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Abstract Diabetic kidney disease, diagnosed by urinary

albumin excretion rate (AER), is a critical symptom of

chronic vascular injury in diabetes, and is associated with

dyslipidemia and increased mortality. We investigated

serum lipids in 326 subjects with type 1 diabetes: 56%

of patients had normal AER, 17% had microalbuminuria

(20 B AER \ 200 lg/min or 30 B AER \ 300 mg/24 h)

and 26% had overt kidney disease (macroalbuminuria

AER C 200 lg/min or AER C 300 mg/24 h). Lipoprotein

subclass lipids and low-molecular-weight metabolites were

quantified from native serum, and individual lipid species

from the lipid extract of the native sample, using a proton

NMR metabonomics platform. Sphingomyelin (odds ratio

2.53, P \ 10-7), large VLDL cholesterol (odds ratio 2.36,

P \ 10-10), total triglycerides (odds ratio 1.88, P \ 10-6),

omega-9 and saturated fatty acids (odds ratio 1.82, P \ 10-5),

glucose disposal rate (odds ratio 0.44, P \ 10-9), large HDL

cholesterol (odds ratio 0.39, P \ 10-9) and glomerular fil-

tration rate (odds ratio 0.19, P \ 10-10) were associated with

kidney disease. No associations were found for polyunsatu-

rated fatty acids or phospholipids. Sphingomyelin was a sig-

nificant regressor of urinary albumin (P \ 0.0001) in

multivariate analysis with kidney function, glycemic control,

body mass, blood pressure, triglycerides and HDL choles-

terol. Kidney injury, sphingolipids and excess fatty acids have

been linked in animal models—our exploratory approach

provides independent support for this relationship in human

patients with diabetes.
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1 Introduction

Type 1 diabetes follows the autoimmune destruction of

pancreatic beta-cells at a young age. Acute symptoms can

be controlled by insulin injections, but the diabetes-related
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disease burden increases with time due to chronic com-

plications (Lithovius et al. 2011). An estimated third of

patients with long-standing type 1 diabetes are affected by

kidney disease, which is characterized by increased urinary

albumin excretion, high blood pressure and a gradual

decline in glomerular filtration (Gross et al. 2005; Mäkinen

et al. 2008a). For individual prognosis, kidney disease is

the crucial feature: it is associated with a ten-fold increase

in mortality, often from cardiovascular disease or stroke

before end-stage renal disease is reached (Forsblom et al.

2011; Groop et al. 2009; Morrish et al. 2001; Stadler et al.

2006).

Obesity, selective insulin resistance and lipotoxicity are

recognized as important aspects of end-organ damage in

diabetes (Groop et al. 2005). Adipose tissue in a state of

over-nutrition can trigger the release of pro-inflammatory

agents (Kennedy et al. 2009; Surmi and Hasty 2010),

which could explain some of the observed chronic

inflammation in atherosclerosis and diabetic kidney disease

(Best et al. 2005; Cao et al. 2007; Saraheimo et al. 2003).

Furthermore, a large proportion of type 1 diabetic patients

satisfy the metabolic syndrome definition and particularly

the dyslipidemia component of the definition increases the

likelihood of complications and premature death (Mäkinen

et al. 2008a; Thorn et al. 2005; Tolonen et al. 2009).

Accordingly, the triglyceride-rich VLDL and cholesterol-

carrying HDL subclasses are important covariates of dia-

betic complications (Jenkins et al. 2003; Soedamah-Muthu

et al. 2003).

Various and partly conflicting differences in serum lipid

species have been detected in high-risk children and type 1

diabetic patients (Fievet et al. 1990; Jain et al. 2000; Oresic

et al. 2008; Seigneur et al. 1994). Serum phospholipids have

been studied as structural components of lipoproteins, but

their relevance for type 1 diabetes complications is not fully

known (Bagdade and Subbaiah 1989; Watala and Józwiak

1990); sphingolipids have been associated with numerous

diseases (Boini et al. 2010; Fox et al. 2011; Hicks et al.

