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Abstract

Methylglyoxal (MG) is a highly reactive metabolite physiologically presented in all biological systems. The effects of MG on
diabetes and hypertension have been long recognized. In the present study, we investigated the potential role of MG in
obesity, one of the most important factors to cause metabolic syndrome. An increased MG accumulation was observed in
the adipose tissue of obese Zucker rats. Cell proliferation assay showed that 5–20 mM of MG stimulated the proliferation of
3T3-L1 cells. Further study suggested that accumulated-MG stimulated the phosphorylation of Akt1 and its targets
including p21 and p27. The activated Akt1 then increased the activity of CDK2 and accelerated the cell cycle progression of
3T3-L1 cells. The effects of MG were efficiently reversed by advanced glycation end product (AGE) breaker alagebrium and
Akt inhibitor SH-6. In summary, our study revealed a previously unrecognized effect of MG in stimulating adipogenesis by
up-regulation of Akt signaling pathway and this mechanism might offer a new approach to explain the development of
obesity.
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Introduction

Methylglyoxal (MG) is a reactive dicarbonyl compound that

interacts with certain free amino acid residues in proteins and

forms advanced glycation endproducts (AGEs) [1]. It is derived

from glycolysis as well as lipid and protein catabolism [2,3]. MG-

induced reactive oxygen species (ROS) [4,5,6,7] and MG-derived

protein modifications [8,9] have been addressed as possible causal

factors for insulin resistance in vitro and in vivo. Moreover, increased

accumulation of MG and AGEs were observed in diabetic

[10,11,12] and hypertensive [11,13,14] animals and patients.

The full name of alagebrium is 3-(2-oxo-2-phenyl)- ethyl-4, 5-

dimethyl-thiazolium chloride. It is a stable derivative of N-

phenacylthiazolium bromide (PTB). For its significant effects of

reducing AGEs in vivo and in vitro [15,16], alagebrium has been

applied in animal and clinical studies to treat hypertension and

cardiovascular complications by regaining flexibility and function-

ality of the vascular system (13).

As the most important risk factor for hypertension and diabetes,

obesity is well recognized as a result of excessive consumption of

fat and carbohydrates, which are both precursors of MG and

AGEs. The association between obesity and diabetes and

hypertension led us to postulate a possible role of MG in the

development of obesity. The development of obesity involves both

adipocyte hypertrophy and hyperplasia [17,18]. While imbalanced

energy intake-induced adipocyte hypertrophy is responsible for

most adult-onset obesity, obesity in childhood may be due to

adipocyte hyperplasia [19,20]. However, proliferation of adipo-

cytes is also observed in adult obesity. Recently, the roles of PI3K/

Akt pathway and its downstream effectors in adipogenesis

especially the proliferation of pre-adipocytes were reported

[21,22,23,24,25,26]. It was found that Akt phosphorylates

cyclin-dependent-kinase (Cdk) inhibitors, p27 and p21, prevents

the localization of these proteins to nucleus, and attenuates their

inhibitory effect on Cdk2. Thus, the cell cycle progression from G1

to S phase is accelerated [27,28,29]. As Akt1 is one of the main

Akt isoforms that related to cell proliferation, it is likely that MG

may act through modifying the Akt1 activity and resulted in cell

proliferation and growth.

An inhibitory effect of MG on cell growth by inducing

apoptosis was studied [30,31,32]. It is reported that MG

promoted programmed cell death through several signaling

pathways including growth factor receptor and the gp130/

STAT3-signaling pathway. However, the concentrations of MG

(100 to 500 mM) causing apoptosis were much greater than the

physiological concentration, which is 1.81–3.29 mM in normal

Sprague-Dawley rats [33] and 3.3–5.9 mM in healthy and

diabetic humans [12]. The effects of MG at physiological or

pathological levels on cell growth need to be further explored.

