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Abstract

The aging process affects every tissue in the body and represents one of the most complicated and highly integrated
inevitable physiological entities. The maintenance of good health during the aging process likely relies upon the coherent
regulation of hormonal and neuronal communication between the central nervous system and the periphery. Evidence has
demonstrated that the optimal regulation of energy usage in both these systems facilitates healthy aging. However, the
proteomic effects of aging in regions of the brain vital for integrating energy balance and neuronal activity are not well
understood. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction
between energy balance and neurological activity. Therefore, a greater understanding of the effects of aging in the
hypothalamus may reveal important aspects of overall organismal aging and may potentially reveal the most crucial protein
factors supporting this vital signaling integration. In this study, we examined alterations in protein expression in the
hypothalami of young, middle-aged, and old rats. Using novel combinatorial bioinformatics analyses, we were able to gain
a better understanding of the proteomic and phenotypic changes that occur during the aging process and have potentially
identified the G protein-coupled receptor/cytoskeletal-associated protein GIT2 as a vital integrator and modulator of the
normal aging process.
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Introduction

The aging process is associated with an accumulation of

molecular perturbations and potential damage to the body’s cells,

tissues, and organs. These alterations affect multiple processes

related to cell survival, genomic instability, altered gene expression

patterns, aberrant cellular replication, oxidative damage by

reactive oxygen species (ROS), and fluctuations in protein

expression and coherent protein post-translational modification

[1]. Therefore, with old age and a reduced ability to cope with

stress, the body becomes more prone to a variety of pathophy-

siologies such as neurodegeneration and metabolic syndrome.

These accumulated and progressive changes in complex physio-

logical systems such as the endocrine or central nervous system

(CNS) are highly likely to be mediated by entire networks of genes

and proteins rather than just one single factor. Considerable

evidence suggests that both neurodegenerative diseases and

pathophysiological aging processes involve a functional interplay

between a series of diverse biological systems including neurolog-

ical, endocrinological, sensory, and metabolic activities [2–7].

Many of these systems are functionally integrated together in one

crucial organ – the hypothalamus. The hypothalamus is re-

sponsible for the regulation of many metabolic pathways by

synthesizing and secreting numerous neurohormones that stimu-

late or inhibit the secretion of trophic hormones from the anterior

pituitary. The hypothalamus therefore can control body temper-

ature, thirst, hunger, fatigue, and circadian rhythms [8]. Not only

does the hypothalamus act as a master trophic controller of the

endocrine system, but it also possesses neuronal projections to

many autonomous and higher centers of the brain [9].

As the hypothalamus forms a vital link between multiple

complex physiological systems, its role in maintaining the fidelity

of ‘neurometabolic’ trans-network communication during the

normal or pathological aging process may be of paramount

importance for gerontological scientists. In addition, by manipu-

lating certain neuroendocrine hormones to selectively modulate

hypothalamic functioning, it may be possible in the future to

therapeutically regulate the aging process. For example, regulation

of insulin/IGF-1 signaling, a system that strongly regulates

hypothalamic function, increased the lifespan of the model
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C. elegans organismal system [10,11]. Similarly, drugs such as L-

dopa, which elevate hypothalamic catecholamine activity, have

been shown to increase the lifespan of mice by approximately 50%

[12].

The emerging appreciation of the coherent connectivity

between multiple physiological systems has generated the need

to develop a ‘higher-order’ level of understanding of the

integration of these systems, i.e., so-called ‘systems biology’. This

concept of network or ‘systems’ biology, i.e. biological functions are

mediated by strongly or weakly connected groups of genes/

proteins rather than simple linear signaling pathways, can often

seem too diffuse and non-specific to yield actionable data for

biomedical or pharmaceutical science. Recent mathematical

modeling of ‘real-world’ networks have demonstrated that, in

most cases, complex network systems are not connected in

a equitable and homogenous manner, but rather typically consist

of at least two levels, i.e., small, tightly-connected ‘sub-networks’

which are then collected together into larger constellations of

groups of multiple ‘sub-networks’ [13]. From a biological stand-

point, it is easy to analogize the small ‘sub-networks’ to biological

programs such as kinase signaling cascades (e.g. mitogen-activated

protein kinase cascades) or receptor signaling systems (e.g. insulin

receptor signaling system) in different tissues, while endocrine or

neuronal axes could represent the constellations of these groups of

smaller ‘sub-networks’.

While the physiological output of any given gene/protein

network may be an eventual function of the activity of all of the

constituent components, the relative contribution (to the eventual

functional output) of each gene/protein in this network is not

equal [14,15]. Hence within networks of functionally-related

genes/proteins, there are likely to exist specific hubs that consist of

genes/proteins that form the most important bridges, or ‘loose-

connections’, between the smaller functional programs (‘sub-

networks’) contained within the global network system. Such

genes/proteins within a functional network are often described as

keystones. These keystones profoundly enhance and facilitate

rapid and facile connection between disparate parts of a network

constellation and, as such, can be considered as functional ‘short-

cuts’ in the complex system [13]. It has been demonstrated, using

mathematical modeling of graph and network theories, that even

in networks containing thousands to millions of nodes, surprisingly

few (5–10) ‘short-cuts’ (keystones) are required to facilitate rapid

transfer across even the largest of systems [13].

In this study, we aim to identify specific alterations in functional

hypothalamic protein networks and the potential presentation of

keystone network factors that occur over time in the hypothala-

mus. In order to achieve this goal, we examined differences in

protein levels expressed in the hypothalami of young, middle-aged,

and old rats using a variety of synergistic combinatorial proteomic

and bioinformatic techniques. Following these unbiased mathe-

matical approaches, we show that specific protein networks that

are altered in the hypothalamus during the aging process may be

primarily linked to and regulated by a small number of crucial

‘network-crossing’ keystone factors. Investigating the nature of

these multidimensionally-active factors in the context of aging may

allow us to greatly enhance our understanding of the normal or

pathological aging process.

Results

Longitudinal hypothalamic protein expression patterns
Cytoplasmic hypothalamic extracts were prepared from young

(Y, 2–3 months), middle-aged (M, 10–12 months), and old (O, 24–

26 months) rats (n = 8 each). Individual lysate samples were taken

from each animal and then pooled together for each age group.

One dimensional gel separation was performed to control for any

gross proteome differences between the three tissue pools (Fig. 1A).

Gel separation indicated that after coomassie staining the pool

inputs did not grossly differ in their global protein content. These

samples were then prepared for PanoramaH Cell Signaling

antibody array hybridization by labeling with Cy-3 or Cy-5

fluorescent dyes (Fig. 1B, C). Relative protein expression between

middle-aged (M) or old (O) versus young (Y) animals was assessed

(in triplicate) using standardized dye-swapping controls as de-

scribed previously [2]. Compared to young animals, there were 50

significantly differentially expressed proteins in middle aged

animals, demonstrating an M/Y expression ratio of .1.5

(p,0.05) and 55 proteins with an M/Y ratio of ,0.5 (p,0.05)

(Fig. 1D: Table S1). Considerably more proteins demonstrated

a significant change in expression between the old and the young

animal comparison: 118 proteins demonstrated an O/Y expres-

sion ratio of .1.5 (p,0.05) and 30 proteins possessed an O/Y

expression ratio of ,0.5 (p,0.05) (Fig. 1E: Table S2). We chose

six proteins identified in all the antibody array samples (demon-

strating up, down, or no change in expression regulation: Myc,

Akt, Pyk2, Map2, FAK, Cnp1) to validate the initial experiments

using standard western blot procedures (Fig. 1F–K). Using the

pooled hypothalamic samples (Y, M, O), we validated the

expression trends for each of these proteins (Myc, Pyk2, FAK:

up-regulated with advanced age; Akt, Map2: down-regulated with

advanced age; Cnp1: unchanged with advanced age) seen with the

PanoramaH Cell Signaling array analysis (Tables S1, S2). In

addition to standard western analysis of the input pooled

hypothalamic samples, we also performed validatory western

analysis on the individual animal samples (Fig. 1L–Q). Similarly to

the pooled samples, we observed the following significant protein

expression trends: Myc, Pyk2, FAK: up-regulated with advanced

age; Akt, Map2: down-regulated with advanced age; Cnp:

unchanged across age-span (Fig. 1L–Q).

With respect to the proteins differentially regulated between

middle-aged or old animals and the young cohort, 84 proteins

were found to be common between both M and O samples

(Fig. 2A). In the middle-aged hypothalami there were 22 uniquely-

regulated (not in O/Y) proteins (10 up-regulated, 12 down-

regulated), while in the old animals there were 64 uniquely-

regulated proteins (53 up-regulated, 11 down-regulated) (Fig. 2A).

Among the 84 proteins commonly regulated in M/Y and O/Y, 53

proteins were similarly regulated (compared to Y animals), with 38

proteins up-regulated in M and O (Fig. 2B, C) and 15 proteins

down-regulated in M and O (Figure 2D). We validated additional

proteins for each of these protein subgroups: caspase 3 (Casp3,

Fig. 2B), Ran (RAN, member RAS oncogene family, Fig. 2C) and

vinculin (Vcl, Fig. 2D). In each of these western validations we

recapitulated the expression trends observed with the antibody

array (Table S3).