2009; Piperi et al. 2004; Summers 2010), but their signifi-

cance for human diabetic kidney disease needs clarification.

Dietary polyunsaturated fatty acids are considered benefi-

cial (Lee et al. 2010; Mori et al. 1989) whereas saturated

fatty acids are likely to be harmful also in type 1 diabetes.

However, information on serum lipid concentrations in type

1 diabetic subjects remains fragmented.

Metabonomics has the potential to recognize previously

unconsidered associations between metabolic products and

clinical end-points (Ala-Korpela 2007; Mäkinen et al.

2006). In this study, we investigate a number of lipids and

other biochemical measures in a set of human subjects with

long-standing type 1 diabetes with and without complica-

tions. Our aim is to find those biochemical quantities that

are associated with the (i) diagnostic classification and (ii)

continuous markers of kidney injury. The findings provide

clues on the lipid mediators of vascular damage and bio-

marker candidates for further mechanistic and epidemio-

logical studies.

2 Methods

We studied 326 type 1 diabetic patients (218 men and 108

women) as part of the Finnish Diabetic Nephropathy Study

(Mäkinen et al. 2008a). The data collection was cross-

sectional (serum and urine samples), but with longitudinal

records of albuminuria and clinical history. Type 1 diabetes

mellitus was defined as an age of onset below 35 years and

initiation of insulin treatment within a year of onset.

The clinical characteristics are listed in Table 1. The

normal range of urinary albumin excretion rate (AER)

Table 1 Summary of clinical

characteristics

Median and 95% interval are

reported for continuous

variables. Abbreviations: type 1

diabetes (T1DM), urinary

albumin excretion rate (AER),

estimated glomerular filtration

rate (eGFR), efficient glucose

disposal rate (eGDR).

* Hospital records. ** Central

laboratory

No kidney disease Diabetic kidney disease P-value

Number 240 86 –

Normal AER* 76% 0% –

Microalbuminuria* 24% 0% –

Macroalbuminuria* 0% 100% –

Age (years) 34 (18–60) 42 (24–58) 1.3 9 10-6

Diabetes duration (years) 16 (2–47) 29 (16–43) 3.8 9 10-14

Men 67% 67% 0.90

24 h-AER (mg)** 18 (5–269) 908 (26–5437) 4.5 9 10-38

eGFR (mL/min per 1.73 m2) 99 (62–152) 50 (13–112) 3.6 9 10-27

Retinopathy 20% 78% 7.8 9 10-16

Metabolic syndrome 23% 49% 6.4 9 10-6

eGDR (mg/kg per min) 6.6 (2.3–10.3) 4.4 (2.5–7.0) 1.7 9 10-13

Anti-hypertensive medication 29% 95% \10-17

Lipid medication 10% 20% 0.011
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was defined as AER \ 20 lg/min for night urine or

AER \ 30 mg/24 h for a timed circadian collection. Overt

kidney disease was diagnosed if AER C 200 lg/min or

AER C 300 mg/24 h (macroalbuminuria). The intermedi-

ary range (microalbuminuria, 20 B AER \ 200 lg/min or

30 B AER \ 300 mg/24 h) represents a clinically chal-

lenging borderline with no clear consensus on pathology.

In this study, microalbuminuria was regarded as not having

kidney disease, since we could not see reduced kidney

function. AER exhibits a large daily variance and the

kidney diagnosis was based on at least two out of three

consecutive albumin tests. We also measured urinary

albumin centrally from a single 24 h collection to obtain a

continuous renal status (denoted by 24 h-AER). Laser

treatment of the retina was used as an indicator of prolif-

erative retinopathy.

