic interactions play a minor role in the rank-ordering for the
PDE10A and p38_pp and the attenuation or exclusion of EElect and EGB has no impact on
the results. This contrasts to p38_u, for example, with a much wider range (−11.8 to +1.9
kcal/mol) for the combined EElect and EGB terms. The protein conformation (DFG out) for
p38, the chemical series, and binding mode are very different, with the urea group
establishing hydrogen bonds with a Glu residue and a backbone NH (Figure 2). In this case,
the variable dielectric approach greatly help since EElect and EGB are relevant. Finally, Table
2 indicates that the variable dielectric approach reduces the score dynamic range (DR) in
four of the six systems, although no attempt has been made to improve DR in the
optimization process. This supports the view that the exaggerated protein-ligand electrostatic
interactions due to the lack of shielding effects in the standard MM-GB/SA model is indeed
a key factor in its wide scoring spread.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Representative structures for the congeneric series used in this work. Tables with all
derivatives and binding data can be found in the supporting information.
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Figure 2.
Ligands in their binding sites. Only the polar and ionizable residues within 6 Å from each
ligand are shown for CDK2, Factor Xa, PDE10A, hCAII, and p38 urea (p38_u) pyridazo-
pyrimidinone (p38_pp) series.
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Figure 3.
MM-GB/SA scoring versus experiment using standard and variable dielectric protein-ligand
electrostatics, and with the EElect and EGB terms removed for two systems, Factor Xa (left)
and p38_u (right).
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