Of the proteins identified in both M and O samples, when

compared to Y, there were 31 proteins differentially regulated

between M and O samples: three proteins were up-regulated in M

versus Y, yet down-regulated in O versus Y (Fig. 2E), and 28

proteins were down-regulated in M versus Y but up-regulated in O

versus Y (Fig. 2E). Again, we validated individual proteins for each

of these subgroups: junction plakoglobin (Jup, Fig. 2E) and nitric

oxide synthase-1 (Nos-1, Fig. 2E). In each of these western

validations we recapitulated the expression trends observed with

the antibody array.
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Functional clustering of age-regulated hypothalamic
proteins

We performed two independent types of functional protein

clustering, KEGG signaling pathway analysis and GO term group

clustering, to assess the potential physiological focus of the

hypothalamic proteins altered with advancing age. Complete

significantly-regulated protein lists (Tables S1, S2), containing

proteins up- or down-regulated compared to Y animals, were used

for both forms of bioinformatic analysis. KEGG pathway or GO

term group clustering criteria were similar for both types of

analysis, i.e. .2 proteins per KEGG pathway/GO term group at

a p,0.05 value (hypergeometric test of significance).

Clustering of the significantly-regulated hypothalamic proteins

from M or O animals resulted in the population of 44 and 56

distinct KEGG pathways, respectively (Tables S4, S5). There were

27 significantly-populated KEGG pathways that were common

between the two different age profiles (M/Y and O/Y) (Fig. 3A).

These commonly-populated KEGG pathways were then rationally

grouped together into sets focusing upon disease pathways

(Fig. 3B), neurophysiological architecture (Fig. 3C), and in-

termediary cell metabolism signaling pathways (Fig. 3D). Among

these commonly-regulated KEGG pathways, 22 out of 27

possessed a greater hybrid score (indicating the profundity of

KEGG pathway population) within the old animal datasets,

demonstrating a strong age-dependent trajectory of these pre-

dicted biological functions.

GO term group clustering of the significantly-regulated

hypothalamic proteins from M or O animals resulted in the

population of 112 and 114 distinct GO term group terms,

respectively (Tables S6, S7). There were 79 significantly-populated

GO terms common between the two different age profiles (M/Y

and O/Y) (Fig. S1A). Similar to the KEGG pathways, these GO

term groups were grouped together into rational functional sets:

cell structure/function (Fig. S1B), cell cycle control (Fig. S1C),

enzyme activity (Fig. S1D), and neurophysiological architecture

(Fig. S1E). Among these commonly-regulated GO term groups, 53

out of 79 possessed a greater hybrid score (indicating the

profundity of GO term group population) within the old animal

datasets, again demonstrating a strong age-dependent trajectory of

these functions.

The KEGG functional classifications created from the primary

hypothalamic protein data demonstrated the generation of

multiple neurodegenerative (‘Alzheimer’s disease’, ‘Huntington’s dis-

ease’, ‘Parkinson’s disease’), neurological (‘Prion diseases’, ‘Amyotrophic

lateral sclerosis’) and metabolic (‘Type II diabetes mellitus’) disorder-

related groups with advancing age (Fig. 3B). A profound age-

related cytoskeletal/focal adhesion remodeling functional pheno-

type (‘Focal adhesion’, ‘Axon guidance’, ‘Regulation of actin cytoskeleton’)

was also evident within the populated KEGG pathways (Fig. 3C).

Such functional predictions corroborate our previous western blot

and antibody array data, demonstrating a strong age-related

upregulation of proteins (Pyk2, FAK) involved in organizing

cytoskeletal dynamics in neuronal tissue (Fig. 1). Among the age-

related KEGG signaling pathway paradigms (Fig. 3D), several

convergent functional themes emerged: neurodevelopmental

signaling (‘TGF-beta signaling’, ‘Wnt signaling’), excitatory calcium

cell signaling (‘Phosphatidylinositol signaling’, ‘Calcium signaling’) and

metabolism-based signaling (‘VEGF signaling’, ‘Insulin signaling’, ‘Jak-

STAT signaling’) (Fig. 3D). Similar to the KEGG functional

analysis, the significantly-populated GO term group clusters also

revealed strong neuronal remodeling/focal adhesion/cytoskeletal

aspects (Fig. S1B, S1E), cell cycle regulation (Fig. S1C), and

calcium-targeted cell signaling enzyme activity (Fig. S1D) focused

functionalities.

Statistical clustering of proteins into different forms of canon-

ically-curated functional KEGG pathways or GO term groups

allows for a ‘higher-order’ appreciation of their functional

relationships to each other. However, many GO term groups,

and especially KEGG pathways, possess considerable vagueness,

content overlap, and experimental redundancy due to their

historically-curated nature [16]. While these functional annotation

tools may possess some drawbacks when their isolated use is relied

upon, it is likely that they can still be of great importance when

they are employed in a combinatorial manner with a novel form of

data-mining that has demonstrated great promise for discovering

previously unknown biomedical interactions, e.g. latent semantic

indexing [2,3,17–21]. Using latent semantic indexing (LSI) of

biomedical text databases, the mathematical correlations of input

text terms with genes/proteins can be assessed, even if they are not

present in classically curated datasets such as GO or KEGG. This

allows for the discovery of novel, previously unidentified connec-

tions between significantly altered genes/proteins.

Identification of multidimensional ‘keystone’ factors in
age-related protein networks

To identify novel protein factors that may act as keystones by

connecting the potentially complex series of functional networks

involved in aging, we performed combinatorial LSI using multiple

KEGG and GO term groups significantly populated by age-

regulated hypothalamic proteins. We chose twelve KEGG

signaling pathway text terms, including all functional subsets

described in Fig. 3B–D, to use as input interrogation terms for

a complete murine biomedical protein database (Computable

Genomix, https://computablegenomix.com/geneindexer). This

process yields lists of proteins that possess a quantitative LSI

correlation score (cut off of .0.1 indicates at least an ‘implicit’

Figure 1. Age-related proteomic alterations in the hypothalamus. (A) Coomassie staining of pooled input hypothalami for Cy-dye labeling
and hybridization with Cell Signaling antibody array: Y–young animal pool; M–middle-aged animal pool; O–old animal pool. (B) Prototypic single
channel and merge images from scanned PanoramaH Cell Signaling Antibody array chips. Specific antibody species are printed in duplicate across the
chip. (C) Prototypic examples of protein results for factors up-regulated, down-regulated, or unchanged in either Cy3 or Cy5 channels are indicated.
Positive and negative hybridization controls from the chips are also indicated. (D) Protein expression ratios (,0.5 or .1.5 ratio: middle versus young)
for proteins in middle aged versus young hypothalami. Datapoints plotted represent the mean 6 standard error of mean (SEM) from three separate
experimental hybridizations which included Cys-Cy5 dye swaps for the samples. (E) Protein expression ratios (,0.5 or .1.5 ratio: old versus young)
for proteins in old aged versus young hypothalami. Datapoints plotted represent the mean 6 SEM from three separate experimental hybridizations
which included Cys-Cy5 dye swaps for the samples. (F–K) Western blot validation of specifically identified proteins, from PanoramaH array analysis,
and their age-dependent expression trends (Y-young pool, M-middle aged pool, O-old pool). Proteins validated from pooled animal input were Myc
(F), Akt-1 (G), Pyk2 (H), Map2 (I), FAK (J), and Cnp-1 (K). Data presented represents mean 6 SEM from three separate blots. Statistical significance was
assessed using a Student’s t-test with GraphPad Prism: * = p,0.05; ** = p,0.01; *** = p,0.001. (L–Q) Expression patterns for specific proteins were
also validated for each animal used as input for the Y (white circle), M (grey square), or O (black triangle) hypothalamic pools. Proteins validated from
individual animal inputs were Myc (L), Akt-1 (M), Pyk2 (N), Map2 (O), FAK (P) and Cnp-1 (Q). Data on the histograms are represented as mean 6 SEM
from the multiple animals.
doi:10.1371/journal.pone.0036975.g001
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correlation) associated with the input text term. To maintain

equality between the output lists of LSI-correlating proteins from

the diverse input KEGG terms used (1-Regulation of actin

cytoskeleton, 2-Chemokine signaling, 3-Alzheimer’s disease, 4-

Focal adhesion, 5-MAPK signaling, 6-Gap junction, 7-GnRH

signaling, 8-Long term potentiation, 9-Notch signaling, 10-VEGF

signaling, 11-p53 signaling, 12-Calcium signaling), we chose the

top 1000 highest-scoring proteins in each case (terms 1–12). The

individual protein LSI correlation scores for the input KEGG

pathway terms (1–12) are listed in Tables S8, S9, S10, S11, S12,

S13, S14, S15, S16, S17, S18, S19. To identify potentially

multidimensional keystone factors in age-related protein patterns,

we combined the LSI correlation results from the 12 input KEGG

terms into a heatmap diagram. Only proteins that displayed an

LSI correlation (.0.1 score) in at least two separate KEGG term

outputs were used for heatmap analysis (Fig. 4A). Using a .2

KEGG pathway correlation cut-off, a matrix of 2524 proteins was

generated (Table S20). The highest number of correlations (8

KEGG terms) was achieved by 2 proteins: Grit (Rho GTPase

activating protein 32/Arhgap32) and GIT2 (G protein-coupled

receptor kinase interacting protein 2) (Fig. 4A: Table S20). The

mean LSI correlation scores for all correlated proteins, generated

by the twelve input terms, were all significantly greater than 0.1,

demonstrating a greater than implicit correlation for all proteins

(Fig. 4B). After taking together the total number of proteins

demonstrating multiple (.2) KEGG term correlations and

performing a group statistical analysis, twelve were found to exist

outside a 99% percentile of the mean results assuming a normal

distribution (10 with 7 correlations, 2 with 8 correlations) (Fig. 4C:

Box & Whiskers plot, p,0.001). These twelve proteins and their

specific KEGG term correlations are highlighted in Fig. 4D. GIT2

possessed a greater mean LSI correlation score (across the 8

KEGG pathways linked to it) than Grit, despite a similar number

of cross-KEGG pathway correlations (Fig. 4E). These unbiased

results may suggest that cytoskeletal-organizing factors could play

an important role in maintaining normal neuronal function with

age in the hypothalamus.

