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1. Summary

Condensin is required for chromosome dynamics and diverse DNA metabolism.
How condensin works, however, is not well understood. Condensin contains two
structural maintenance of chromosomes (SMC) subunits with the terminal glob-
ular domains connected to coiled-coil that is interrupted by the central hinge.
Heterotrimeric non-SMC subunits regulate SMC. We identified a novel fission
yeast SMC hinge mutant, cut14-Y1, which displayed defects in DNA damage
repair and chromosome segregation. It contains an amino acid substitution at a
conserved hinge residue of Cut14/SMC2, resulting in diminished DNA binding
and annealing. A replication protein A mutant, ssb1-418, greatly alleviated the
repair and mitotic defects of cut14-Y1. Ssbl protein formed nucleolar foci in
cutl4-Y1 cells, but the number of foci was diminished in cut14-Y1 ssb1-418
double mutants. Consistent with the above results, Ssbl protein bound to
single-strand DNA was removed by condensin or the SMC dimer through
DNA reannealing in vitro. Similarly, RNA hybridized to DNA may be removed
by the SMC dimer. Thus, condensin may wind up DNA strands to unload chro-
mosomal components after DNA repair and prior to mitosis. We show that 16
suppressor mutations of cut14-Y1 were all mapped within the hinge domain,
which surrounded the original L543 mutation site.

2. Introduction

Condensin is a hetero-pentameric protein complex in eukaryotes that consists of
two structural maintenance of chromosomes (SMC) subunits and three regulat-
ory non-SMC subunits [1-6]. The terminal globular domains of the SMC
subunits contain the Walker A and B ATPase motifs [7,8], and are connected
to a coiled-coil domain that is interrupted by a central hinge, while one
of the non-SMC subunits is phosphorylated by Aurora B kinase [9-12]
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during mitosis [13,14]. The diverse roles of condensin in
chromosome dynamics, including mitotic chromosome
condensation and segregation, DNA metabolism and devel-
opment, are well documented [15-19], but the molecular
mechanism of how it functions is not well understood. Con-
densin and the SMC2/4 dimer possess DNA reannealing
activity, an activity not found in cohesin [20,21], suggesting
that DNA reannealing activity might be required for conden-
sin function. However, the physiological significance of the
reannealing activity remains an enigma. In this study, we
show that condensin antagonizes replication protein A
(RPA) [22-25] activity by removing it from DNA in vitro
and in vivo, which suggests that the DNA reannealing activity
of condensin may facilitate the removal of proteins from
chromosomes after DNA repair or prior to chromosome
segregation.

3. Results

3.1. Isolation of a structural maintenance of
chromosomes mutant hypersensitive to DNA
damage

About 1300 temperature-sensitive (ts) haploid fission yeast Schi-
zosaccharomyces pombe strains were constructed, and screened
for cytological defects at 36°C (the restrictive temperature) that
resembled previously isolated condensation-defective mutants.
Identification of a novel condensation-defective cut14-Y1
mutant is described in the legend of figure 1 and electronic sup-
plementary material, figure S1. This mutant is also highly
sensitive to DNA damage at 26°C, the permissive temperature.
The hydroxyurea (HU) and ultraviolet (UV) ray-sensitive
phenotype co-segregated with the fs phenotype. We decided
to focus on this mutant, which is the first condensin SMC
mutant sensitive to DNA damage to our knowledge.
Previously, cnd2-1, the Barren-like non-SMC subunit mutant
of S. pombe, was shown to be sensitive to DNA damage [31].

3.2. cut14-Y1 is a hinge mutant

The cut14-Y1 mutant contained a single amino acid substi-
tution in the hinge region (L543 to S543; figure 1a). Sequence
comparisons showed that this amino acid residue is conserved
in SMC2 of other organisms, and similar in Cut3/SMC4 (from
L to I; figure 1b). While the L543 residue is not conserved in the
hinge of Escherichia coli MukB, this residue is similar in Bacillus
subtilis SMC (from L to I). Therefore, MukB is probably distinct
from that of condensin [33], while B. subtilis condensin contains
the hinge region, which may be similar to that of eukaryote
condensins [34,35]. The L543 residue (red colour in figure 1c)
is located in the middle of the hinge region and not in the
dimerization domain.

3.3. DNA damage repair is defective in cut74-Y1
at 26°C

The response of cut14-Y1 to various DNA damage agents
at 26°C is summarized in figure 1d (data are shown
in figure 1le and electronic supplementary material,
figure S2). cut14-Y1 cells were sensitive to 50 m~2 UV
irradiation, 2mM HU, 5pM camptothecin (CPT), 0.01

per cent methylmethanesulphonate (MMS) and 1000 Gyy-
irradiation, and were more sensitive to CPT than cnd2-1.
Defects in excision repair were assessed by using an antibody
to detect thymine dimers produced by UV for 0-8 h at 26°C.
In cutl4-Y1 cells, repair after UV exposure (100 ] m~?)
occurred initially, but was considerably delayed later
(figure 1f). The damage phenotype of cuti4-Y1 differed
greatly from a previously isolated mutant, cut14-208, which
contains a mutation in the coiled-coil region and is not sensi-
tive to damage [20,31].