In the present study, we used 3T3-L1 cells, a widely used

adipocyte-like cell line, to test whether MG contributes to the

development of obesity through stimulating adipocyte pro-

liferation [34].
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Results

Increased Akt1 Phophorylation Associated with MG
Accumulation in Obese Rats
It was reported that plasma level of MG was increased in rats

with diabetes and hypertension [12,35,36,37,38]. To examine the

correlation between MG accumulation and the development of

obesity, we compared the MG accumulation in the white fat

tissues from Zucker lean and obese rats. At the age of 16 weeks,

the body weight of the obese rats was significantly greater than

that of the lean rats (Table 1), which is consistent with an increased

adipose tissue deposit in obese rats (data not shown). Obese rats

also exhibited higher serum triglyceride (TG), higher total

cholesterol (Chol), but significantly decreased high-density choles-

terol (HDL) level comparing with those of lean rats (Table 1).

Although the fasting glucose level did not show significant

difference between lean and obese rats at the ages of 10, 12, 14

and 16 weeks (Table 1), a markedly increased MG accumulation

was observed in kidney, and fat tissue of obese rats at age of 16

weeks (Fig. 1A). In addition, MG level was shown accumulated in

serum of obese rats (13.4661.13 mM vs 4.0860.94 mM in lean

rats). With the increased MG accumulation, a decreased GSH

level was observed in obese rats (Fig. 1B). However, the activity of

glyoxalase I, the major enzyme detoxifying MG, did not show

significant change (Fig. 1C), suggesting that elevated MG level may

be mainly related to MG formation.

As Akt1 is the isoform that contributes to cell proliferation and

cell growth, we studied the phosphorylation levels of Akt1 isoform

in adipose tissues from Zucker lean and obese rats at the age of 16

weeks. Significantly elevated levels of phospho-Akt1(S473) and

phospho-Akt1(T308), two activation sites of Akt1 kinase, were

observed in Zucker obese rats as compared to that of Zucker lean

rats (Fig. 1D,E).

MG Stimulated Proliferation of Cultured 3T3-L1 Cells
To investigate whether MG treatment could induce the

proliferation of 3T3-L1 cells, we carried out a cell proliferation

assay with or without MG treatment (1.25,50 mM). MG at 5,

10 and 20 mM increased the proliferation rate of 3T3-L1 cells

to 11562.1%, 12663.6% and 11963.3% of the untreated cells

(P,0.05 vs. control; n = 48 in each group, Fig. 2A). The co-

treatment with Akt inhibitor SH-6 (10 mM) or the AGE

lowering reagent alagebrium (50 mM) prevented the MG-

induced cell proliferation (Fig. 2B). When 3T3-L1 cells were

treated with MG (5,50 mM), the GSH level was significantly

decreased. Consistent with the results from animal study,

gloxalase I activity were not significantly altered by MG

treatment (Fig. 2C, D).

The effect of MG on cell proliferation was further confirmed

by analysis of the cell cycle phase distribution after MG

treatment (Fig. 3). Comparing the cell number distributed in

G1, S and G2 cell phase at different time points, we found that

the MG-treatment lead to a faster cell cycle progression

(Fig. 3A), which represented as an increased cell number in S

phase after 16 or 20 h of MG (10 mM) treatment (Fig. 3A–b)

and increased cell number in G2 phase after exposure of cells to

MG (10 mM) for 20 h (Fig. 3A–c). The co-administration of SH-

6 (10 mM) reversed the effect of MG on cell cycle progression in

S and G2 phases (Fig. 3B–b, c). In contrast, increased G1 phase

distribution indicated a longer interdivision time due to the

inhibited rate of mass synthesis in cells co-treated with MG and

SH-6, which reflects the inhibitive effect of SH-6 on Akt.

Correspondingly, there was an increase of S phase cell number

in cells treated with MG alone (Fig. 3B–b). Although reported to

induce cell apoptosis at higher concentrations, 10 mM of MG

did not increase sub-diploid/apoptotic cells. The percentage of

apoptotic cells was 2.57%, 2.74%, 2.66% and 2.45% re-

spectively for control group, MG-treated group, MG-SH6 and

MG-ALA group.

Effect of MG on Akt1 and its Downstream Targets in 3T3-
L1 Cells
To further understand the mechanism of MG induced cell

proliferation in 3T3-L1 cells, the phosphorylation of Akt1 isoform

was studied in cultured cells. Consistent with our observations of

Akt1 in Zucker obese and lean animals, the levels of phospho-

Akt1(Ser473) and phospho-Akt1(Thr308) in cultured 3T3-L1 cells

were significantly increased after MG treatment (10 and 30 mM)

for 24 h (Fig. 4). Co-application of alagebrium (50 mM) with MG

attenuated the phosphorylation levels on both Ser473 and Thr308

of Akt1. Alagebrium itself had no significant effect on phospho-

Akt1.