In addition to using KEGG pathway analysis for unbiased

keystone identification, we also employed GO term enrichment

analysis combined with LSI to investigate the presence of

multidimensional factors in hypothalamic aging. As with the

KEGG pathway term-directed LSI analysis, we chose twelve

significantly-populated GO terms from the four major functional

GO term groups (Fig. S1) and generated a correlation heatmap for

GO terms (Fig. S2A). As with the KEGG multidimensional

correlation analysis, we chose the top 1000 highest-scoring and

implicitly correlating proteins for each input GO term: 1-Actin

filament binding, 2-Anatomical structural development, 3-Cyclin-

dependent protein kinase inhibitor activity, 4-Regulation of cell

proliferation, 5-Cytoskeletal protein binding, 6-Macromolecular

complex, 7-Nitric oxide synthase activity, 8-Synapse, 9-Response

to stress, 10-Intracellular membrane-bound organelle, 11-Regula-

tion of programmed cell death, 12-Protein kinase activity

(Fig. S2B). The LSI protein output for each of these GO term

interrogation units are listed in Tables S21, S22, S23, S24, S25,

S26, S27, S28, S29, S30, S31, S32. As with the LSI analysis of the

input significant KEGG pathways, we employed a.2 cut-off for

the number of multiply-correlating proteins identified using GO

terminology input (Fig. S2C). Using this criterion, we created

a matrix containing 2902 proteins (Table S33). The highest

number of correlations presented by proteins was 7 and this was

achieved by 9 proteins: Ccdc88a–coiled-coil domain containing

88A, Kank1–KN motif and ankyrin repeat domains 1, Pcnp–

PEST proteolytic signal containing nuclear protein, Plekho1–

pleckstrin homology domain containing, family O member 1,

Rsu1–Ras suppressor protein 1, Tfpt–TCF3 (E2A) fusion partner,

GIT2–G protein-coupled receptor interacting transcript 2, Plrg1–

pleiotropic regulator 1, Zdhhc16–zinc finger, DHHC domain

containing 16 (Fig. S2A: Table S33). The mean LSI correlation

scores for all correlated proteins, generated by the twelve input

terms, were all significantly greater than 0.1, demonstrating

a greater than implicit correlation (Fig. S2B). After taking together

the total number of proteins demonstrating multiple (.2) GO

term correlations and performing a group statistical analysis, nine

were found (all with 7 correlations) to exist outside a 99%

percentile of the mean results assuming a normal distribution

(Fig. S2C: Box & Whiskers plot, p,0.001). These 9 proteins and

their specific GO term correlations are highlighted in Fig. S2D.

Among these highlighted multidimensional proteins, the mean LSI

correlation scores were relatively similar to each other (Fig. S2E).

Interestingly, the only protein that demonstrated a similar

presence in the most significantly correlating proteins from KEGG

and GO term LSI input was GIT2. We therefore chose to validate

the age-dependent changes predicted for GIT2, the highest

scoring and highest LSI-correlating protein, in the hypothalamus.

Age-dependent alterations in hypothalamic GIT2
expression

From our combinatorial bioinformatic investigation of predicted

age-dependent protein expression in the hypothalamus, we

decided to assess the age-dependent expression of GIT2 using

standardized techniques. We assessed protein expression with

specific western blots in three randomly-chosen young (Y1, Y2, Y3),

middle-aged (M1, M2, M3), and old rat hypothalami (O1, O2, O3:

Fig. 5A). We found that with similar levels of loaded protein

(10 mg), the ERK1/2 expression profile was unchanged with age

but the expression profile for Grit and GIT2 was strongly age-

dependent (Fig. 5A–B). The age-dependent elevation of GIT2 was

extremely profound while that of Grit was less strong. GIT2 often

demonstrates co-expression with a shorter isoform, termed GIT2-

Figure 2. Age-dependent protein expression changes in the rat hypothalamus. (A) Venn diagram analysis of significantly-regulated
(p,0.05) proteins in the middle versus young (grey circle) and the old versus young (black circle) antibody array analyses. Proteins uniquely regulated
in either middle age (22) or old age (64) animals are subsequently broken down into up-regulated (red numbers) or down-regulated (green numbers)
groups. The 84 commonly-regulated proteins were further dissected into different regulatory-behavior groups represented in panels B–E. For each
regulation-behavior group an exemplary protein is verified from the animal hypothalamic pools (Y–young, M–middle aged, O–old). (B) Proteins up-
regulated in both M (grey bars) and O (black bars) hypothalami compared to Y animals, with O ratio .M ratio. The associated validation was
performed using western blot for caspase 3 (Casp3). (C) Proteins up-regulated in both M (grey bars) and O (black bars) hypothalami compared to Y
animals, with M ratio .O ratio. The associated validation was performed using western blot for Ran. (D) Proteins down-regulated in both M (grey
bars) and O (black bars) hypothalami compared to Y animals, with M ratio .O ratio and O ratio .M ratio. The associated validation was performed
using western blot for vinculin (Vcl). (E) Proteins differentially regulated between M or O timepoints relative to Y (up-regulated at M and down-
regulated at O (verified using junction plakoglobin-Jup), or down-regulated at M and up-regulated at O (verified using nitric oxide synthase 1-Nos)).
For each verification, data on each histogram is represented as mean 6 SEM from the multiple animal pools. Statistical significance is as follows:
* = p,0.05, ** = p,0.01, *** = p,0.001.
doi:10.1371/journal.pone.0036975.g002
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short (GIT2s). Similar to the age-dependent increase in GIT2

hypothalamic expression, we also found a strong elevation of

GIT2s with age (Fig. 5A). The GIT family of proteins consist of

GIT1 and GIT2, as well as the smaller isoforms of GIT2 including

GIT2s [22]. Proteins belonging to the GIT family were first

identified as ADP-ribosylation factor GTPase-activating proteins.

GIT proteins, and GIT1 especially, associate with signaling

factors, p21-activated kinase (PAK) and PAK-interacting ex-

change factor (PIX), and the monomeric G proteins that control

cytoskeletal remodeling, e.g. Rac and Cdc42, which regulate cell

structure and movement [22]. However, in contrast to GIT2 and

GIT2s, the levels of GIT1, b-PIX, or PAK1 did not demonstrate

a significant elevation with age in the hypothalamus (Fig. 5A–B),

suggesting a strong age-dependent hypothalamic functionality for

GIT2. As we have seen that protein expression of GIT2 is altered

during the aging process, we also investigated whether alterations

in post-translational modification of GIT2 are also sensitive to

aging. GIT2 functional activity has been demonstrated to be

associated with its tyrosine phosphorylation [23]. We assessed the

tyrosine phosphorylation status of GIT2 in normalized (for GIT2)

hypothalamic lysates collected from rats of the different ages. We

found a trend for age-dependent elevation of the phosphotyrosine

content in hypothalamic GIT2 (Fig. S3). This increase in

phosphotyrosine content may indeed be associated with the age-

related elevation in kinases linked to GIT2 phosphorylation such

as FAK (Fig. 1). We next assessed whether there were age-

dependent changes in GIT2 and GIT2s expression across other

regions of the central nervous system outside our primary

hypothalamic locus.

Age-dependent alterations in global brain GIT2
expression

Using identical levels of input protein (10 mg) we assessed the

age-dependent expression profile of GIT2 and GIT2s across

multiple brain regions in Y, M and O rats (Fig. 5C; relatively

quantified in Fig. 5D–GIT2, 5E–GIT2s). Using identical enzyme-

linked chemifluorescence exposure and phosophorimager data

collection parameters, we directly compared the age-dependent

expression profile of GIT2 and GIT2s in the brainstem,

cerebellum, cortex, hindbrain, hippocampus, hypothalamus,

pituitary, and striatum. Generally, the relative extent of GIT2 or

GIT2s expression increased with the advancing age of the rats. In

young animals, expression of GIT2 was almost undetectable in

many brain regions, e.g. the brainstem, cerebellum, and pituitary,

while in areas such as the cortex, hindbrain and especially the

hypothalamus, high expression of GIT2 was detected (Fig. 5C).

