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Abstract
An important challenge in statistical genomics concerns integrating experimental data with
exogenous information about gene function. A number of statistical methods are available to
address this challenge, but most do not accommodate complexities in the functional record. To
infer activity of a functional category (e.g., a gene ontology term), most methods use gene-level
data on that category, but do not use other functional properties of the same genes. Not doing so
creates undue errors in inference. Recent developments in model-based category analysis aim to
overcome this difficulty, but in attempting to do so they are faced with serious computational
problems. This paper investigates statistical properties and the structure of posterior computation
in one such model for the analysis of functional category data. We examine the graphical
structures underlying posterior computation in the original parameterization and in a new
parameterization aimed at leveraging elements of the model. We characterize identifiability of the
underlying activation states, describe a new prior distribution, and introduce approximations that
aim to support numerical methods for posterior inference.

Keywords
probabilistic graphical modeling; role model; gene-set analysis

1 Introduction
A common problem in statistical genomics concerns the points of contact between genomic
data generated experimentally and exogenous functional information that has been
accumulated by bioinformatics projects like GO and KEGG (The Gene Ontology
Consortium, 2000; Kanehisa and Goto, 2000). In this rather extensive domain of data
integration, functional information is used in two complementary ways. One mode is about
data reduction. The experimentalist is faced with hundreds of genes that exhibit some
interesting property in her experiment, and the inferential problem is to summarize the
functional content of the identified genes. As a prime example, enrichment analysis seeks to
identify functional categories that are over-represented in the experimentally identified gene
list. Alternatively, functional categories are used to boost the signal-to-noise ratio. A weak
gene-level signal differentiating two cellular states is easier to detect if it is consistent over a
set of genes having some shared function. In either mode of application, the integration of
experimental and functional data is a central component of the genomic data analysis.
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A number of useful statistical methods and software tools have been developed to address
the challenge. Fisher’s exact test and related random-set enrichment methods operate
conditionally on the experimental data and aim to detect overrepresentation of a category
among experimentally interesting genes (e.g., Drăghici et al., 2003; Beiβbarth and Speed,
2004; Grossman et al. 2007; Newton et al., 2007; Jiang and Gentleman, 2007; Bauer et al.,
2008; Sartor et al. 2009). Other approaches test category differential expression from
replicated microarray data (e.g., Barry et al., 2005; Subramanian et al., 2005; Efron et al.,
2007; Liang and Nettleton, 2010), while others develop models of gene-level results using
functional categories (Lu et al. 2008; Bauer, et al. 2010), or use categories as predictors in
regression models (e.g., Park et al., 2007; Stingo et al., 2011). Careful comparisons among
selected methods have helped to clarify their relative advantages and disadvantages (e.g.,
Goeman and Bühlmann 2007; Barry et al. 2008). This list of citations hardly does justice to
the field, and a detailed evaluation of the state-of-the-art is beyond the present scope. Suffice
it to say that all methodological contributions in this domain have made simplifying
assumptions on how the functional information relates to the experimental data on test. The
continued expansion of the functional record makes some of these simplifications ever-more
problematic.

Variation in category size makes it difficult to infer a prioritized list of significant functional
categories. Methods that test either over-representation or category differential expression
suffer from a power imbalance across categories owing to this variation. Power is related to
size of both effect and category; large categories may deliver a small p-value by virtue of
large size and small effect, while scientific relevance is linked more to the size of the effect.
Thus ranking categories by p-value tends to inflate the importance of large ones; while
ranking them by an estimated effect tends to inflate the importance of small categories, since
in these chance variation will more easily place them in a high ranking position.

As the functional record is complex and extensive, it necessarily encodes a substantial
amount of overlapping information. GO organizes functional information in three directed
acyclic graphs (biological process, molecular function, cellular component), wherein each
graphical node is a functional category and directed edges convey proper-subset
information. For example, the category response to hydroperoxide (GO:0033194) is a subset
of response to oxidative stress (GO:0006979). It is less well appreciated that functional
categories in GO overlap to a much greater extent than is suggested by any of the GO
graphs. Of course overlaps among categories from different graphs are not immediately
indicated, but there is also the issue that many pairs of categories share genes without one
category being a proper subset of the other. A consequence of this phenomenon is that
overlapping categories have positively correlated test results, often resulting in lists of
significant functional categories that are unduly long (sometimes longer than an input list of
significant genes!). An investigator may find that results of a statistical analysis have added
relatively little insight because these results are muddied by complexities in the functional
record that have been poorly accounted for.