As Akt regulates cell growth by phosphorylating p21 and p27

[26], we further examined the effect of MG on p21 and p27 in

3T3-L1 cells (Fig. 5). Consistent with the increased phosphoryla-

tion of Akt1, phosphorylated p21 (p-p21) and p27 (p-p27) were

also observed in 10 mM MG treated 3T3-L1 cells (Fig. 5A),

indicating a role of MG in stimulating Akt1 signaling. Co-

administration of SH-6 (10 mM) or alagebrium (50 mM) signifi-

cantly prevented the increased phosphorylation of p21 and p27

induced by MG.

In another group of experiments, we also examined the effect of

MG on Cdk2 activity in 3T3-L1 cells. As shown in Fig. 5B, after

the cells were treated with MG (10 mM) for 24 h, the activity of

Cdk2 was increased to ,4-fold of the control level. The increased

Cdk2 activity was prevented by co-administration of either SH-6

or alagebrium. However, no significant change in the protein

levels of Cdk2 in the cells treated with or without MG (10 mM) for

24 h was observed (data not shown).

Table 1. Basic parameters of lean/obese Zucker rats.

Bodyweight (g) Lipid profile (mM) Blood glucose (mM)

Chol TG HDL 10 12 14 16wk

Lean 376.469.3 1.260.0 0.460.1 1.060.05 5.460.1 5.660.8 5.060.2 5.760.2

Obese 600.565.7* 2.360.1* 5.561.2** 0.160.1** 5.660.2 5.560.2 5.860.5 6.360.4

*P,0.05,
**P,0.01 vs lean Zucker rats, n = 428 in each group.
Chol: total cholesterol, TG: triglyceride, HDL: high density lipoprotein.
doi:10.1371/journal.pone.0036610.t001

Methylglyoxal and Adipocyte Proliferation
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Figure 1. Increased MG accumulation, reduced GSH level and glyoxalase I activity were related to Akt1 expression in obese Zucker
rats. (A) MG levels in kidney, fat, liver of 16-week old Zucker lean or obese rats. *P,0.05, n = 428 in each groups. (B) GSH level decreased in the
adipose tissue of Zucker obese rats while glyoxalase I activity (C ) remain unchanged compare with Zucker lean rats. GSH level was presented as % of
that in control group. *P,0.05, n = 4 in each groups. (D) The expression of p-Akt1 and Akt1 in adipose tissue of lean and obese Zucker rats. *P,0.05,
**P,0.01, n = 4 in both groups. The results of Western blotting were quantified by ChemigenusH Bio imaging system company) and presented as the
percentage of that from control cells (E). % Zucker lean rats, & Zucker obese rats.
doi:10.1371/journal.pone.0036610.g001

Figure 2. The effect of MG on 3T3-L1 cell proliferation, GSH level and glyoxalase I activity. The relative cell proliferation of each group
was presented as the ratio between arbitrary absorbance on 570 nm of each group and that from the control group without treatment. The effect of
different MG concentrations on cell proliferation was shown in (A) and the effect of 10 mM MG with/without SH-6 and alagebrium was shown in (B).
The reduced GSH level (C ) and unchanged glyoxalase I activity (D) was observed in 3T3-L1 cells treated with 5, 10, 20 and 50 mM MG. *P,0.05,
**P,0.01 vs control cells; +P,0.05 vs MG treated cells; n = 12 in each group.
doi:10.1371/journal.pone.0036610.g002
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MG-treatment Resulted in More Lipid Accumulation in
3T3-L1 Cells
We have observed that incubation of 3T3-L1 cells with MG

(10 mM) caused increased cell proliferation. To investigate

whether this associates with a greater number of differentiated

adipocytes, we treated the 3T3-L1 cells with MG, without or with

SH-6 or alagebrium, for 48 h. On the 5th day of post-

differentiation, triglyceride accumulation was indeed increased to

115.761.6% of the control level (Fig. 6A, B). The increased lipid

content in MG-treated cells was attenuated by SH-6 or

alagebrium co-administration. MG treatment (10–30 uM) of

3T3-L1 cells not only upregulates the transcriptional expression

of adiponectin, leptin, PPARc and C/EBPa, four important

adipogenic markers, but also increases cellular adipogenesis

(Fig. 6C). Furthermore, co-treatment of the cells with ALA

efficiently reversed the MG-induced upregulation of these

adipogenic markers.