GIT2s demonstrated a generally similar expression profile to

GIT2 in the young animals across brain regions. Generally, there

was a progressive increase in GIT2 or GIT2s expression in the

middle and old-aged animals compared to the young animal

brain. Interestingly, in addition to the age-dependent alterations of

the long and short isoforms of GIT2 we also noted a prominent

‘intermediate’ GIT2-sera immunoreactive band of approximately

60–62 kDa that also demonstrates an age-dependent expression

alteration profile (Fig. S4). It is well known that multiple GIT2

splice forms exist, however the precise molecular structure of this

intermediate form remains an interesting topic for future studies

into its molecular activity. With respect specifically to the long

GIT2 isoform, progressive and significant increases in expression

(O..M..Y) were observed in the following regions: hypothal-

amus; brainstem; cerebellum; cortex; pituitary (Fig. 5D). In the

hindbrain, hippocampus and striatum GIT2 expression was

increased at the middle age time-point but then decreased with

advanced age (Fig. 5D). A qualitatively similar age- and tissue-

dependent expression profile was observed with GIT2s, with

respect to unidirectional increases in the hypothalamus, brainstem,

cerebellum, cortex, and pituitary as well as bimodal regulation in

the hindbrain, hippocampus, and striatum (Fig. 5E). As our

primary identification of the proteomic alterations in response to

aging were identified in the hypothalamus, we then compared the

age-dependent GIT2 and GIT2s expression changes in various

regions of the brain relative to this important core tissue (GIT2-

Fig. 5F–H; GIT2s-Fig. 5I–K). Relative to hypothalamic expres-

sion, there was a subtle difference between GIT2 and GIT2s

expression across the brain regions studied, i.e. hypothalamic

GIT2s expression was significantly higher than in all other brain

regions (Fig. 5I), while GIT2 expression was nearly identical

between the cortex and hypothalamus (Fig. 5F). In addition, there

was more tissue quantitative variation in GIT2 compared to

GIT2s when expression was measured relative to that in the

hypothalamus. In the middle-aged brain tissues, a greater

similarity of general GIT2 and GIT2s expression profiles were

detected (Fig. 5G, 5J). However, of specific note was the profound

relative elevation of pituitary expression levels of GIT2/GIT2s

compared to the hypothalamus. In addition to this, the relatively

strong expression of cortex and hindbrain GIT2 (relative to the

hypothalamus) in the young receded in the middle-aged animals

(Fig. 5G). When the oldest time point of GIT2/GIT2s expression,

relative to the hypothalamus, was assessed (Fig. 5H, 5K), the most

notable effect was again the successive -and statistically-significant-

overexpression of pituitary GIT2/GIT2s compared to the

hypothalamus. Therefore the two most consistent and profound

age-related changes in GIT2 and GIT2s expression occurred in

the pituitary and the hypothalamus. Both of these central nervous

system organs share a common functional axis; and hence this may

not be unexpected. In addition, both of these organs serve as

connective nodes between the central nervous system and the

peripheral endocrine systems that control major peripheral

biological systems such as reproduction and global energy

metabolism. We therefore next decided to investigate whether

these central nervous system tissue changes in GIT2/GIT2s

expression were mirrored in peripheral target organs linked to

energy metabolism.

Functional metabolic profile of aged animals
As the hypothalamus is closely associated with managing

energy-related systems in the brain and periphery, we first assessed

the circulating levels of hormones involved in energy metabolism

across the age-span of the rats. We noted a progressive increase in

body mass with age in the rats, however the majority of the

Figure 3. KEGG signaling pathway analysis of aging-related hypothalamic proteins. Proteins significantly regulated in middle (M) or old
(O) aged animals compared to young (Y) animals were used as input data for KEGG signaling pathway population analysis. (A) Venn diagram analysis
of middle-aged (grey line) and old-aged (black line) significantly-regulated KEGG pathways demonstrated 27 common KEGG terms between old and
middle-aged tissues. The common (27) significantly populated pathways for middle-aged (grey bars) and old aged (black bars) animals were then
rationally clustered into subgroups focused upon disease pathology (B), neurophysiological activity (C), and intermediary cellular signaling activity
(D). For each significantly-populated KEGG pathway a ‘hybrid’ score was generated which represents the 2log10 of the enrichment probability
multiplied with the relative enrichment factor compared to the background proteomic expression.
doi:10.1371/journal.pone.0036975.g003
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Figure 4. Latent semantic indexing correlations of KEGG signaling pathways terms with proteins. (A) Latent semantic indexing (LSI)
interrogation matrix between input significantly-regulated KEGG signaling pathway terms. Colored blocks represent the individual LSI implicit
correlation of the specific protein (vertically organized on left of heatmap: 1–2524 – see Table S20) with the respective KEGG term (1-Regulation of
actin cytoskeleton, 2-Chemokine signaling, 3-Alzheimer’s disease, 4-Focal adhesion, 5-MAPK signaling, 6-Gap junction, 7-GnRH signaling, 8-Long term
potentiation, 9-Notch signaling, 10-VEGF signaling, 11-p53 signaling, 12-Calcium signaling). The number of KEGG signaling pathway correlations for
each protein is indicated by the color of the respective heatmap blocks (9 correlations-red; 8 correlations-orange; 7 correlations-yellow; 6 correlations-
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increases in body weight primarily occurred between the young

and middle-aged time point (Fig. 6A). We noted a significant and

progressive increase in fasting glucose levels (Fig. 6B), fasting

insulin levels (Fig. 6C), and fasting leptin levels (Fig. 6D). As

expected, with the observed age-dependent increase in body mass,

we observed a significant age-dependent reduction in fasting

adiponectin levels (Fig. 6E). The age-span of the animals employed

in this study thus demonstrated a common pattern often observed

in humans across their lifetime, i.e., progressive weight gain and

potentially disrupted energy metabolism linked to insulin re-

sistance. When we assessed the age-dependent expression of GIT2

and GIT2s in tissues associated with a strong energy-metabolism

focus (pancreas, liver, skeletal muscle, and adipose tissue), we

found a similar age-dependent trend to that seen in the

hypothalamus. Strongly reminiscent of the age-dependent in-

creases of GIT2/GIT2s in the hypothalamus (Fig. 6F), we found

a progressive age-dependent increase of GIT2/GIT2s expression

in the pancreas (Fig. 6G), liver (Fig. 6H), skeletal muscle (Fig. 6I)

and adipose tissue (Fig. 6J). Therefore it seems that the progressive

alteration in GIT2 expression in the hypothalamus is mirrored in

multiple peripheral tissues associated with somatic energy metab-

olism.

Discussion

In this study, we examined alterations in protein signaling

networks in the hypothalamus of young, middle-aged, and old rats

in order to gain a better understanding of the functional alterations

that occur in the hypothalamus with aging. We have used novel

combinatorial bioinformatic techniques to identify potentially

pivotal factors that may control fundamental physiological pro-

cesses during the aging process, e.g. neuronal function and survival,

as well as somatic energy metabolism.

Using unbiased proteomic approaches, we identified a large

number of significant alterations in proteins in the hypothalamus

that link both neurological regulation and somatic metabolic status

(Fig. 1–2). Our protein-centered study complements previous data

generated from hypothalamic investigations. Jiang and colleagues

investigated the relationship between aging and gene expression in

the hypothalami and cortices of young and old BALB/c mice (2

and 22 months of age, respectively) using high-density oligonu-

cleotide arrays. In the hypothalamus from old mice, there was an

overall up-regulation of proteins involved in the mitochondrial

respiratory chain, neuronal structure, and protein processing

enzymes such as caspase-6 (Casp6: [24]). Caspase 6 belongs to

a family of cysteine proteases involved in neuronal apoptosis and

remodeling mechanisms [25,26]. Additionally, caspase-6 also

contributes to the processing of amyloid precursor protein and

the deposition of Alzheimer’s disease-related amyloid in the brain

[27]. In accordance with this earlier study, we also observed up-

regulation of Casp6 expression in the hypothalami of old rats

(Tables S1, S2). Additional caspases (Casp3, 7, 8, and 12) were

also found to be up-regulated in the aged rats. Expression of

caspase-2 and -3 has been found to be increased in the brains of

Alzheimer’s patients [28], strongly implicating a role for caspases

in age-related neurodegenerative disorders. In addition to

alterations in caspases, we found a strong cytoskeletally-linked

alteration in hypothalamic proteins, e.g. proline-rich tyrosine

kinase 2 (Pyk2) and focal adhesion kinase (FAK) (Fig. 1). Both of

these non-receptor tyrosine kinases are strongly associated with the

aging process and demonstrate expression changes in response to

protracted oxidative stress exposure as well as to excitoxicity, both

of which are highly characteristic facets of aging [29–33]. While

we observed a strong age-dependent elevation of both FAK and

Pyk2, interestingly we found a simultaneous decrease in another

protein associated with cytoskeletal function, the microtubule-

associated protein 2 (Map2) (Fig. 1). Stable neuronal Map2

expression has previously been demonstrated to be altered in the

aging process [34,35] as well as neurological disorders such as

Alzheimer’s disease [36,37] and Downs Syndrome [38]. It is

possible therefore that with reduced cellular integrity, e.g. with

Map2 reductions, an attempt to ameliorate this enhanced activity/

expression of focal adhesion kinases (Pyk2/FAK) is effected to

manage this. It is possible therefore that the expression profile of

many proteins may demonstrate a complex relationship to aging

or aging-related pathophysiologies, e.g. protein changes with time

may be causative or reactive in nature [5]. With respect to this, we

observed, similar to Map2, a significant age-related reduction in

cellular levels of the kinase v-akt murine thymoma viral oncogene

homolog 1 (Akt-1). This finding is similar to previous reports

associating altered Akt expression in the aging process [39–42].