Category overlap is related to the fact that many genes are multi-functional. The concept is
called pleitropy in genetics, and it may be more the rule than the exception. For example, the
PCNA1 gene (proliferating cellular nuclear antigen, 1) is involved in DNA mismatch repair;
it plays another role in cell cycle regulation. At writing, 5056 human genes were annotated
to 220 KEGG pathways, with over half these genes (2631) annotated to 2 or more pathways.
Similarly, 14047 human genes were annotated to 13026 GO categories that contained
between 1 and 500 genes, with a median number of 11 recorded functional properties per
gene. (R package org.Hs.eg.db, version 2.4.6).
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Category-differential-expression methods assert that a category is non-null if any of its
contained genes is non-null. This basic premise is groundwork for the construction of test
statistics and inference procedures, but it is at odds with the multi-functionality of genes. In
the cellular state under experimentation, a gene may be non-null by virtue of one (or perhaps
a subset) of its functions. A method which finds another of that genes’ functions to be non-
null may have inferred a spurious association. The presence of spurious associations unduly
limits and complicates inference about the functional content of gene-level data. By way of
analogy, suppose that we’re watching a movie featuring an actor (e.g., Mike Meyers in The
Spy Who Shagged Me) who plays more than one character (Dr. Evil, Austin Powers, & Fat
Bastard). And suppose further that our movie-watching skills are so limited that rather than
being able to recognize what characters are in a given scene, we only recognize the actors
involved. Then of course the recognition that Mike Meyers is doing something interesting in
the scene does not imply, for example, that Austin Powers is doing something interesting
(maybe it is actually Dr. Evil)! In genomics we know that a gene can have different
functional roles depending on the biological scene in which it plays a part. We may get
closer to understanding that biology if our analytical methods are more in line with this fact.

Experimental data are measured on genes, while inference is required at the level of
functional categories. Any legitimate method designed to infer something about a given
functional category surely needs to use the experimental data on genes in that category. At
issue is what other information ought to be used, and how that information should be
incorporated into the calculations. Most category-inference methods are global: if they use
any data beyond the gene-level data from the category on test, it is information from
genome-wide summaries or summaries computed across the collection of categories. Basic
enrichment methods, for example, use a genome-wide statistic on the proportion of genes
that show some significant feature of interest. Many methods obtain category-specific p-
values and then use the collection of p-values to get a false-discovery-rate correction. Global
methods do not use specific information on category assignments of the genes in the
category on test. We call a category-inference method local if, by contrast, it does use this
functional information. Several local testing methods have been developed to utilize some
overlap information (Jiang and Gentleman 2007; Grossman et al. 2007). Although useful,
they suffer from inherent difficulties with sequential testing and they do not consider the full
extent of category overlaps. Recently there has been a development of local category
inference methods based on probability models of genetic and functional data (Lu et al.
2008; Bauer et al. 2010). These approaches are compelling because they address the overlap
problem head-on and may provide an accurate representation of the the multivariate
functional signal underlying observed data. They too, however, are limited by their
computational complexity, by the nature of reported inferences, and by undue restrictions on
gene-level data.

In the Bauer et al. (2010) model, non-null behavior starts with the functional category rather
than the gene. Each gene inherits non-null behavior from non-null categories to which it is
annotated. This is in contrast to the category-differential-expression methods, where a
category is non-null if any of its contained genes is non-null. The apparently simple switch
dramatically transforms the statistical problem. Inference on a given category relies on gene-
level data on that category, but it also requires information on other functional properties of
these same genes, since any non-null behavior may be attributable to a different function
than the one on test. This suggests that gene-level data from genes in overlapping categories
are also relevant, but again their behavior may be affected by yet other categories to which
they are assigned. Continuing this regress, genes that are functionally distant from the
category on test contribute to the final inference. Approximate Bayesian inference is
possible via Markov chain Monte Carlo sampling (MCMC). We appreciate the
transformative effect of MCMC, but we also recognize limits on the ability to assess Monte
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Carlo error; one cannot be confident in inferences derived from slowly mixing chains
operating in high dimensions. Even if convergence is assured, there are limitations in what
can be inferred using marginal posterior summaries as in Bauer et al. (2010). Aspects of
functional-category inference suggest that the posterior mode would also be useful to
compute, though this is beyond the reach of MCMC in high-dimensions. We discuss the
point further in Section 6.

The present paper initiates the development of probabilistic graphical modeling for
functional-category inference. Probabilistic graphical modeling is a highly active field at the
interface of statistics and machine learning (e.g., Koller and Friedman, 2009). It considers
how to organize and deploy inference computations derived from generative probability
models for data using graphical structures and algorithms. Belief propagation algorithms
(e.g., the junction-tree algorithm) use message-passing schemes to represent the results of
inferential calculations on sub-problems. New algorithms that leverage advances in high-
throughput computing enable message passing on large and complicated graphs (e.g.,
Mendiburu et al. 2007; Gonzalez et al. 2009). In Sections 2 and 3 of this paper, we examine
the graphical structures underlying posterior computation, both in the original
parameterization of Bauer et al. (2010), and in a new paramaterization that is designed to
leverage simplifying elements of the model. We develop some theory to represent mappings
between parameterizations; this has implications for posterior computation and it also
clarifies identifiability and consistency issues. We introduce a new prior distribution
designed to operate more naturally in the new parameterization. In Section 4, we investigate
approximation schemes for reducing graph complexity and we present model extensions
aimed at improving the performance of model-based local category inference. Finally, we
deploy exact computations in two small examples to demonstrate properties of posterior
inference (Section 5). Our numerical experiments use functional-category information made
available through the Bioconductor project (Gentleman et al. 2004).

