Nucleotide sequence of human preprocathepsin H, a lysosomal cysteine proteinase

Rainer Fuchs* and Hans G.Gassen

Institut für Biochemie, Technische Hochschule Darmstadt, Petersenstraße 22, D-6100 Darmstadt, FRG Submitted October 23, 1989 EMBL accession no. X16832

The lysosomal cysteine proteinase cathepsin H is one of the most active proteinases in the human body. Until now only partial gene sequence information was available (1). A λ gt10 cDNA library constructed from a human U937 monocyte cell line was screened with a gene probe derived from a partial kidney cathepsin H clone (1) coding for the mature part of the protein. From 4.5 x 10⁵ plaques two full-length clones were isolated and characterized. The figure shows the previously unknown coding sequence of the prepro part of human preprocathepsin H and the derived protein sequence. Sequence comparison of the human preproregion with rat preprocathepsin H (2) indicated a very high degree of similarity with 82% identical nucleotide and 78% identical amino acid residues. In contrast, the human preprocathepsin H has two additional amino acid residues at the probable signal sequence cleavage site, compared to the rat enzyme. Similarity with preproregions of other related cysteine proteinases is rather low (20 - 30% identical amino acids).

	-115									-3	110															
												M	W	A	т	L	₽	L	L	с	A	G	A	W	L	L
1	TTGCCGGCGCAAGAGCCAAGCCGCCAGCGCTGCTATGTGGGCCACGCTGCCGCCGCGCCCGGGGCCTGGCTCCTG															CTG										
	-100					t				-90								-80								
	c	;	v	Р	v	с	G	A	A	Е	L	s	v	N	s	L	Е	к	F	н	F	к	s	W	м	s
80	GGAGTCCCCGTCTGCGGTGCCGCCGAACTGTCCGTGAACTCCTTAGAGAAGTTTCACTTCAAGTCATGGATGTCT														TCT											
	-70 -60																									
	F	:	H	R	к	т	Y	s	т	Е	Е	Y	н	н	R	L	Q	т	F	A	s	N	W	R	к	I
155	5 AAGCACCGTAAGACCTACAGTACGGAGGAGTACCACCACAGGCTGCAGACGTTTGCCAGCAACTGGAG												AGG	AAG	АТА											
	-50						*				-40								-30							
	1	I	A	н	N	N	G	N	н	т	F	ĸ	M.	A	L	N	Q	F	s	D	м	s	F	A	Е	I
230	A.	AACGCCCACAACAATGGGAACCACACATTTAAAATGGCACTGAACCAATTTTCAGACATGAGCTTTGCTGAAATA												АТА												
								-20 ↓			*			↓-10												-1
	F	C	н	к	Y	L	W	s	Е	P	Q	N	с	s	A	т	к	s	N	Y	L	R	G	т	G	P
305	A,	AAACACAAGTATCTCTGGTCAGAGCCTCAGAATTGCTCAGCCACCAAAAGTAACTACCTTCGAGGTACTGGTCCC													ccc											

Fig: Nucleotide and derived protein sequence of human cathepsin H prepro region. Numbering of amino acid residues is according to (1). Asterisks indicate potential glycosylation sites. Putative protein cleavage sites are marked by arrows (see also 1).

*Present address: European Molecular Biology Laboratory, Meyerhofstraße 1, D-6900 Heidelberg, FRG

References:

1. Fuchs, R., Machleidt, W. and Gassen, H. G. (1988) Biol. Chem. Hoppe-Seyler 369, 469-475.

2. Ishidoh, H. et al. (1988) FEBS Letters 226, 33-37.