This kinase typically forms a crucial role in cell survival pathways

associated with cell surface receptors, including G protein coupled

receptors and receptor tyrosine kinases systems such as the insulin/

insulin-like growth factor 1 (IGF-1) receptor [43–46]. However, as

with the diverse nature of protein expression responses to aging/

pathology, kinases such as Akt-1 are also associated with diverse

activity as they also help coordinate cell survival pathways and

apoptotic processes as well [47–49]. Therefore, our finding of

reduced Akt expression in the hypothalamus with aging may

represent both pathophysiological actions as well as reactive/

protective ones (Fig. 1). Akt-1 forms a vital component in signaling

pathways linked to somatic energy metabolism (e.g. insulin/IGF-1

receptor pathway); therefore it is also likely that this hypothalamic

expression alteration may also be connected to the alterations in

global metabolism seen in the aging rats (Fig. 6).

While significant alterations in individual proteins can generate

important information concerning the gestalt molecular activity

changes in a specific tissue with aging, the functional group

clustering of these proteins is more likely to yield physiologically-

relevant data. We performed two independent modes of unbiased

bioinformatic clustering of the proteins that were significantly

altered in the hypothalamus with increasing age. Firstly, we

demonstrated using KEGG signaling pathway clustering that age-

related proteomic changes in the hypothalamus were potentially

associated with neurodegenerative phenotypes (Alzheimer’s dis-

ease, Parkinson’s disease, Huntington’s disease), cognitive and

neurodevelopmental function (axon guidance, long-term potenti-

ation, Notch signaling, Wnt signaling pathway), dysglycemia (Type

II diabetes mellitus, insulin signaling), and neuronal cytoskeletal

remodeling (Focal adhesion, Gap junction, Regulation of actin

cytoskeleton) (Fig. 3). Using a parallel GO term-based clustering

process of the significantly-altered proteins detected in the aging

green; 5 correlations-light blue; 4 correlations-dark blue; 3 correlations-purple; 2 correlations-grey). (B) Mean6 SEM for the total implicitly-correlating
proteins for each of the 12 input KEGG signaling pathways. (C) Box and whisker plot with 1–99% statistical cut-offs (GraphPad Prism) of the number of
specific correlations to KEGG pathways each protein possessed. Twelve proteins demonstrated a statistically-significantly greater number of KEGG
pathway correlations compared to the total protein mean number of correlations (*** = p,0.001). (D) Expanded heatmap identification of specific
proteins possessing a significantly greater number of KEGG pathway correlations compared to the mean number of KEGG pathway correlations for all
implicit proteins. (E) Mean 6 SEM of LSI correlation scores (across all 9 correlations) for Grit and GIT2.
doi:10.1371/journal.pone.0036975.g004
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hypothalamus, we also found similar phenotypic functional

predictions. For example, GO term-based functional clustering

revealed significant enrichment of GO term groups associated with

regulation of subcellular organelle and protein complex regulation

(Macromolecular complex, intracellular membrane-bound organ-

elle), cellular homeostasis/stress responses (Regulation of cell

proliferation, Response to stress), cell signaling kinase cascade

activity (Cyclin-dependent protein kinase inhibitor activity, Nitric

oxide synthase activity), and neuronal cytoskeletal development

(Cytoskeletal protein binding, Synapse, Neuron projection)

(Fig. S1). Therefore, in both cases we found that a strong

concordance between KEGG and GO term analysis concerning

age-dependent alteration of pathways linked to neuronal remodel-

ing, cellular stress response and energy metabolism (from the

molecular level, e.g. kinase activity, up to the somatic level, e.g.

glucose regulation) was evident. As one of the initial goals of this

study was to generate mechanisms to identify potential keystone

protein factors that may integrate and control these multiple

synergistic activities occurring in the aging hypothalamus, we then

used a novel bioinformatic tool capable of revealing such factors,

i.e. latent semantic indexing (LSI). LSI specifically facilitates the

mathematical discovery of novel connections between distinct

input textual terms and genomic/proteomic factors. In this case

we employed a novel combinatorial approach to look for

convergence between multiple significantly-populated KEGG

and GO term groups with a whole-proteome protein reference

set. If indeed important keystone proteins linking energy

metabolism and neurophysiological regulation exist, it is likely

that they would possess a strong cross-correlation with multiple

KEGG or GO term groups generated by the direct significant

protein expression data. Using LSI heatmap matrix generation, we

were able to identify protein factors linked to the greatest numbers

of predicted functional aspects of the aging hypothalamic protein

network (Fig. 4; Fig. S2). When numerically ranking the proteins

that were predicted to possess the most number of functional

correlations with KEGG and GO terms, we found only one

protein common to both forms of analysis: GIT2. This protein

therefore could potentially possess multidimensional roles in

linking neuronal and energy-regulatory functions in the aging

process.

Our combinatorial informatics process allowed us to identify

a potentially important keystone factor for aging, without even its

initial detection in the antibody array screen. The antibody screen

is a standard platform that contains functionally important

signaling proteins that are evenly distributed between both

multiple GO and KEGG term annotations. Therefore, the array

provides a simple and transferrable platform for initial signaling

investigation of complex physiological events, e.g. aging. Using our

combinatorial informatics approach, we were able to expand the

initial hypothalamic protein signature to other functionally-related

proteins using a broad range of significantly-regulated KEGG or

GO pathways chosen to represent all of the diverse functionally-

predicted groups. In essence the phenotypic signature of the tissue,

created using the array platform, can be extended out to the

functional predictions (GO, KEGG and LSI) and subsequently

triangulated to discover factors that may possess strong convergent

roles in the specific biological process under study.

While a powerful tool, there are several mitigating limitations to

the employment of LSI in biological informatics. LSI-based

algorithms primarily attempt to uncover latent connections in text,

e.g. scientific abstracts. Therefore often there is a spectrum of

statistical strength in these uncovered connections, form the very

strong to the tenuous. In addition, the linkage process is purely

associative and does not include specific functional or regulatory

information. To compensate for these issues, we have firstly used

a multidimensional heatmap method, in which tenuous and

randomly-linked proteins are unlikely to rank as highly as proteins

with a recurrent association with multiple functional outputs

(Fig. 5). For this study a representative group of both KEGG

pathways and GO term groups were chosen to span all of the

functional paradigms generated using the informatic prediction

(Fig. 4, S1), without generating inordinately-large data streams for

analysis. It is highly likely that with increasing the number of

convergent LSI interrogation inputs, additional multidimensional

factors may be discovered. However it may be more efficient to

not force too much bias onto one LSI interrogation system, e.g.

KEGG pathways, but rather to use a multiplexed approach in

which several additional representative informatic outputs, e.g.

GO-terms, MeSH-terms, MGI-Mammalian Phenotype data, from

distinct bioinformatic sources are used for the discovery of

convergent proteins in physiological pathways. In addition to

these mainly technical considerations, it is always important to use

standard validation processes for expression analysis, of the LSI-

identified target factor. It is prudent, and physiologically impor-

tant, to investigate the expression of the target protein in multiple

tissues functionally related to the phenotypic profile under

investigation, e.g. ‘neurometabolic’ aging (Fig. 6). Such validation is

vital for discounting the potential for non-specific keystone factor

discovery from informatic workflows.