The metabolic syndrome was defined according to the

NCEP ATP III criteria and glomerular filtration rate was

estimated by the Cockcroft-Gault formula. Efficient glu-

cose disposal rate was estimated according to the Williams-

Orchard formula 24.4–12.97 9 waist-hip ratio -3.39 9

hypertension -0.60 9 hemoglobin A1c, where hyperten-

sion was defined as systolic/diastolic [140/90 mmHg or

anti-hypertensive medication.

The proton NMR experiments were performed on a

platform with three molecular windows (Mäkinen et al.

2008b; Tukiainen et al. 2008). Two windows were applied

to native serum: the LIPO window yields information on

lipoprotein subclasses and the LMWM window on a

number of low-molecular-weight metabolites. The third

window, denoted by LIPID, was applied to serum lipid

extract to measure the serum lipid constituents and the

diversity of fatty acid saturation. The current methodo-

logical and metabolite details for the serum NMR meta-

bolomics, including spectral characteristics and metabolite

assignments for all the three molecular windows, have been

published previously (Inouye et al. 2010). Information on

other biochemical and clinical variables can be found in

(Mäkinen et al. 2008a).

Odds ratios for kidney disease were calculated by uni-

variate logistic regression for each continuous variable

(clinical, biochemical and NMR), respectively. Before

analysis, the variables were rank transformed to produce

comparable results. Adjustments for age, diabetes duration

and gender were made by linear regression. Statistical

significance and 95% confidence intervals were estimated

by bootstrap simulation. The reported P-values are not

corrected for multiple testing, but the Bonferroni signifi-

cance limit is listed in the figure and table captions. The

associations between continuous variables and 24 h-AER

were estimated by the Spearman correlation coefficient.

Multivariate linear regression was applied to two sets of

variables that were chosen based on prior biological

knowledge. The first set includes multivariate formulas for

the metabolic syndrome, glomerular filtration and glucose

disposal rate. The second set contains directly measured

quantities such as blood pressure, hemoglobin A1c and

serum creatinine that reflect established vascular risk fac-

tors. Set 1 represents a clinically motivated dimension

reduction, whereas Set 2 works as an a priori variable

selection. We also tested ridge regression and projection to

latent structures (PLS), however, neither method could

produce robust estimates for the regression coefficients due

to the collinearity between the variables (data not shown).

3 Results and discussion

Figure 1 shows the logistic odds ratios (OR) for kidney

disease—adjusted by diabetes duration, age and gender—

for a subset of variables. The full list is available in Sup-

plement 1. Serum creatinine, cystatin-C and urea are cleared

by the kidneys, so a reduction in the filtration capacity has a

direct effect on their concentrations (OR C 3.25, P B

3.4 9 10-8), and on the creatinine-based estimate of glo-

merular filtration rate (OR = 0.19, P = 8.2 9 10-11).

Sphingomyelin (OR = 2.53, P = 1.5 9 10-8) and large

HDL particles (OR B 0.40, P B 3.1 9 10-10) are the

strongest regressors after the established kidney biomark-

ers. Furthermore, medium HDL particles (OR B 0.60,

P B 6.6 9 10-5) and lipids in small HDL (OR = 0.62,

P = 0.00031) are inversely associated with kidney disease.

Extra large and large VLDL particles have the highest ORs

after sphingomyelin (OR C 1.95, P B 1.4 9 10-7).

Monounsaturated 16:1 and 18:1 and omega-9 and saturated

fatty acids have a stronger association with kidney disease

(OR C 1.82, P B 3.5 9 10-6) than omega-6 and 7 (OR =

1.59, P = 0.00029), 18:2 (no association), omega-3 (no

association), 22:6 (no association) or other polyunsaturated

fatty acids (OR = 0.76, P = 0.020).

Odds ratios for retinopathy were also estimated by

logistic regression: only 24 h-AER (OR = 1.75, P = 9.3 9

10-6), serum creatinine (OR = 1.52, P = 0.00028), effi-

cient glucose disposal rate (OR = 0.55, P = 2.6 9 10-6)

and glomerular filtration (OR = 0.62, P = 5.4 9 10-5)

were significant regressors after adjusting for diabetes

duration, age and gender.