2 The role model and the category intersection graph
The role model has potential in a number of domains, so it is described here using generic
terminology. We have a number of different parts p = 1,2, …, P, and from these are formed
a number of wholes w = 1,2, …, W. The parts comprising each whole are known in advance
and recorded in a P × W incidence matrix I = (Ip,w), where Ip,w = 1 if part p is in whole w,
else it is 0. We’ll also say p ∈ w if Ip,w = 1. Each whole is comprised of at least one part, and
each part can be present in more than one whole. (In our case, parts are genes and wholes
are functional categories.) Experimental data are available on the parts, say x = {xp}.
Depending on the particular application the data may take various forms; either a vector of
measurements across multiple samples, or a summary statistic of some kind. The simplest
case, and the one in focus in this paper, has xp the binary indicator of whether or not part p is
reported on a short list of interesting parts. (The last note in Section 6 discusses more
general forms of part-level data.) Observed data x are viewed as the realization of a random
element X whose joint distribution depends on latent activation states Z = {Zw} of the
wholes, which indicate whether each w is null (Zw = 0), or non-null (Zw = 1). We also use
the language active and inactive to express Zw = 1 or Zw = 0, respectively. The simplest role
model is:

(1)

(2)

Newton et al. Page 4

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2012 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where α,β, and π are unknown parameters all in (0,1), with α < β. Additionally, the model
asserts conditional independence among {Xp} given {Zw}. The statement in (2) says that Xp
has rate β if any of the wholes to which it contributes is activated; otherwise it has rate α.
Bauer et al. (2010) described this model for genes and categories, and proposed to rank what
we call the wholes by MCMC-approximated marginal posteriors P(Zw = 1|X = x).

The prior (1) requires amendment in order to cope with general collections of wholes. For
example, if a whole w′ is fully contained in another w (as happens routinely in GO) then
activities Zw and Zw′ ought to be related. In category inference, w′ corresponds to a
property that is more specific than w. To say “property w is activated” is to say “genes with
property w are activated” from which it follows that “genes with property w′ are activated”,
and thus “property w′ is activated.” Notice that the implication is not symmetric. If a subset
is activated it does not follow that a containing set is activated. Indeed a goal of the
inference is to assess the proper level of granularity regarding the activity states of the
categories as evidenced by the apparent activity states of the genes. As inference considers
activity as a property both of individual parts and of sets of parts, we require a clear
definition of their relationship. The following assumption is key.

Activation hypothesis
A set of parts is active if and only if all parts in the set are active.

Various implications follow. A single part p is active if p ∈ w for any w such that Zw = 1.
This precisely expresses model (2) and the interpretation of an active part as one delivering a
higher success probability on Bernoulli data than a non-active part. Also, if the whole w is
the union of various subsets; then all those subsets being active is equivalent to Zw = 1. The
activation hypothesis is equivalent to asserting that any subset of an active set is itself active.
The hypothesis is related to the true path rule used in GO, to the extent that both convey
logical constraints on collections of related categories. However, it seems not to have been
expressed clearly in prior work. One might object to the activation hypothesis on the
grounds that it is too strict, perhaps because it does not allow wholes to be activated by a
subset of their parts. However, a sufficiently rich collection of wholes ought to include this
relevant subset, and so if data point to activation of this subset, it is this subset that the
inference procedure ought to detect (rather than the larger set). Furthermore, our language
could get unduly complicated if we allow activated sets that contain no activated genes. A
more important issue, however, concerns what we could ever hope to estimate about the
whole-level activation states from partlevel data. We take up the issue again in the next
section. For now, consider the set of valid activation-state vectors across the wholes

Although the i.i.d. prior on {Zw} gives positive probability to vectors outside of  certainly
we can amend the prior by conditioning to enforce the activation hypothesis.

Returning to the statistical inference problem, we aim to develop Bayesian posterior
computations over activation states {Zw} in order to express concisely the functional content
of our gene-level data. We could apply the MCMC approach of Bauer et al. (2010), but we
are concerned about Monte Carlo error and also the restriction to marginal posterior
summaries. Sometimes, limitations of MCMC can be overcome by numerical methods from
probabilistic graphical modeling. From this perspective we start with a factorization of the
joint posterior distribution into factors that have arguments localized on a certain undirected
graph. Here we consider parameters α,β, and π in (1, 2) as fixed in order to simplify
discussion. (Ultimately, we would like to estimate these from the data, and thus deploy
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empirical Bayesian computations, or possibly integrate them out.) The posterior distribution
over whole-level activation states in the role model introduced above is:

(3)

where p(z) is the suitably conditioned i.i.d. Bernoulli(π) prior distribution. Although
expressed as a product over parts, p(z|x) also can be expressed as a product of data-
dependent factors that are local functions on the intersection graph of the wholes. (The
intersection graph has nodes equal to the wholes and edges between wholes that share parts.)