The GIT2 protein was originally identified as a factor associated

with connecting GPCRs to monomeric G proteins that control

cytoskeletal remodeling [50–52]. The ability to mediate efficient

neuronal remodeling is one of the most important factors in

controlling both short-term memory formation and maintaining

neural networks linked to both cognitive functions and stress-

response processes [19,53–58]. If GIT2 does indeed represent

a fundamental protein in the aging/energy regulation process,

then we may expect to identify age-related alterations of this factor

in multiple tissues involved in neural and endocrine/energy

regulatory networks. We found that in a wide variety of central

nervous system tissues (the hypothalamus, brainstem, cerebellum,

cortex, and pituitary), a strong unidirectional increase of GIT2

expression occurred with advancing age (Fig. 5). More complex,

bi-directional age-regulated changes in GIT2 expression were seen

in the hindbrain, striatum, and hippocampus (Fig. 5). The specific

reasons for these varied modes of GIT2 expression control may be

highly complex and will form the basis of future studies. In

addition to a strong age-dependent control of GIT2 expression in

the CNS, we also investigated whether GIT2 expression was

elevated in peripheral tissues linked with somatic energy metab-

Figure 5. Age-dependent expression profile of GIT2 in central nervous system tissues. (A) Expression profiles across three randomly
chosen hypothalamic samples (Young, Y1-Y2-Y3; Middle, M1-M2-M3; Old, O1-O2-O3) for ERK1/2, GRIT, GIT2, GIT2short (GIT2s), GIT1, b-PIX, and PAK1. The
loading protein input control with coomassie staining of the gel is also indicated below. (B) Quantification (mean 6 SEM) of age-dependent
alterations in protein expression for middle aged (grey bars) or old (black bars) animals compared to the young controls (white bars). (C) Brain region-
specific alterations of GIT2 and GIT2s in young (Y), middle (M), and old (O) age animals. Quantification of multi-brain region GIT2 (D) and GIT2s (E)
expression across the experimental age-span (n = 10). Multiple brain region expression levels relative to hypothalamus of GIT2 in young (F), middle-
aged (G), and old animals (H). Multiple brain region expression levels, relative to hypothalamus of GIT2s in young (I), middle-aged (J), and old animals
(K). Statistical significance is as follows: * = p,0.05, ** = p,0.01, *** = p,0.001.
doi:10.1371/journal.pone.0036975.g005
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olism. Analysis of GIT2 expression in pancreatic, liver, skeletal

muscle, and adipose tissue demonstrated a strong unidirectional,

age-dependent elevation of GIT2 and GIT2s expression, reminis-

cent of that observed in the hypothalamus (Fig. 6). These age-

dependent expression changes in GIT2 therefore could potentially

be associated with the gross endocrine hormonal age-dependent

changes that we observed in these animals, i.e. increasing

bodyweight, increasing fasting blood glucose, insulin, and leptin

levels, and decreasing adiponectin levels (Fig. 6). All of these

hormonal parameters are classically associated, in humans and

experimental animals, with advancing age and poor global

metabolic health [59–67]. The exact properties of GIT2 that

render it a potential keystone in the age-dependent modulation of

neuronal and metabolic functional networks remain to be

elucidated. It is likely that the role of GIT2 in these varied tissues

may be an evolutionarily-conserved mechanism that allows the

coherent integration of metabolic and sensory/cognitive functions.

Some of the first fundamental aging studies using simple

experimental organisms, such as C. elegans, strongly demonstrated

the vital role of coherent energy maintenance in controlling

longevity [68,69]. Many of these proteins that were first identified

to strongly control aging, e.g. insulin/insulin-like growth factor-1

receptor, Akt-1, and phosphatidylinositol 3-kinases (PI-3K), also

possess important neuroprotective actions (vital for healthy

neuronal aging) in both peripheral and central nervous tissue in

many species [70–73]. While these proteins linking metabolic and

neurological health were first identified in simple organisms like

the nematode, specific genetic ablation of components of this

family in adipose tissue, i.e. the fat-targeted insulin receptor

knockout, engenders an enhanced lifespan and stress resistance in

mice possessing this genotype [74]. Therefore, based upon our

evidence it is possible that GIT2 could also be associated with the

group of proteins linking energy metabolism with life/healthspan

regulation. This hypothesis will be investigated further in future

studies.

Our novel combinatorial bioinformatic approaches have

allowed us to analyze potentially crucial structural components

in relatively small hypothalamic protein networks that control age-

related neuronal and metabolic homeostasis. Based upon our

rigorous analyses, we show that endogenous physiological

responses to aging may be strongly orchestrated by the expression

level of the GIT2 protein. The relevance of the hypothalamic

expression level of this protein to the aging process in both

neuronal and energy-controlling tissues reinforces the importance

of this organ in the potential future development of targeted

pharmacotherapeutics designed to interdict a multitude of age-

related disorders.

Materials and Methods

Animal care and use
Male Sprague Dawley rats were used for this study: 2–3 month

old ‘young’ rats (n = 8); 10–12 month old ‘middle’ aged rats (n = 8);

24–26 month old ‘old’ rats (n = 8). All animals were humanely

euthanized using isoflurane anesthesia, and the following tissues

were collected from each animal: hypothalamus, pituitary,

hippocampus, cortex, striatum, cerebellum, hindbrain, brain stem,

pancreas, liver, skeletal muscle, adipose tissue. All animal testing

procedures were approved by the Animal Care and Use

Committee of the National Institute on Aging (NIA) under NIA

protocol number 293-LNS-2011. Tissues were snap frozen at

280uC following dissection. Additionally, approximately 2 mL of

blood was collected from each animal into tubes coated with

EDTA. Isolated hypothalami, pancreata, liver, hind-limb skeletal

muscle, and subcutaneous fat from each rat were individually

fractionated into four major subcellular compartments (cytoplas-

mic, plasma membrane, large organelles (e.g. mitochondria and the

actin cytoskeleton) using a Q-proteome tissue fractionation kit

according to the manufacturer’s instructions (Qiagen Corporation,

Valencia, CA). The protein concentrations for all four subcellular

fractions of the hypothalami were then normalized to at least

0.5 mg/mL using a BCA protein estimation protocol according to

manufacturer’s instructions (ThermoScientific, Rockford, IL).

Cell signaling antibody microarray
Preparation of protein samples, Cy3/Cy5 dye labeling (GE

Healthcare, Waltham, MA), application to the PanoramaH Cell

Signaling Array chip, and data analysis were performed as

previously described [2] according to the manufacturer’s instruc-

tions using the proprietary solutions and equipment provided in

the kit (Sigma, St. Louis, MO). Individually-extracted cytoplasmic

samples from the rats were equally pooled into three categories

according to age: young (Y), middle-aged (M), and old (O).

Panorama chips were performed in triplicate for the following

direct comparisons: middle (M) vs. young (Y); old (O) vs. young

(Y). Label swaps for the dye-sample combinations were made and

the whole series of experiments repeated again (n = 3). The

differential fluorescent signal intensity for each antibody spot was

recorded using a multimodal phosphorimager scanning at a 10mm

spot pattern (Typhoon 9410, GE Healthcare, Piscataway, NJ). In

order to be considered for further analysis, the recorded expression

ratios (estimated through Cy3:Cy5 fluorescence ratios) between M

vs. Y or O vs. Y had to be significantly different (greater than or

less than) from unity (p,0.05, non-paired Student’s t-test:

GraphPad Prism version 5.0, San Diego, CA). Validations of

randomly selected up-regulated and down-regulated proteins

identified by the microspotted antibodies were performed using

Figure 6. Correlation of GIT2 and GIT2s expression with metabolic phenotype changes in aging rats. (A) Age-dependent changes in
mean body weight for the multiple age ranges of rats. (B) Fasting blood glucose measurements for the multiple age ranges of rats. (C) Fasting plasma
insulin measurements for the multiple age ranges of rats. (D) Fasting plasma leptin measurements for the multiple age ranges of rats. (E) Fasting
plasma adiponectin measurements for the multiple age ranges of rats. (F) GIT2 and GIT2s age-dependent expression in young (Y), middle-aged (M),
and old rat hypothalamic extracts. The associated histograms depict the mean 6 SEM of the GIT2 and GIT2s expression in middle-aged (grey bars)
and old (black bars) animals relative to the young (white bars) samples. (G) GIT2 and GIT2s age-dependent expression in young (Y), middle-aged (M),
and old rat whole pancreatic extracts. The associated histograms depict the mean6 SEM of the GIT2 and GIT2s expression in middle-aged (grey bars)
and old (black bars) animals relative to the young (white bars) samples. (H) GIT2 and GIT2s age-dependent expression in young (Y), middle-aged (M),
and old rat whole liver extracts. The associated histograms depict the mean 6 SEM of the GIT2 and GIT2s expression in middle-aged (grey bars) and
old (black bars) animals relative to the young (white bars) samples. (I) GIT2 and GIT2s age-dependent expression in young (Y), middle-aged (M), and
old rat hind-limb skeletal muscle extracts. The associated histograms depict the mean 6 SEM of the GIT2 and GIT2s expression in middle-aged (grey
bars) and old (black bars) animals relative to the young (white bars) samples. (J) GIT2 and GIT2s age-dependent expression in young (Y), middle-aged
(M), and old rat somatic adipose tissue extracts. The associated histograms depict the mean 6 SEM of the GIT2 and GIT2s expression in middle-aged
(grey bars) and old (black bars) animals relative to the young (white bars) samples. Statistical significance is as follows: * = p,0.05, ** = p,0.01,
*** = p,0.001.
doi:10.1371/journal.pone.0036975.g006
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standard Western blotting procedures both with the pooled and

individual hypothalamic samples.