Discussion

Increased MG levels and MG-related AGEs have been reported

in different insulin resistance states, which is associated with

various clinical manifestations such as hypertension and diabetes

[8,11,39]. However, the correlation between endogenous MG

accumulation and the development of obesity, the major risk

factor for insulin resistance, has not been shown previously. Our

data in this study revealed the higher concentrations of MG in

adipose tissue of obese Zucker rats. The increased basal level Akt1

phosphorylation observed in obese Zucker rats may represent the

consequence of increased MG level in adipose tissue. However, it

may also be related to the increased plasma insulin in obese rats

which was observed in our previous study [40]. To further identify

the effect of MG on Akt1 phosphorylation, we treated 3T3-L1 cells

with MG. MG treatment induced the increases in the phosphor-

ylation of Akt1, p21 and p27, as well as an enhanced activity of

Cdk2 and accelerated cell cycle progression. This result reinforces

the correlation between MG accumulation and Akt1 phosphor-

ylation observed in animal model. Thus, increased MG may be

one of the factors that contribute to increase Akt phosphorylation

in obese animals.

The deleterious effect of MG on different types of cells has been

extensively studied [30,31,32]. A previous study reported an

increased apoptotic cell number when mouse Schwann cells were

treated with 500–1000 mM MG [31]. In another study, MG

(100 mM, [30] altered the PDGF-induced PDGFRb-phosphoryla-

tion, and reduced the proliferation of mesenchymal cells (smooth

muscle cells and skin fibroblasts). The major difference in our

study is that the 3T3-L1 cells were treated with more physiolog-

ically relevant concentrations (1.25,20 mM) of MG compared

with 0.2,5 mM of MG in normal human/rats based on previous

Figure 3. Effect of MG on cell cycle progression of 3T3-L1 cells. After 12, 16, 20 h of MG (10 mM) treatment, cellular DNA content was
determined by a flow cytometer (A). The effect of MG with/without SH6 (10 mM) or alagebrium (50 mM) on cellular DNA content is shown in (B).
*P,0.05 vs control group; +P,0.05 vs MG treated group; n = 6 in each group. The indicated percentage of the cell number is average of three
experiments. CT: control; ALA: alagebrium.
doi:10.1371/journal.pone.0036610.g003