Proposition 1 The role-model posterior in (3) satisfies:

(4)

where ψw is a data-dependent function of both zw and neighboring states znb(w) = {zw′ : w ∩
w′ ≠ ϕ}.

A proof is in Section 6. Because the joint posterior factorizes into local functions over the
intersection graph, this graph can be used, in principle, to support various inference
computations implied by the role model. Figure 1 gives a simple example of the category
intersection graph. Ideally, one would like to utilize the entirety of GO or KEGG. However
the associated intersection graphs are highly complex and prohibit exact numerical methods
(e.g., Figure 2). Fortunately, inference in large-scale problems can proceed using alternative
formulations or approximations, as we now discuss.

3 Reparameterization and the function profile graph
A reparameterization of the role model (1,2) offers another route to approximate inference.
This reparameterization supports the same sampling model and it continues to rely on graphs
to organize posterior computation, but in many cases it delivers simpler overall graph
structure. Recall the incidence matrix I indicating which parts are in which wholes. Nothing
so far disallows the possibility that different parts have the same rows in I. To proceed
further it is helpful to consider the distinct rows of I, which we call atoms, following Boca et
al. (2010). In category inference an atom corresponds to a particular profile of 0’s and 1’s
across the functional record; it is the set of genes (parts) that have the same profile of
category inclusions and exclusions. Each part p is an element of some atom. We say that a
whole w is assigned to an atom ν, and express this w → ν, if and only if Ip,w = 1 for all p ∈
ν. Similarly w ↛ ν if and only if Ip,w = 0 for all p ∈ ν. Indeed, the atom ν is the
intersection of wholes assigned to it and whole complements for wholes not so assigned.
Thus, rather cryptically,

While wholes (categories) can overlap, atoms cannot. Furthermore, every whole is the union
of atoms to which it is assigned:
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and in this way the atoms form a sort of basis for the collection of wholes. Table 1 shows an
example. Boca et al. (2010) introduced atoms in a decision-theoretic analysis of the same
basic data-integration problem. Their aim was somewhat different from ours, in that they
sought a subset of atoms (rather than functional categories) whose activation could explain
gene-level data.

While the functional record is becoming ever more complex, the number of atoms is
bounded by the number of genes, and this is far smaller than the theoretical maximum 2W.
In other words, the vast majority of functional profiles do not manifest themselves. This
feature is one reason why considering the role model from the atom perspective has
potential advantages. To pursue this, we first construct atom-specific activation Bernoulli
variables from the activation states of the wholes:

(5)

Again, the atom is activated if any of the wholes to which its parts are assigned is activated.
The range of mapping (5) is

(6)

where N is the number of atoms. The notation is intended to convey the set of all atom-level
activation vectors a that could have been produced from whole-level activation vectors z
which satisfy the activation hypothesis. Indeed this property is convenient, because, as we
prove in Section 6:

Proposition 2 The mapping (5) from to is one-to-one, and has inverse

A computational strategy is supported by this finding. We perform posterior computations
over atom-level activations in  and then transform findings back to the whole-level of
interest. The finding also supports the identifiability of whole-level activation states from
part-level data. If part-level data were to increase, then we would consistently estimate the
atom-level activation states. Thus we would consistently estimate the whole-level activation
states by Proposition 2. Without the activation hypothesis, there could be states that are
beyond our ability to estimate, regardless of the amount of part-level data.

Rather conveniently, the role-model posterior distribution (3) can be re-expressed on the
transformed scale as:

(7)

where xν = Σp∈ν xp summarizes the part-level data at atom ν, and where p(a) is a prior
distribution. Conditionally upon the activation states, xν is the realization of a Binomial
random variable, based on nν = Σp∈ν 1 trials (i.e., the atom size). Thus (7) simplifies further

(8)
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Just as the intersection graph of the wholes is the data structure supporting posterior
inference in the original parameterization, there is another graph – we call it the function
profile graph – that supports atom-level computations. Its nodes are the atoms. One might
try having an edge between ν and ν’ if a common whole w is assigned to both, but this is
more than we need. Instead, we create a directed edge from ν to ν’ if: (1) the assignments at
ν′ are a proper subset of the assignments at ν, and also (2) there is no other atom ν* with
assignments that are a subset of assignments at ν and a superset of assignments at ν’ (Figure
3). We say ν is a parent of ν’ and ν’ is a child of ν.

The relevance of the function profile graph becomes more apparent when we occupy the
nodes with atom-level activity variables Aν. We see that the edges of the function profile
graph express role-model information. For example, knowing Aν = 0 implies that for no w
assigned to ν do we have Zw = 1. Naturally this forces Aν′ = 0, when ν′ is a child of ν,
since assignments to ν′ are a subset of those going to ν. By the same token, knowing that
Aν′ = 1 is equivalent to knowing that at least one w assigned to ν′ has Zw = 1, which forces
Aν = 1 when ν is a parent of ν′. Essentially, the logic of atom-level activations is encoded
by the function profile graph. Let * denote all possible binary activation vectors a = (a1,a2,
…, aN) that respect the function profile graph in the sense above; i.e.,

(9)

Curiously, the collection in (6) does not necessarily constitute all of *, though we do

have ⊂ *. (See Section 6.) Importantly, the mapping  from * does
map onto the original set of activity vectors  in the mathematical sense.