To complement the categorical analysis, we also cal-

culated correlations between the centrally measured con-

tinuous 24 h-AER, and the other clinical and biochemical

variables. Table 2 highlights the important correlations and

the full list is available in Supplement 2. Serum creatinine

is strongly correlated with 24 h-AER (r = 0.73, P \
10-17), as expected. Sphingomyelin is again the top lipid

variable (r = 0.42, P = 1.5 9 10-14), followed by systolic

blood pressure, total triglycerides and large VLDL
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cholesterol. Glomerular filtration rate, cholesterol in large

HDL and efficient glucose disposal rate are inversely

associated with 24 h-AER.

We chose two sets of variables that represent established

risk factors for diabetic kidney disease to explain the

covariance between sphingomyelin and 24 h-AER

(Table 3). Set 1 includes derived clinical traits (such as the

metabolic syndrome), whereas Set 2 includes measures that

represent diagnostic components: waist circumference for

obesity, systolic blood pressure for hypertension, hemo-

globin A1c for glycemic control, triglycerides and HDL

cholesterol for dyslipidemia and serum creatinine for kid-

ney function. Sphingomyelin is a statistically significant

trait in both models (P B 1.8 9 10-5), which suggests that

it may reflect previously undetected biological phenomena

that are specific to albuminuria.

Models of the binary kidney disease diagnosis and reti-

nopathy are available in Supplement 3. Kidney disease is

Fig. 1 Odds ratios for diabetic

kidney disease, adjusted by

diabetes duration, age and

gender. The circles indicate

logarithmic ORs (regression

coefficients in the logistic

model) and the horizontal lines

show the 95% interval. The fold

change was calculated by

dividing the median

concentration difference (after

adjustments) between the cases

and controls by the median

concentration in the control

group. Only those variables that

reached Bonferroni multiple

testing significance are included

(P \ 0.00038)
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associated with glomerular filtration and sphingomyelin in Set

1, and with serum creatinine, HDL cholesterol, sphingomy-

elin and diabetes duration in Set 2. Retinopathy is strongly

related to diabetes duration, but not to sphingomyelin.

Sphingomyelin is correlated with glomerular filtration

rate (r = –0.32, P \ 10-6), but this study cannot ascertain

the causal relationships between albuminuria, declining

kidney function and lipotoxicity. The selection of study

subjects is another limitation: although matched for gender,

the patients without kidney disease had a shorter diabetes

duration. It is therefore possible that some of the controls

were in an early phase of kidney disease, which could have

diluted the results.

A recent animal study demonstrated how the manipula-

tion of the sphingolipid pathway could alleviate kidney

disease: untreated mice on a high-fat diet developed insulin

resistance and albuminuria, but a pharmacological inter-

vention reduced the effects (Boini et al. 2010). By inhibiting

the conversion of sphingomyelin into ceramide, the authors

were able to significantly decrease glomerular injury and

restore urinary albumin excretion rate to normal range.

The proportional increase of sphingomyelin in the kid-

ney disease group was modest (?17% when adjusted by

aging and gender) and much of the variance was shared

with other clinical characteristics, which suggests that

excess circulating sphingomyelin might be a by-product of

the disease process rather than an active initiator. In fact,

excess saturated fatty acids may be the underlying cause:

they are substrates for sphingolipid synthesis, they promote

lipotoxicity (production of ceramides) and are also linked

to insulin resistance (Bunn et al. 2010; Kennedy et al.

2009; Yang et al. 2009). The NMR method cannot distin-

guish between omega-9 and saturated fatty acid chains, but

the combination was nevertheless significantly correlated

with clinical kidney disease (Fig. 1) and 24 h-AER

(Table 2), whereas polyunsaturated fatty acids such as 18:2

or 22:6 showed no association.