Methylglyoxal and Adipocyte Proliferation

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e36610



and the present studies [37,41]. In agreement with previous

studies, we observed a decreased proliferation of 3T3-L1 cells

when the MG concentration was increased to 100 mM (data not

shown). This might indicate a biphasic effect of MG on cell

proliferation. Most probably, the inhibitory effect of MG is due to

the acute effect of high MG concentration, but not the effect of

MG at the physiological relevant level. To our knowledge, this is

the first report about the stimulating effect of MG on pre-

adipocytes proliferation. However, this effect may not be limited to

adipocytes. Increased proliferation was also observed in vascular

smooth muscle cells after MG treatment [42] in our other study. In

response to increased MG level, 3T3-L1 cells showed a decreased

GSH level, but glyoxalase I activity remained unchanged (Fig. 2C,

D). Obese rats showed a similar pattern of change in GSH level

and glyoxalase I activity as observed in MG treated cells. The

unchanged glyoxalase I activity suggests that increased MG

accumulation in obese rats may mainly due to increased MG

production. As the consumption of high-carbohydrate food has

increased worldwide, the prevalence of metabolic syndrome such

as diabetes and obesity has also risen. The usage of table sugar

sucrose (1 glucose +1 fructose) and high fructose corn syrup

(HFCS, 55% fructose and 45% glucose) to sweeten beverages

(such as soft drinks) or as an ingredient in processed foods has

increased significantly in the last several decades. Obese Zucker

rats lack leptin receptor. Leptin exerts a negative control on food

intake. Increased food intake due to the absence of leptin receptor

provides a surplus of substrate for MG production in these obese

Zucker rats. Elevated vascular tissue MG levels were reported in

normal SD rats fed with high fructose (60% in diet) for 16 weeks

and in cultured vascular smooth muscle cells treated with high

fructose (25 mM). Putative mechanisms for this MG overproduc-

tion are increased cellular fructose accumulation due to the

upregulation of Glut5 (a transporter for fructose) and aldolase B (a

key enzyme that catalyzes MG formation from fructose) [43]. In

obese Zucker rats, MG levels are elevated in plasma, adipose

tissues, and kidney, but not in the liver (Fig 1). The mechanisms for

MG overproduction in different tissues or organs might be

different and whether adipose tissue and vascular tissue share the

similar mechanism needs further investigation.

The possible underlying mechanism for MG effects on cell

proliferation may related to dAkt1 signal cascade, which plays an

important role in regulating cell proliferation. Based on our results,

the effect of MG on cell proliferation was due to MG-increased

activity of Akt1 and the related targets. In our study, 10 mM of

MG in cultured 3T3-L1 cells increased the phosphorylation of

Akt1. Furthermore, MG treatment increased the phosphorylation

of p21 and p27 (Fig. 5A), the major regulators that arrest the cell

cycle progression at the G1/S checkpoint. The increased

phosphorylation of p21 and p27 activates their degradation and

leads to the entry of cells to S phase. This explains the MG-

activated cell proliferation detected in our experiment. Further

observation of the increased Cdk2 activity in MG-treated cells

supported this hypothesis (Fig. 5B). Increased Akt1 activity was

observed in MG-treated 3T3-L1 cells suggesting that change in

Akt1, especially its activity, is critical in adipocyte proliferation.

The MG-treated cells also showed more lipid accumulation as well

as increased expression of adipogenic markers. It may be a direct

result of increased cell numbers after MG was administered during

the proliferation stage (Fig. 6).

In the current study, Akt1 not only shows increased phosphor-

ylation level in MG treated adipocytes, but also in adipose tissues

from obese rats with an increase of MG accumulation (Fig. 1, 4

and 5). Moreover, the increased phosphorylation on Akt1 and its

targets (p21 and p27) was efficiently attenuated by AGE lowering

reagent alagebrium. According to our previous study, modification

of a cysteine residue in Akt1 may be favorable for the activation of

Akt1 by phosphorylation on activation sites Ser (473) and Thr

(308) [42]. Findings in this paper suggest that MG mediated Akt1

modification and activation may also contribute to the increased

adipocyte numbers and enlargement of adipose tissue. Alagebrium

Figure 4. Effect of MG on Akt1 phosphorylation in 3T3-L1 cells. After 24 h treatment with or without MG (10 mM) in the presence or absence
of SH-6 (10 mM)/alagebrium (50 mM), the protein levels of Akt1, (A), Representive Western blot of phospho-Akt1 (p-Akt1(Ser473), p-Akt1(thr308)) and
Akt1; (B), The level of phospho-Akt1(Ser473) in 3T3-L1 cells with/without MG treatment; (C ), The level of phospho-Akt1(thr308) in 3T3-L1 cells with/
without MG treatment. *P,0.05 vs control (CT) cells; +P,0.05 vs MG treated cells. The results were based on data from three experiments. CT: control;
ALA: alagebrium.
doi:10.1371/journal.pone.0036610.g004
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is an AGE lowering agent. Previous studies have reported its role

in attenuating the accumulation of extracellular matrix in humans

and animals with diabetic complications. In this study, alagebrium

inhibited the proliferation-provoking effect of MG. It is unlikely

that alagebrium impeded Akt1 activity directly. Instead, it may

function by reversing the MG-induced modification of selective

amino acid residues of Akt1 protein. Various doses (1–100 mM) of

alagebrium have been tested in our preliminary studies. We found

that 50 mM was the optimized concentration of alagebrium and

therefore this concentration was applied throughout the entire

work. This concentration seems higher than the previous reported

doses (1–10 mM) to prevent extracellular matrix and neointima

formation [44]. The dosage of alagebrium applied in different

studies might also relate to different cell types and experimental

conditions. We observed an inhibited Cdk2 activity after ALA

treatment. The most possible reason might still due to the AGE-

lowering effect of ALA because ALA would scavenge the

endogenous produced MG from the cultured cells. However, the

underlying mechanisms of this inhibitive effect need further

investigation.