Part of the computational complexity in the original parameterization stems from the fact
that the category intersection graph allows an arbitrary function of Zw on neighboring nodes
to affect the state at a given node (i.e., the ψw in (4)). But model (2) encodes a very specific
function (through max), which is used to advantage in the proposed reparameterization.
There is an effect on graph properties, which in some cases, leads to simpler posterior
computations.

As we review briefly at the end of this section, the computational tools from probabilistic
graphical modeling are developed from factorizations and their associated undirected
graphs. To support inference we need an undirected version of the function profile graph,
which we obtain by a form of moralization used in graphical models analysis. Specifically,
we include an undirected edge between any two nodes ν and ν′ that are both parents of a
common child. We also include an undirected edge between any two nodes ν and ν′ that are
children of a common parent. (This two-way moralization comes from the fact that
information flows both ways along a given directed edge.) Finally we make all remaining
directed edges undirected. The resulting graph is the undirected function profile graph. An
example is given in Figure 4.

Proposition 3 For a suitable prior p(a) over *, the posterior distribution in (8) is the
product of functions ψ̃ν that are local in the undirected function profile graph:

(10)
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Coupled with Proposition 2, the above result indicates that we can perform inference
computations on the function profile graph, and then transform back as needed to get
inference on whole-level activation states. In GO, for example, the transformation provides a
much simpler graph (Figure 5). Unfortunately this simpler graph is still too complicated for
exact numerical methods. Approximation methods discussed in the next section offer several
approaches to address this challenge.

4 Approximations and graph-based computations
Filtering categories

Instead of including the entirety of GO or KEGG in a role-model computation, we could
select a smaller set of categories based on an initial filter. For example, we could filter by
marginal p-value from an enrichment test. We investigated this approach using three gene
lists obtained by Keller et al. (2008) in a murine study of diabetes. Using microarrays, this
study profiled genome-wide expression of of islet (Data A), adipose (Data B), and
gastrocnemius (Data C) cells, among others not shown. Of interest were genes exhibiting co-
expression within each tissue; co-expression modules holding 85, 150, and 114 genes,
respectively, were identified for followup. Role-model computations address the functional
content of these lists. We use the lists here simply to demonstrate how much graph
simplification can be achieved by filtering.

Using a normal approximation to Fisher’s exact test, as implemented in the R package allez
(Newton et al. 2007), we considered GO and KEGG categories holding no more than 500
genes, and two p-value cut-offs (p = 0.01, p = 0.001). Table 2 summarizes the complexity of
the category intersection graph and the function profile graph derived from these data-
dependent category collections. The maximal degree of the function profile graph is usually
smaller than the maximal degree of the category intersection graph, with graph complexity
substantially reduced compared to the case of no filtering. Even so, the graphs remain too
complex for the deployment of exact numerical methods. One solution strategy is to
approximate the functional record itself, as we discuss next.

Ablating annotations
There is a class of approximation schemes that work by modifying the incidence matrix I to
have fewer non-zero entries. We describe one such ablation scheme that retains a fraction of
each part’s column assignments, preferentially retaining assignments to small wholes. The
rationale is that a small whole is more proximal to a part than a large one, and so its data, on
the average, may be more relevant to the state of that part than the data from a larger whole.
Without loss of generality, suppose that the columns of I (i.e., the wholes or categories) are
organized in increasing order of size. Fix a retention parameter ρ ∈ (0,1]. Create a new
incidence matrix Ĩ of the same dimension as I, initially with Ĩ = I. Working one part p (i.e.,

row) at a time to update Ĩ, let  denote the number of wholes containing part p.
If Ip,w* = 1, set Ĩp,w* = 0 if

(11)

with the caveat that every p be retained to at least one whole. The resulting incidence matrix
is more sparse than the original, and it produces ever simpler graphs as the retention rate ρ is
reduced. Table 3 shows the effects of ablation on the function profile graph of KEGG.
Results for GO are similar (not shown). Knowing how this ablation affects posterior
probabilities remains to be evaluated.
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The proposed ablation scheme increases the average size of atoms and reduces the
complexity of the function profile graph. Ablation does not remove part-level data from the
system, nor does it remove functional categories. Rather, heavily annotated parts are
simplified and they convey their effect directly to the smallest wholes containing them.
Consider, for example, two overlapping wholes w1 and a larger one w2. With ρ < 1, the
atom w1 ∩ w2 is affected. The annotation of those parts to the larger whole is ablated, and
the parts (and their data) are delivered to the smaller whole. In this way the ablated
incidence matrix delivers posterior computations over a reduced collection of atom
activations; from results of that inference, we can trace back to the real atoms and infer
activations over the real functional categories.

