The primary structure of rat ribosomal protein S14

Veronica Paz, Yuen-Ling Chan, Anton Glück and Ira G.Wool*

Department of Biochemistry and Molecular Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA Submitted October 10, 1989 EMBL accession no. X15040

The amino acid sequence of rat ribosomal protein S14 was deduced from the sequence of nucleotides in a recombinant cDNA (pS14-9) which was isolated from a library using an homologous human S14 cDNA (1) as a probe. The open reading frame has 456 nucleotides and encodes a protein containing 151 amino acids and having a molecular weight of 16,248. Rat S14 has 30 basic residues (20%) and 16 acidic ones (11%). There is only one conservative change in the amino acid sequence (asp to glu at position 8) between rat and human S14; there are 37 nucleotide differences (7.6%) of which 34 are in the third position of codons. Rat S14 is related to the following ribosomal proteins (the numbers in parentheses are the RELATE scores in S.D. units): human S14 (51.9); Chinese hamster S14 (63.9); Drosophila melanogaster S14 (46.5); yeast rp59 (41.9); Escherichia coli S11 (11.1); a number of chloroplast S11 proteins (~ 8.0); Bacillus stearothermophilus S11 (9.2); Halobacterium marismortui S19 (21.1). Only the last has not been reported before. (Supported by NIH grant GM 21769).

	-	-30										+1									30								
CTT	TCC	GGT	GGA	GGA	GIC	TGG	AGA	CGA	CGT	TCA	GAA	ATG	GCA	CCT	CGC	ANG	GGG	AAG	GAC	AAG	AAG	GAA	GAA	CAG	GTC	ATC	AGC	CIT	GGA
												1	ALA	PRO	ARG	LIS	GLI	LIS	ASP	LYS	10	GLU	GLU	GLN	VAL	ILE	SER	LEU	GLY
~~	60	_	~~~	~	~	~		~		~	90	~	~~~			~~~				~	120								
PRO	GLN	VAL	ALA	GLU	GLY	GLU	ASN	VAL	PHE	GLY	VAL	CYS	HIS	ILE	PHE	ALA	SER	PHE	AAT	ASP	THR	PHE	VAL.	HIS	VAL.	THR	ASP	LEI	SER
	20										30										40								
	150										180										210								
GGC	ANG	GAA	ACC	λTT	TGC	CGA	GTA	ACT	GGT	GGA	ATG	AAG	GTG	AAG	GCT	GAC	CGA	GAT	GAG	TCC	TCT	CCG	TAT	GCA	GCC	ATG	TTG	GCT	GCC
GLY	LYS	GLU	THR	ILE	CYS	ARG	VAL	THR	GLY	GLY	MET	LYS	VAL	LYS	ALA	ASP	ARG	ASP	GLU	SER	SER	PRO	TYR	ALA	ALA	MET	LEU	ALA	ALA
	50										60										70								
	240										270										300								
CAG	GAT	GTG	GCC	CAG	AGG	TGC	AAG	GAA	CTG	GGC	ATC	ACT	GCC	CTG	CAT	ATC	YYY	CTC	CGG	GCC	ACA	GGA	GGA	AAC	AGG	ACC	AAG	ACC	ССТ
GLN	ASP	VAL	ALA	GLN	ARG	crs	LYS	GLU	LEO	GLY	90	THR	ALA	LEU	HIS	ILE	LYS	LEU	ARG	ALA	THR	GLY	GLY	ASN	ARG	THR	LYS	THR	PRO
																					100								
~~~	330			~~~		~~~	_		~	_	360										390								
GLY	PRO	GLY	ALA	GLN	SER	ALA	LEU	AGA	ALA	LEU	ALA	ARG	SER	GUG	MET	LYS	ATT	GGG	ARG	ATT	GAG	GAT	GTC VAL	ACC		ATC	200	TCT	GAC
	110										120										130			*14				JEAN	
	420										450																		
AGC	ACT	CGA.	AGG	AAG	GGT	GGT	CGT	CGG	GGT	CGC	CGT	CTG	TGA																
SER	THR	ARG	ARG	LYS	GLY	GLY	ARG	ARG	GLY	ARG	ARG	LEU	END																
	140										150																		

*To whom correspondence should be addressed

## REFERENCES

1. Rhoads, D.D., Dixit, A., and Roufa, D.J. (1986) Mol. Cell. Biol. 6, 2774-2783