Obesity in childhood involves both adipocyte hyperplasia and

hypertrophy while adult-onset obesity was generally considered

due to adipocyte hypertrophy. However, various lines of evidence

indicate that adipocyte hyperplasia is also an important factor in

the development of adult-onset obesity, especially morbidly obese

patients with BMI value .39. Since the food intake of obese

Zucker rats is more than lean rats and food over-consumption can

lead to increased MG formation, it is hard to evaluate the extent of

contribution from MG to the development of obesity in Zucker

rats used in this study. However, the results in this study suggest

that MG-stimulated adipogenesis by the up-regulation of Akt

signaling pathway may be a new explanation to the development

of obesity especially the adult-onset morbid obesity.

Materials and Methods

Animals
Eight 8-week-old male obese Zucker rats and eight age-matched

lean Zucker rats were purchased from Charles River laboratories,

Inc. (Wilmington, MA), housed in temperature-regulated animal

facility and maintained at 22–23uC. These animals were exposed

to a 12 h light/dark cycle with free access to water and food. The

standard lab rat chow, ProlabH RMH 3000, contains 60% starch,

22% crude proteins, 5% crude fat, 5% crude fiber, 6% ash, and

2% added minerals (PMIH Nutrition International, St. Louis,

MO). Rats were treated in accordance with guidelines of the

Canadian Council on Animal Care and the experimental

protocols were approved by the Animal Care Committee of the

University of Saskatchewan. At the end of week 16, after overnight

fasting, rats will be anaesthetized with sodium pentobarbital

Figure 5. Effect of MG on p21, p-p21, p27, p-p27 and CDK2 activity in 3T3-L1 cells. After 24 h treatment with or without MG (10 mM) in the
presence or absence of SH-6 (10 mM)/alagebrium (50 mM), the protein levels of p21, p-21 and p27, p-p27 (A), and the activity of Cdk2 (B) were
determined and compared. *P,0.05 vs control (CT) cells; +P,0.05 vs MG treated cells. The results were based on data from three experiments.
doi:10.1371/journal.pone.0036610.g005

Methylglyoxal and Adipocyte Proliferation
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(50 mg/kg body weight) injected intraperitoneally. Kidney, fat and

liver tissues were collected and frozen under 280uC.

Culture and Differentiation of 3T3-L1 Cells
3T3-L1 pre-adipocytes were grown to confluence in Dulbecco’s

modified Eagle’s medium (DMEM, Invitrogen, ON, Canada)

containing 10% bovine calf serum (Invitrogen, ON, Canada). At

two days postconfluence, cell differentiation was induced by

adding insulin (2.5 mg/ml, Sigma, St Louis, MI, USA), dexameth-

asone (0.25 mM, Sigma-Aldrich, MO, USA), and isobutylethyl-

xanthine (IBMX, 0.5 mM, Sigma-Aldrich, MO, USA) to media

for 3 days according to the protocol described previously [45]. The

cells then were grown in post-differentiation media (DMEM

containing 10% fetal calf serum and 2.5 mg/ml insulin). The post-

differentiation medium containing different concentrations of MG

and/or AGE lowering reagent alagebrium was changed every day

until cells were differentiated. Cells were collected by trypsin

digestion after treatments.

MG Measurement
Quantitation of MG used the o-phenylenediamine (o-PD)-based

assay as described by Chaplen et al [46], with some modifications

[11]. Briefly, the supernatant of tissue homogenate or serum was

incubated with 100 mmol/L o-PD for 3 h at room temperature.

The quinoxaline derivative of MG (2-methylquinoxaline) and the

quinoxaline internal standard (5-methylquinoxaline) were then

measured using a Hitachi D-7000 high-performance liquid

chromatography (HPLC) system (Hitachi Ltd., Mississauga,

Ontario, Canada).