Graph-based computations
Our premise is that numerical methods from probabilistic graphical modeling can support
posterior computation for the role model. We are motivated partly by the discrete nature of
functional-category inference and partly by advances in this domain of statistical computing.
Our theoretical considerations suggest what graphs might be used, and our numerical
experiments provide some insight into the properties of these graphs for GO and KEGG.
Very little has been said so far about the actual calculations and how these need to be
organized. We make a few brief remarks here.

There are several ways to organize exact belief propagation algorithms. By one route, the
supporting undirected graph is the conditional independence graph associated with the joint
posterior under consideration. This graph is triangulated (every cycle of 4 or more nodes has
an edge between non-adjacent nodes) by adding edges if necessary, and then its cliques
(maximal complete subgraphs) are found. A junction tree is formed, with nodes equal to
these cliques, and with edges between these nodes that satisfy the running intersection
property. That is to say, if a node from the original graph is in any two cliques (nodes in the
tree), then it is in every clique-node on the unique intervening path in the tree. This property
is key for subsequent algorithms to properly marginalize activation states inside the graph. A
number of technical issues affect this computational sequence, but they are routinely
addressed using graphical algorithms. Inference proceeds via message passing. In a simple
approach to computing the marginal posterior distribution of a variable in some particular
tree node, we make that node the root of the tree and we send messages towards that root
from any ready nodes. A node is ready after it has received messages from all its neighbors
that are distal from the root. The messages themselves are vectors holding conditional
probabilities of data in the distal nodes conditional on the activation states at the node
receiving the message. By the rules of probability, outgoing messages are computed by
summing over certain latent activation states, and it is this component of the computation
that is very sensitive to graph complexity. At some point the exact posterior computation
requires manipulating 2M sums, where M is the size of the largest clique represented in the
junction tree: hence our interest in the maximal clique size of the triangulated graph (Table
3). Evidently, exact computations are feasible using the atom transform in an approximate
version of the problem in which we ablate weakly informative annotations.

In loopy belief propagation we give up on exact posterior computation. We do not attempt to
triangulate the original graph, find cliques, or form a junction tree. One approach uses factor
graphs, which are bipartite graphs having nodes for factors and other nodes for arguments of
those factors (Kschischang et al. 2001). We emphasized the factor structure of posterior
distributions in both Proposition 1 and Proposition 3 because it is relevant to loopy belief
propagation on the factor graph. Edges go between arguments and any factors in which they
participate, and so the degree structure of the factor graph is essentially the same as the
degree structure of the undirected graphs we have thus far considered. Approximate
posterior computation proceeds by transmitting conditional probability messages along
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edges of the factor graph. Without further intervention, the complexity of these
computations is exponential in the maximal degree of the graph (rather than clique size).
Advances such as in Mendiburu et al. (2007) and Gonzalez et al. (2009) indicate that
accurate and computationally efficient algorithms may be feasible on large and complex
graphs, such as those we have with model-based inference and functional categories.

5 Two small examples
As demonstration of role-model posterior inference, we consider here two artificial
examples that display properties relevant to more realistic scenarios. The data sets are
smaller than would occur in practice in order to facilitate exact computations and a clear
view of relevent inference properties.

The first example (A) involves the 5 KEGG pathways of Table 1, covering 146 genes.
Shown in Table 4 are summaries of gene-level data on the 11 atoms in this example, where
each gene provides a binary indicator of its apparent activity. Table 5 shows this data at the
set level, and compares the raw rate of apparent activity xc/nc with the (one-sided) Fisher p-
value and with the (estimated) marginal posterior probability of activity from model (1).
(Parameters α, β, and π were estimated by marginal maximum likelihood, and so the
inference is empirical Bayesian.) All inference methods identify KEGG pathway 00030 as
most interesting, with 11/26 of its genes indicating the active state. The example is more
telling in the assessment of other pathways. Pathway 00040 is ranked second best by
posterior probability but second worst by other statistics. This change in ranking has to do
with the structure of pathway overlaps. Pathway 00010 has the second best raw rate (10/62),
but it is not highly ranked by posterior probability because a number of these 10 active
genes are discounted owing to their participation in other pathways. This phenomenon is
expected to persist in more realistic examples: the marginal posterior computation
automatically discounts the contribution of genes to one functional category if the activity of
those genes can be explained by compensatory factors.