Western blotting procedures
Specific proteins were resolved using one-dimensional gel

electrophoresis. Hypothalamic cytoplasmic extracts (containing

15 mg of total protein) were run on 4–12% Bis-Tris poly-

acrylamide gels (Invitrogen, Carlsbad, CA) before electrotransfer

to a polyvinylenedifluoride (PVDF) membrane (NEN Life

Sciences, Boston, MA). PVDF membranes were blocked for one

hour at room temperature in 4% non-fat milk (Santa Cruz

Biotechnology, Santa Cruz, CA) before blotting. Specific antisera

employed were obtained from the following sources: proline-rich

tyrosine kinase 2 (Pyk2), G protein-coupled receptor kinase

interacting protein 2-short form (GIT2s), focal adhesion kinase

(FAK), G protein-coupled receptor kinase interacting protein 1

(GIT1) (BD Biosciences, San Jose, CA); myc, microtubule-

associated protein 2 (Map2), Ran/TC4, vinculin (Vcl), nitric

oxide synthase-1 (Nos1) (Santa Cruz Biotechnology, Santa Cruz,

CA); Akt, caspase 3, extracellular signal-regulated kinase 1/2

(ERK1/2), p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1),

Rho guanine nucleotide exchange factor (GEF) 7 (b-PIX) (Cell

Signaling Technology, Danvers, MA); junction plakoglobin (Jup)

(Sigma Aldrich, St. Louis, MO); G protein-coupled receptor kinase

interacting protein 2 (GIT2) (NeuroMab, San Jose, CA); 29,39-

cyclic nucleotide 39 phosphodiesterase (Cnp1) (Abnova, Walnut,

CA). Detection of primary immune complexes were performed

with subsequent application of a 1:10,000 dilution of an alkaline

phosphatase-conjugated, species-specific secondary antibody (Sig-

ma Aldrich, St. Louis, MO) followed by enzyme-linked chemi-

fluorescence exposure (GE Healthcare, Pittsburgh, PA) and digital

quantification using a Typhoon 9410 phosphorimager with

ImageQuant 5.2 L software (GE Healthcare, Pittsburgh, PA).

Standard Coomassie staining methods were used to ensure equal

protein concentrations of the SDS-PAGE gel. Gels were fixed for

30 minutes by immersion in 10% v/v glacial acetic and 30% v/v

methanol. G250 Coomassie was then added for a one hour

incubation period with agitation. After staining, the gel was

washed in destaining solution containing 3% glacial acetic acid

until the stain background was adequately removed. For GIT2

immunoprecipitation experiments, GIT2 antisera were employed

(NeuroMab, San Jose, CA) with overnight incubation at 4uC
before addition of 30 mL of Protein G Plus/Protein A Agarose

(EMD Biosciences) for 1 hour and subsequent collection of GIT2

immunoprecipitates with low-speed centrifugation. Phosphotyro-

sine content of gel-resolved proteins was assessed using a 1:1,000

dilution of anti-phosphotyrosine PY20 (Santa Cruz Biotechnology,

CA) sera.

Bioinformatics Analyses
Protein sets generated from the antibody microarray were

analyzed using WebGestalt (http://bioinfo.vanderbilt.edu/

webgestalt/). Significant clustering of proteins into GO (gene

ontology) terms and KEGG (Kyoto encyclopedia of genes and

genomes) pathway groups was performed using a hypergeometric

test of significance (p,0.05). At least two independent proteins

were required for significant population of specific GO groups or

KEGG pathways. The relative profundity of the GO term or

KEGG pathway population was measured as described previously

using a ‘hybrid score’ approach [2]. Briefly, hybrid scores for GO

term groups or KEGG pathways were calculated by multiplication

of the negative log10 of the enrichment probability (P) with the

enrichment ratio (R). Latent semantic indexing (LSI) bioinformatic

analyses were performed using GeneIndexer (Computable Geno-

mix LLC, https://computablegenomix.com/geneindexer) as de-

scribed previously [2,3].

Plasma hormone analysis
Approximately 2 mL of blood was collected from each animal

into VacutainerTM tubes coated with EDTA (BD Biosciences, San

Jose, CA). Blood glucose concentration was measured as pre-

viously described [75]. Samples were centrifuged (3000 rpm,

30 minutes, 4uC) and plasma from each tube was collected and

then stored at 280uC until used. When required, samples were

thawed overnight at 4uC prior to analysis. The plasma levels of

specific metabolic hormones were measured using enzyme-linked

immunosorbent assays (ELISA) (Millipore, Billerica, MA). The

hormones measured were insulin, leptin, and adiponectin. Each

sample was run in duplicate on a 96-well plate. Analysis of quality

control standards provided in the kits met expectations, validating

the accuracy of the panels.

Supporting Information

Figure S1 Gene Ontology term analysis of aging-related
hypothalamic proteins. Proteins significantly regulated in

middle (M) or old (O) aged animals compared to young (Y)

animals were used as input data for Gene Ontology (GO) term

population analysis. (A) Venn diagram analysis of middle-aged

(grey line) and old-aged (black line) significantly-regulated GO

term groups demonstrated 79 common GO terms between old

and middle-aged tissues. The common (79) significantly populated

pathways for middle-aged (grey bars) or old aged (black bars)

animals were then rationally clustered into subgroups focused

upon cell structure/function (B), cell cycle regulation (C), enzyme

activity (D), and neurophysiological architecture (E). For each

significantly-populated GO term group a ‘hybrid’ score was

generated which represents the 2log10 of the enrichment

probability multiplied with the relative enrichment factor

compared to the background proteomic expression.

(TIF)

Figure S2 Latent semantic indexing (LSI) correlations of
Gene Ontology groups with proteins. (A) Latent semantic

indexing (LSI) interrogation matrix between input significantly-

regulated Gene Ontology (GO) term groups. Colored blocks

represent the individual LSI implicit correlation of the specific

protein (vertically organized on left of heatmap: 1–2524 – see

Table S20) with the respective GO term (1-Actin filament binding,

2-Anatomical structural development, 3-Cyclin-dependent protein

kinase inhibitor activity, 4-Regulation of cell proliferation, 5-

Cytoskeletal protein binding, 6-Macromolecular complex, 7-Nitric

oxide synthase activity, 8-Synapse, 9-Response to stress, 10-

Intracellular membrane-bound organelle, 11-Regulation of pro-

grammed cell death, 12-Protein kinase activity). The number of

KEGG signaling pathway correlations for each protein is indicated

by the color of the respective heatmap blocks (7 correlations-

yellow; 6 correlations-green; 5 correlations-light blue; 4 correla-

tions-dark blue; 3 correlations-purple; 2 correlations-grey). (B)

Mean 6 SEM for the total implicitly-correlating proteins for each

of the 12 input GO term groups. (C) Box and whisker plot with 1–

99% statistical cut-offs (GraphPad Prism) of the number of specific

correlations to GO term groups each protein possessed. Twelve

proteins demonstrated a statistically-significantly greater number

of GO term group correlations compared to the total protein

mean number of correlations (*** = p,0.001). (D) Expanded

heatmap identification of specific proteins possessing a significantly

greater number of GO term group correlations compared to the

mean number of GO term group correlations for all implicit
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proteins. (E) Mean 6 SEM of LSI correlation scores (across all 7

correlations) for Ccdc88a, Kank1, Pcnp, Plekho1, Rsu1, Tfpt,

GIT2, Plrg1, and Zdhhc16.

(TIF)

Figure S3 Age-dependent alteration in GIT2 phospho-
tyrosine content. Anti-GIT2 immunoprecipitates were per-

formed on hypothalamic lysates from young (Y), middle-aged (M)

or old (O) rats. The immunoprecipitates were then assessed for

GIT2 content using western blot, and then based upon this

normalized for a subsequent western that ensured equal GIT2

loading from the specific immunoprecipitate. This western blot

was then probed with a generic anti-phosphotyrosine anti-sera

(anti-P-Tyr). The associated histogram indicates GIT2 phospho-

tyrosine content. Data represented as mean 6 SEM, n = 3,

* = p,0.05).

(TIF)

Figure S4 Age-dependent alteration in the expression of
an ‘intermediate’ mass GIT2 isoform. (A) Using specific

anti-GIT2 sera, the primary species observed in the hypothalamus

and other central nervous system regions were 85 kDA (1.) and

55 kDa (3.). A prominent intermediate mass GIT2 immunoreac-

tive species was also observed and was estimated to be 60–62 kDa

(2.). (B) Age-dependent expression variation of the intermediate

mass (60–62kDa) GIT2 immunoreactive species across multiple

regions of the central nervous system. Expression profile, relative

to that in the hypothalamus, of the intermediate (60–62kDa) GIT2

immunoreactive isoform in young (C), middle-aged (D) and old (E)

rats. Anti-GIT2 immunoprecipitates were performed on hypotha-

lamic lysates from young (Y), middle-aged (M) or old (O) rats. The

histograms depict intermediate GIT2 immunoreactive form

expression. Data represented as mean 6 SEM, n = 3,

* = p,0.05, ** = p,0.01, *** = p,0.001.

(TIF)

Table S1 Protein expression alterations in middle-aged
compared to young rat hypothalamus. PanoramaH Cell

Signaling Array platforms were employed to assess the relative

expression ratio of individual proteins for middle-aged (M) versus

young (Y) rats (M/Y). Expression ratios were calculated from

triplicate experiments and the mean and standard error of the

mean (SEM) for each protein demonstrating an M/Y ratio using

the following criteria: ratio.1.5 and ratio,0.5.

(DOC)

Table S2 Protein expression alterations in old com-
pared to young rat hypothalamus. PanoramaH Cell

Signaling Array platforms were employed to assess the relative

expression ratio of individual proteins for old (O) versus young (Y)

rats (O/Y). Expression ratios were calculated from triplicate

experiments and the mean and standard error of the mean (SEM)

for each protein demonstrating an O/Y ratio using the following

criteria: ratio.1.5 and ratio,0.5.