Western Blotting
The supernatants containing crude cellular proteins were

resolved on a 12% SDS-PAGE gel, and transferred onto the

PVDF membrane (PALL Corporation, Ontario, Canada). The

membrane was blocked and incubated with different primary

antibodies overnight. After washed 3 times with the PBS-T for

30 min, the membrane was incubated with the HRP-conjugated

secondary antibody for 1 h at room temperature. The immunor-

eactions were visualized by ECL and exposed to X-ray film

(Kodak Scientific Imaging film, X-omat Blue XB-1). The Western

bands were then quantified using ChemigenusH Bio imaging

system and normalized by b-actin.

Cell Proliferation Assay
The proliferation of 3T3-L1 cells was measured by the Celltiter

96H non-radioactive cell proliferation assay kit (Promega, WI,

USA). Briefly, cells were seeded onto 96-well plates (5000 cells per

well) and cultured in Dulbeco’s Modified Eagle’s Medium

(DMEM, HyClone, Ontario, Canada). When they reached

,50% of confluence in medium, the medium was removed and

the cells were washed with serum-free medium and incubated in

serum-free medium for 48 h. The cells were then treated with/

without MG, SH-6 (10 mM, Calbiochem, California, USA) or

alagebrium (50 mM, gift from Synvista Therapeutics, Inc. NJ,

USA) for 48 h in serum-containing DMEM medium supplemen-

ted. The 40% methylglyoxal solution was from Sigma-Aldrich

(MO, USA). To remove the impurities, this commercial solution

was further purified by fractional vacuum distillation. The final

concentration of MG was determined by HPLC and used in the

present study. After treatment, the cells were incubated with dye

solution (15 mL for each well) in medium at 37uC for 4 h and then

incubated with solubilization solution at room temperature for

1 h. The spectrophotometric absorbance of the samples was

determined by using a plate reader (Thermo Labsystems, Finland)

at 570 nm.

Cell Cycle Assay
Cell cycle analysis was performed by propidium iodide (PI)

staining. Briefly, 3T3-L1 cells were firstly seeded into 10 cm

dishes. When they reached ,50% of confluence, the cells were

incubated in serum-free medium for 48 h and then treated with

MG, SH-6 (10 mM) or alagebrium (100 mM) for 12, 16 or 20 h.

Subsequently, the cells were harvested and re-suspended in PBS at

16106/mL and fixed with 70% cool ethanol for 1 h. After the cells

were washed and centrifuged, the pelleted cells were re-suspended

in 1 mL PBS and added with 50 mL of RNase A stock solution

(10 g/mL). Followed a 3 h incubation at 4uC, the cells were then

pelleted and added with 1 mL of PI staining solution (3.8 mmol/L

Figure 6. MG induced adipogenesis in 3T3-L1 adipocytes. After
treated with MG, SH-6 or alagebrium for 48 h, cells were cultured till
confluence and differentiation. The Oil Red O staining in adipocytes was
shown in (A). The lipid content in adipocytes from different groups was
quantified and presented as the percentage of that from control cells
(B). The mRNA expression of adiponectin, PPARc, C/EBPa and leptin in
differentiated cells treated with MG alone or with MG and alagebrium
were determined by real-time PCR (C). *P,0.05; **P,0.01; n = 3 in each
groups. The open square in Figure 6C represents cells treated with MG;
the stripped square represents cells treated with MG alagebrium. CT:
control; ALA: alagebrium.
doi:10.1371/journal.pone.0036610.g006
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sodium citrate, 50 mg/mL PI in PBS) and analyzed by flow

cytometry on an Beckman Coulter Epics XL flow cytometer

(Beckman Coulter Canada Inc, Ontario, Canada). The number of

cells counted in each run was 1,26105 cells.

Measurement of Glutathione (GSH) Level and Glyoxalase
I Activity
The monochlorobimane procedure was used to measure GSH

contents as described previously [47]. The GSH-monochlorobi-

mane adduct was measured using a Thermo Labsystems, Finland

microtitre fluorometric reader with excitation at 380 nm and

emission measured at 470 nm. The activity of glyoxalase I was

evaluated by monitoring the increase in absorbance at 240 nm

due to the formation of S-D-lactoylgutathione in the presence of

homogenates. Protein concentrations were determined by bicinch-

oninic acid procedure using bovine serum albumin as the

reference.