Table 6 presents basic data on a second example (B), including the atoms-to-wholes
incidence matrix and some data on the 11 atoms that constitute the 7 wholes. The relatively
high rate of pairwise overlap among the wholes is intended to model redundancies such as
those evident in much of GO. Naturally, overlaps may make it difficult to uncover
underlying signals, but the example is rigged so that all atoms contributing to whole #4
appear fully activated. Whole-level data and marginal posterior summaries (for one fixed
parameter setting, not estimated) are shown in Table 7. Not unexpectedly for this highly
stylized example, the marginal posterior probabilities are maximized at whole #4, and
decrease through wholes that have lower empirical activity rates. More interstingly, the
example suggests a certain deficiency associated with the marginal posterior inference.
Specifically, three wholes {3,4,5} would be named on a short list of wholes targeting no
more than 50% posterior false discovery rate. In fact, the gene-level activity data are well
explained using only the activation of whole #4. This is the maximum a posteriori (MAP)
estimate of the joint state. We know that the MAP estimate is the Bayes estimate under 0–1
loss, while a Hamming-loss delivers the estimate {3,4,5} (e.g., Carvalho and Lawrence,
2008). It is not a completely academic issue in this case, because redundancies in the wholes
cause negative correlations in the joint posterior (Table 8). For example, the state Z4 is
negatively correlated with all other Zw’s (recall they are i.i.d. and thus uncorrelated in the
prior.) After calling Z4 = 1 we might subsequently discount the possibility of either Z3 = 1
or Z5 = 1, since Z4 = 1 already explains the data. The negative correlations are not large in
this example, but they may be greater in practice and, in any case, they suggest greater
parsimony in the MAP estimate. The general phenomenon revealed by this example is
discussed further at the end of the next section. Having access to all sorts of posterior
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summaries surely will benefit practice, although at present realistic problems permit only
MCMC computation and marginal rather than joint posterior summaries.

6 Proofs and notes
Proposition 1: The posterior is proportional to the prior p(z) times the likelihood

. Taking the likelihood first, factors p(xp|z)= p(xp|maxw*:p∈w* zw*) that
involve a given whole w are from all those parts p ∈ w, and thus depend on the activation
states zw* for any other wholes w* that also contain those p’s; that is znb(w). There is not a
unique assignment of these part-based factors to whole-based factors ψw in (4), but any such
assignment must allow the possibility that at most zw and the neighboring activation states
contribute to ψw.

By independence, Bauer’s i.i.d. Bernoulli(π) prior for the Zw’s factorizes over the category
intersection graph. It remains to confirm that such factorization continues when we
condition each realization z to satisfy the activation hypothesis 1[z ∈ . The activation
hypothesis is equivalent to saying that any subset of an activated set is active, which is a
combination of properties of sets and their neighboring subsets.

Proposition 2: Let a ∈ denote a vector a = (a1,a2, …, aN) of atom-level activation states.
This vector results from mapping, through (5), some vector z = (z1, z2, …, zW) ∈ of
whole-level activation states satisfying the activation hypothesis. Suppose we have another
point z* ∈ for which z* ≠ z and z* also maps to the same vector a. If we reach a
contradiction then no such z* exists, and the mapping is one-to-one.

As we are fixing the vector a, we can partition the atoms into those ν for which aν = 0 and
those for which aν = 1. Call these respective index sets V0 and V1. First consider ν ∈ V0.
By supposition and definition of aν,

(12)

Thus all sets w assigned to ν must have . That is,  at all wholes w assigned to
any ν for which aν = 0.

Next consider some ν ∈ V1. In contrast to (12), we have

(13)

Either side can be zero by virtue of any one of the factors, and so we do not immediately get
. However, we can eliminate from both sides of (13) any factors 

corresponding to sets w already considered above that map to some other atom ν′ with aν′
= 0. Then (13) reduces to

(14)

Any w in this set {w : w → ν, w ↛ ν′ ∈ V0} may be comprised of multiple atoms, but all
of them are in V1 and thus are activated, like ν itself (aν = 1). Since w equals a union of
activated atoms, it must be activated, by the activation hypothesis. That is, for all w in (14),

. By applying this argument to all ν ∈ V1, we complete the proof that  for all
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wholes, and thus mapping (5) is one-to-one. The inversion formula encodes the rule that any
subset of an activated set of parts is activated.

Proposition 3: From (8) the posterior p(a|x) is proportional to a prior p(a) times a product of
atom-specific (likelihood) factors. Thus it suffices to find a prior p(a) that is local on the
undirected function profile graph. We have restricted the domain to vectors a = (a1,a2, …,
aN) in *, according to (9). Note that this restriction can be presented as a local function on
the function profile graph:

where B1,ν and B2,ν encode the two constraints in (9). Various priors are possible. A simple
one entails i.i.d. Bernoulli(π) atom activities Aν that are then conditioned to be in *.

There are problems in trying to use Bauer’s i.i.d. Bernoulli(π) prior on the Zw’s to induce a
prior over  For one, we needed to amend this prior so that the Zw’s satisfy the activation
hypothesis. A larger issue is that the induced distribution may not be local on the function
profile graph. For example, a given Zw might be assigned to two atoms that are unconnected
in the function profile graph. Choice of prior has an effect on the computations.

We mentioned in Section 3 that for some collections of wholes, * ≠  As an example,
consider three wholes made from three parts, with incidence matrix

Every pair of wholes (columns) overlaps, so the category intersection graph is complete. But
no profile of assignments is a subset of any other, so the function profile graph has no edges.
The atom-level activation vector (1,0,0) is not a possible result of any whole-level
activations, since activating any sets would activate two or three atoms.