4 Concluding remarks

Sphingomyelin emerged as a significant biochemical

covariate of urinary albumin excretion in human type 1

diabetes, and the strongest lipid regressor for kidney dis-

ease. We also reproduced the associations between mac-

roalbuminuria and high triglycerides, excess serum fatty

acids and altered VLDL-HDL balance. Phospholipids or

polyunsaturated fatty acids were not covariates of albu-

minuria. Our results are supported by animal data, which

suggests that sphingolipids may reflect some of the

Table 2 A representative set of variables that are significantly correlated with 24 h-AER. Correlation was measured by the Spearman coefficient

and the Bonferroni multiple testing limit is at P \ 0.00038

Adjusted by diabetes duration, age and gender Unadjusted

Correlation P-value Correlation P-value

Serum creatinine 0.73 \10-17 0.52 \10-17

Sphingomyelin 0.42 1.5 9 10-14 0.43 6.7 9 10-16

Systolic blood pressure 0.31 4.7 9 10-8 0.32 1.5 9 10-8

Triglycerides 0.30 3.7 9 10-7 0.38 1.6 9 10-10

Large VLDL cholesterol 0.30 1.2 9 10-7 0.29 1.4 9 10-7

Free cholesterol 0.29 3.0 9 10-7 0.32 9.2 9 10-9

Omega-9 and saturated fatty acids 0.26 3.3 9 10-6 0.33 1.8 9 10-9

Omega-6 and 7 fatty acids 0.26 5.3 9 10-6 0.26 4.3 9 10-6

IDL triglycerides 0.22 0.00011 0.27 1.8 9 10-6

Serum adiponectin 0.15 0.017 0.26 2.4 9 10-5

Phosphoglycerides 0.12 0.036 0.16 0.0041

Diabetes duration 0.03 0.64 0.38 4.2 9 10-12

Phosphatidylcholine -0.02 0.71 0.00 0.96

Omega-3 fatty acids -0.05 0.39 -0.03 0.60

Fatty acid length -0.20 0.00040 -0.25 6.6 9 10-6

Medium HDL cholesterol -0.25 1.2 9 10-5 -0.28 5.7 9 10-7

HDL cholesterol -0.31 2.1 9 10-7 -0.27 4.9 9 10-6

Large HDL cholesterol -0.33 3.6 9 10-9 -0.32 7.7 9 10-9

Efficient glucose disposal rate -0.33 8.2 9 10-9 -0.51 \10-17

Glomerular filtration rate -0.45 3.3 9 10-16 -0.43 1.2 9 10-14
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molecular links between microvascular injury, insulin

resistance, and saturated fatty acids. Further research of the

sphingolipid pathway may thus yield more sensitive phe-

notyping measures and new pharmacological options to

ease the burden of diabetic complications.
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Mäkinen, V. P., Soininen, P., Forsblom, C., Parkkonen, M., Ingman,

P., Kaski, K., et al. (2008b). 1H NMR metabonomics approach

to the disease continuum of diabetic complications and

premature death. Molecular Systems Biology, 4, 167.

Mori, T. A., Vandongen, R., Masarei, J. R., Stanton, K. G., & Dunbar,

D. (1989). Dietary fish oils increase serum lipids in insulin-

dependent diabetics compared with healthy controls. Metabo-
lism: Clinical and Experimental, 38, 404–409.

Morrish, N. J., Wang, S. L., Stevens, L. K., Fuller, J. H., & Keen, H.

(2001). Mortality and causes of death in the WHO multinational

study of vascular disease in diabetes. Diabetologia, 44(Suppl 2),

S14–S21.

Oresic, M., Simell, S., Sysi-Aho, M., Näntö-Salonen, K., Seppänen-
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Tukiainen, T., Tynkkynen, T., Mäkinen, V. P., Jylänki, P., Kangas,

A., Hokkanen, J., et al. (2008). A multi-metabolite analysis of

serum by 1H NMR spectroscopy: Early systemic signs of

Alzheimer’s disease. Biochemical and Biophysical Research
Communications, 375, 356–361.
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