CDK2 Activity Assay
CDK2 activity was determined by measuring ATP consumption

with PKLight Assay Kit (Cambrex Bio Science, ME, US) as

described before [42]. Briefly, after incubation of 200 mg of

proteins with 2 mg of anti-CDK2 antibody (Santa Cruz) in cell lysis

buffer for 4 h at 4uC, protein A/G plus agarose beads (20 mL)
were added and the mixture was incubated overnight at 4uC with

shaking. Beads were washed 3 times and suspended in 40 mL of

CDK2 kinase assay buffer containing 20 mM ATP and 0.1 mg/mL
histone H1. Above mixture was reacted at 30uC for 30 min in 96-

well plate before kinase stop solution and ATP detection reagent

were added according to the manufacture’s protocol. Biolumines-

cent signal in each well was detected using a microplate

spectrofluorometer (BMG LABTECH Inc., NC, US). CDK2

activity was expressed as ATP consumption from 3 experiments.

Adipogenesis Assay
3T3-L1 cells were treated with/without MG, SH-6 (10 mM or

alagebrium (50 mM) for 48 h and then continue cultured in fresh

medium. When the cells reached 80% confluence, differentiation

was induced by adding 2.5 mg/ml insulin, 0.25 mM dexametha-

sone (Sigma-Aldrich, MO, USA), and 0.5 mM isobutylmethyl-

xanthine (Sigma-Aldrich, MO, USA) to media for 2 days

according to the protocol described previously [45,48]. The cells

were then grown in post-differentiation medium (DMEM contain-

ing 10% fetal calf serum and 2.5 mg/ml insulin). On the fifth day

of post-differentiation, cells were fixed with 4% (v/v) formaldehyde

in PBS, and then stained with Oil Red solution for 15 min. The

cells were rinsed five times with water and pictures were

photographed under microscope. Cells were considered as being

lipid-positive when droplets were stained red. The dye retained by

the cells was eluted by incubation with 500 ml of isopropanol and
quantified by measuring absorbance at 500 nm by a plate reader

(Thermo Labsystems, Finland).

Real-time PCR
For total-RNA preparation, treated 3T3-L1 cells were homog-

enized in TRIzolH reagent (Invitrogen, ON, Canada) and RNA

was isolated according to the manufacturer’s instructions. Total

RNA was reverse-transcribed in triplicate using RevertAidTM H

Minus M-MuLV reverse transcriptase (MBI, Fermentas Burling-

ton, ON, Canada) in the presence of 56RT buffer (MBI,

Fermentas, MD, USA), random primer (Invitrogen, Burlington,

ON, Canada), dNTP mixture (Amersham Pittsburgh, PA, USA) at

42uC for 50 min, followed by 72uC for 10 min. The primers of

Leptin were 59- CGGGGCGCTGGTGTAGGGAGATT -39

(sense) and 59- ACACCGCATGGAGAGTCGCAGGAG -39

(antisense). The primers of adiponectin were 59-ATGGG-

TAGTTGCAGTCAGTTGGTA -39 (sense) and 59-

GCCGCTTATGTGTATCGCTCAG -39 (antisense), The pri-

mers of PPARc were 59- AGGGCTTCCGCAGGTTTTTGA -39

(sense) and 59- CACAGGCCGAGAAGGAGAAGC -39 (anti-

sense). The primers of C/EBPa were 59-

CTTGCGCAGGCGGTCATTGTCACT -39 (sense) and 59-

GGCCGGCCTCTTCCCCTACCAG -39 (antisense), The real-

time PCR was carried out in an iCycler iQ apparatus (Bio-Rad,

CA, USA) associated with the ICYCLER OPTICAL SYSTEM

software (version 3.1) using SYBR Green PCR Master Mix (Bio-

Rad).

Data Analysis
Data are expressed as mean 6 SEM and analyzed using one

way ANOVA in conjunction with t test where applicable.

Significant difference between treatments was defined at a level

of P,0.05.
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