Marginal posterior inference versus MAP inference
Even if MCMC convergence is assured, there is a problem in using it to drive inference
about non-null functional categories. Suppose that true holds all the truly non-null
categories, and α,marg holds a list of estimated non-null categories, estimated by marginal
computations set up to target a false discovery rate of α = 5%, say. Typically, this would go
by calling a category non-null if its MCMC-estimated marginal posterior probability of
being null is less than α. Considering the positive association of related GO categories (in
terms of gene content), and considering a potential sparsity in the true signal true, it is quite
likely that related categories will be negatively associated in the joint posterior distribution,
given experimental data (as in artificial example B, Section 5). Simply put, if taking one
category to be non-null explains the nonnull’ness of some gene-level data, then there is no
incentive for a related category to be non-null. As a consequence of this negative posterior
association, there will be a discordance between marginal findings in an FDR-controlled list
and the actual state of true. The true joint state may be much simpler (i.e., many fewer non-
null categories), but measuring this state is not within the reach of MCMC for even a
moderately-sized problem. Arguably, the joint state is better estimated in this case by the
maximum a posteriori (MAP) estimate, which is the Bayes estimate under 0–1 loss. The
MAP estimate may be associated with a high level of posterior uncertainty, as Bauer et al.
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(2010) argue, but its relative simplicity may be useful for providing a concise summary of
functional content. Ideally the analyst is able to compute both marginal posterior summaries
and MAP summaries to make the most informed inferences.

Extending the role model
Bauer’s model is limited by its restriction to binary gene-level data and by an assumed
homogeneity of responses within the activated and inactivated classes. Inactivated states all
deliver conditionally independent responses with a common success probability α, and
activated states similarly deliver responses with success probability β > α. This constrains
the atom level counts xν = Σp∈;ν xp to be Binomially distributed given the activation states.
A more flexible approach within the same general framework allows each part p to have its
own Beta distributed success probability; then atom counts xν are more broadly distributed
as Beta-binomial counts. In place of two basic parameters α and β we need 4 parameters to
encode the activated and inactivated Beta distributions; this seems to be a small price for the
added flexibility. Posterior computations may also benefit from the flattening out of the
posterior distribution over activation states. Yet further extensions are natural, such as to
quantitative responses and exponential-family observation models.

Software
Tools in R (version 2.12.1) were used throughout. For annotation information, we used
Bioconductor packages org.Hs.eg.db and org.Mm.eg.db, both versions 2.4.6. For graph
computations we used igraph version 0.5.5-1 (Csardi and Nepusz, 2006), RBGL version
1.26.0 (Carey et al. 2010), and gRbase version 1.3.4 (Ren et al. 2010).
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Figure 1.
Category intersection graph from 5 KEGG pathways (the first 5 by ID order). Sets are of
size 62, 32, 26, 25, and 33 genes, respectively. Edges in the graph indicate set overlap.
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Figure 2.
Degree distribution of intersection graph of GO (categories holding between 1 and 500
human genes). It is somewhat remarkable that so many overlaps are possible. The most
extreme case is the category cell motility (GO:0048870), which annotates 495 human genes
and shares genes with 6160 other categories among the 13026 GO categories that annotate
between 1 and 500 human genes. These 13026 categories annotate 14047 genes. The median
number of other category assignments per cell-motility gene is 64, and one gene happens to
be in 631 other categories.
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Figure 3.
Reparameterizing the role model with a function profile graph: The nodes in each panel
represent 5 atoms. Each atom shows a profile of assignments (1) or not (0) to 4 wholes w. A
directed edge goes from ν to ν′ if the assignments at ν include those at ν′ (except we omit
redundant edges e.g., no edge from 1110 to 0100.) The middle and right panels show logical
dependencies on activity variables. E.g., in the middle panel, knowing Aν = 0 implies Aν′ =
0 for all downstream atoms, and knowing Aν′ = 1 on the right panel implies Aν = 1 for all
upstream atoms.
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Figure 4.
Function profile graphs for the small KEGG example shown in Figure 1, with 11 atoms as
listed in Table 1.
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Figure 5.
Degree distribution of the undirected function profile graph of GO (categories holding
between 1 and 500 human genes). The maximal degree is 2464; the graph itself has 10366
nodes (atoms). The corresponding results for the category intersection graph (from Figure 2)
are repeated here in grey. Not shown are results for the directed function profile graph,
which is much simpler, having maximal degree 268.
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Table 1

Eleven atoms from the example shown in Figure 1 where there are 5 wholes (each a KEGG pathway). The
atom entry gives the unique row of the incidence matrix I associated with the involved genes. For example,
there are 4 genes involved in both Glycolysis/Gluconeogenesis and Fructose and mannose metabolism (the
first and last pathways) and not involved in the other three.

atom # genes atom # genes

00011 1 10100 3

00110 1 01000 25

10101 8 00001 20

11000 7 00100 14

00010 23 10000 40

10001 4
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Table 7

Marginal posterior inference, artificial example B: π = 1/2, α = 1/2, β = 3/4

whole w nw xw P(Zw = 1|data)

1 10 7 0.39

2 10 8 0.46

3 10 9 0.52

4 10 10 0.58

5 10 9 0.52

6 10 8 0.46

7 10 7 0.39
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