(DOC)

Table S3 Proteins significantly regulated in both mid-
dle- and old-aged rat hypothalami compared to young
rats. PanoramaH Cell Signaling Array platforms were employed

to assess the relative expression ratio of individual proteins for

middle-aged/old (M or O) versus young (Y) rats (M/Y or O/Y).

Expression ratios were calculated from triplicate experiments and

the mean and standard error of the mean (SEM) for each protein

demonstrating an O/Y ratio using the following criteria: ratio.1.5

and ratio,0.5.

(DOC)

Table S4 KEGG signaling pathway enrichment for
middle-aged versus young rat protein expression vari-
ation. KEGG signaling pathway enrichment was performed

using WebGestalt with the protein set significantly altered in

middle aged hypothalami compared to the young controls. KEGG

signaling pathway text description, enrichment factor (R),

probability of enrichment (P), and the resultant hybrid score (H:

2log10(P)6R) is represented.

(DOC)

Table S5 KEGG signaling pathway enrichment for old
versus young rat protein expression variation. KEGG

signaling pathway enrichment was performed using WebGestalt

with the protein set significantly altered in old-aged hypothalami

compared to the young controls. KEGG signaling pathway text

description, enrichment factor (R), probability of enrichment (P),

and the resultant hybrid score (H: 2log10(P)6R) is represented.

(DOC)

Table S6 GO-term enrichment for middle versus young
rat protein expression variation. GO-term enrichment was

performed using WebGestalt with the protein set significantly

altered in middle aged hypothalami compared to the young

controls. Official GO-term codes, the text description of the code

as well as the enrichment factor (R), probability of enrichment (P),

and the resultant hybrid score (H: 2log10(P)6R) is represented.

(DOC)

Table S7 GO-term enrichment for old versus young
protein expression variation. GO-term enrichment was

performed using WebGestalt with the protein set significantly

altered in middle aged hypothalami compared to the young

controls. Official GO-term codes, the text description of the code

as well as the enrichment factor (R ), probability of enrichment (P),

and the resultant hybrid score (H: 2log10(P)6R) is represented.

(DOC)

Table S8 GeneIndexer latent semantic indexing (LSI) of
significantly-regulated ‘Regulation of actin cytoskeleton’
KEGG pathway. Using the KEGG signaling pathway ‘Regula-

tion of actin cytoskeleton’ as an input term, a list of the top 1000

implicitly-correlated (LSI correlation score .0.1) was generated

using a full genome background list.

(DOC)

Table S9 GeneIndexer latent semantic indexing (LSI) of
significantly-regulated ‘Chemokine signaling’ KEGG
pathway. Using the KEGG signaling pathway ‘Chemokine

signaling’ as an input term, a list of the top 1000 implicitly-

correlated (LSI correlation score .0.1) was generated using a full

genome background list.

(DOC)

Table S10 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Alzheimer’s disease’ KEGG
pathway. Using the KEGG signaling pathway ‘Alzheimer’s

disease’ as an input term, a list of the top 1000 implicitly-

correlated (LSI correlation score .0.1) was generated using a full

genome background list.

(DOC)

Table S11 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Focal adhesion’ KEGG path-
way. Using the KEGG signaling pathway ‘Focal adhesion’ as an

input term, a list of the top 1000 implicitly-correlated LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

GIT2 Acts a Potential Hypothalamic Keystone

PLoS ONE | www.plosone.org 16 May 2012 | Volume 7 | Issue 5 | e36975



Table S12 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘MAPK signaling’ KEGG path-
way. Using the KEGG signaling pathway ‘MAPK signaling’ as an

input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S13 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Gap junction’ KEGG path-
way. Using the KEGG signaling pathway ‘Gap junction’ as an

input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S14 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘GnRH signaling’ KEGG path-
way. Using the KEGG signaling pathway ‘GnRH signaling’ as an

input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S15 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Long term potentiation’
KEGG pathway. Using the KEGG signaling pathway ‘Long

term potentiation’ as an input term, a list of the top 1000

implicitly-correlated (LSI correlation score .0.1) was generated

using a full genome background list.

(DOC)

Table S16 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Notch signaling’ KEGG path-
way. Using the KEGG signaling pathway ‘Notch signaling’ as an

input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S17 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘VEGF signaling’ KEGG path-
way. Using the KEGG signaling pathway ‘VEGF signaling’ as an

input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S18 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘p53 signaling’ KEGG path-
way. Using the KEGG signaling pathway ‘p53 signaling’ as an

input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S19 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Calcium signaling’ KEGG
pathway. Using the KEGG signaling pathway ‘Calcium

signaling’ as an input term, a list of the top 1000 implicitly-

correlated (LSI correlation score .0.1) was generated using a full

genome background list.

(DOC)

Table S20 GeneIndexer latent semantic indexing (LSI)
correlation matrix for twelve input KEGG signaling
pathway terms. The input text terms are numerated as follows:

1-Regulation of actin cytoskeleton, 2-Chemokine signaling, 3-Alzheimer’s

disease, 4-Focal adhesion, 5-MAPK signaling, 6-Gap junction, 7-GnRH

signaling, 8-Long term potentiation, 9-Notch signaling, 10-VEGF signaling,

11-p53 signaling, 12-Calcium signaling. An implicit correlation (LSI

score .0.1) of the specific protein and the respective input KEGG

terms is denoted by a 1. When no correlation occurs, a 0 is

present.

(DOC)

Table S21 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Actin filament binding’ GO
term group. Using the GO term group ‘Actin filament binding’

as an input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S22 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Anatomical structural devel-
opment’ GO term group. Using the GO term group

‘Anatomical structural development’ as an input term, a list of

the top 1000 implicitly-correlated (LSI correlation score .0.1) was

generated using a full genome background list.

(DOC)

Table S23 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Cyclin-dependent protein ki-
nase inhibitor activity’ GO term group. Using the GO term

group ‘Cyclin-dependent protein kinase inhibitor activity’ as an

input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S24 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Regulation of cell prolifera-
tion’ GO term group. Using the GO term group ‘Regulation of

cell proliferation’ as an input term, a list of the top 1000 implicitly-

correlated (LSI correlation score .0.1) was generated using a full

genome background list.

(DOC)

Table S25 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Cytoskeletal protein binding’
GO term group. Using the GO term group ‘Cytoskeletal

protein binding’ as an input term, a list of the top 1000 implicitly-

correlated (LSI correlation score .0.1) was generated using a full

genome background list.

(DOC)

Table S26 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Macromolecular complex’
GO term group. Using the GO term group ‘Macromolecular

complex’ as an input term, a list of the top 1000 implicitly-

correlated (LSI correlation score .0.1) was generated using a full

genome background list.

(DOC)

Table S27 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Nitric oxide synthase activity’
GO term group. Using the GO term group ‘Nitric oxide

synthase activity’ as an input term, a list of the top 1000 implicitly-

correlated (LSI correlation score .0.1) was generated using a full

genome background list.

(DOC)

Table S28 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Synapse’ GO term group.
Using the GO term group ‘Synapse’ as an input term, a list of
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the top 1000 implicitly-correlated (LSI correlation score .0.1) was

generated using a full genome background list.

(DOC)

Table S29 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Response to stress’ GO term
group. Using the GO term group ‘Response to stress’ as an input

term, a list of the top 1000 implicitly-correlated (LSI correlation

score .0.1) was generated using a full genome background list.

(DOC)

Table S30 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Intracellular membrane-
bound organelle’ GO term group. Using the GO term

group ‘Intracellular membrane-bound organelle’ as an input term,

a list of the top 1000 implicitly-correlated (LSI correlation score

.0.1) was generated using a full genome background list.

(DOC)

Table S31 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Regulation of programmed
cell death’ GO term group. Using the GO term group

‘Regulation of programmed cell death’ as an input term, a list of

the top 1000 implicitly-correlated (LSI correlation score .0.1) was

generated using a full genome background list.

(DOC)

Table S32 GeneIndexer latent semantic indexing (LSI)
of significantly-regulated ‘Protein kinase activity’ GO
term group. Using the GO term group ‘Protein kinase activity’

as an input term, a list of the top 1000 implicitly-correlated (LSI

correlation score .0.1) was generated using a full genome

background list.

(DOC)

Table S33 GeneIndexer latent semantic indexing (LSI)
correlation matrix for twelve input GO term groups. The

input text terms are numerated as follows: 1-Actin filament binding, 2-

Anatomical structural development, 3-Cyclin-dependent protein kinase inhibitor

activity, 4-Regulation of cell proliferation, 5-Cytoskeletal protein binding, 6-

Macromolecular complex, 7-Nitric oxide synthase activity, 8-Synapse, 9-

Response to stress, 10-Intracellular membrane-bound organelle, 11-Regulation

of programmed cell death, 12-Protein kinase activity. An implicit

correlation (LSI score .0.1) of the specific protein and the

respective input KEGG terms is denoted by a 1. When no

correlation occurs, a 0 is present.

(DOC)
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