3.4. Lethal mitosis of cut14-Y1 occurs at 36°C
without delay

A culture of asynchronous cut14-Y1 mutant cells grown at 26°C
was shifted to 36°C. One to two hours after the temperature
shift, mutant cells stained with 4,6-diamidino-2-phenylindole
(DAPI) revealed mitotic defects (approx. 100% after 3 h),
including abnormal chromosome condensation, segregation
and cytokinesis (CK; figure 1g). The mitotic defects of cut14-
208 were indistinguishable from those of cut14-Y1.

Wild-type (WT) and cutl4-Y1 cells synchronously
released from the quiescent GO phase (figure 1h; see the
legend for experimental details). The viability of cut14-Y1
cells at 36°C was identical to that of WT (approx. 100%)
during S phase (4h) and G2 phase, but decreased when
cells entered mitosis and CK after 6-8 h at 36°C (dotted red
line), suggesting that the lethality occurred at the restrictive
temperature after mitotic entry. Potentially lethal defects
that occurred before mitosis at 36°C could be rescued if
cells were shifted back to 26°C. At 26°C, the viability of
cut14-Y1 was high (100%) and the doubling time was slightly
longer than that of the WT. At 36°C, the increase in cut14-Y1
cell number occurred only once, as cells were dead after the
first mitosis (aberrant ‘cut’ cells were counted as two cells).
As at 26°C, the timing of CK at 36°C, the restrictive tem-
perature, was only slightly delayed compared with that of
WT, suggesting that neither the DNA damage nor mitotic
checkpoint were activated in cut14-Y1.

3.5. cut14-Y1 genetically interacts with many DNA
metabolism mutations

To understand the function of the condensin hinge domain,
synthetic genetic interactions were examined by pair-wise
crosses between cut14-Y1 and 34 mutants defective in cell
cycle, mitosis, DNA repair, replication, recombination or
the DNA damage checkpoint. Results were classified into
three groups (A, B and C), as shown in figure 22 and elec-
tronic supplementary material, figure S3. Group A mutants,
when combined with cut14-Y1, failed to produce double
mutants by tetrad analysis, suggesting that group A mutants
were synthetic lethal with cut14-Y1. When cut14-Y1 was
crossed with group B mutants, viable double mutants were
produced, but the defects (ts, HU and UV) were additive
(electronic supplementary material, figure S4). Group C
mutants formed viable double mutants with cut14-Y1, and
the ts and HU sensitivity were indistinguishable from that
of the cut14-Y1 single mutant. Hence, we observed genetic
interactions with group A and B mutants, with the greatest
synthetic interactions observed with group A mutants,
whereas group C mutants did not interact with cut14-Y1.
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Figure 1. (Caption overleaf.)
Group A included mutants, many of which interact with checkpoint function. Most of the group C mutants were
single-stranded (ss) DNA or ssDNA-associated RPA [36,37]. related to cell cycle, although two, Auvde and Arghl, were
Group B consisted of DNA checkpoint mutants [38], involved in DNA repair (electronic supplementary material,

suggesting that the hinge of Cutl4 might affect a damage figure S3).
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Figure 1. (Overleaf.) Mutation site and phenotypes of condensin SMC mutant cut74-Y1. The identification of cut74-Y1: four mutant strains among 1300 s strains  [JEJ}
examined exhibited condensation defects. Gene cloning, genetic analysis and gene sequencing established that the mutations resided in three distinct genes involved
in chromosome condensation. Strain 393 was a DNA topoisomerase Il top2 [26] mutant, strain 640 was a cut75 [27] (homologue of importin alpha) mutant and the
remaining Y1 and 541 strains were cut74 [28,29] (SMC2 homologue) mutants. Since the cut74-¥7 strain was hypersensitive to DNA damage at 26°C (the permissive
temperature), we examined whether the damage-sensitive phenotype was linked with the ts phenotype. Tetrad dissection demonstrated that the HU (hydroxyurea)
and UV (ultraviolet) ray-sensitive phenotype co-segregated with the ts phenotype (electronic supplementary material, figure S1). (a) Heteropentameric condensin
complex. The cut74-Y1 allele consists of a L543S substitution in the hinge. (b) Amino acid sequences of the SMC hinge that surround the mutation site (red

arrowhead). (c) The mutation site (red) is shown within the three-dimensional structure of the mouse hinge domain [30]. (d) Summary of the DNA damage

phenotypes of cut74-Y1 together with the previously reported response of cnd2-1 [31]. +4-+-, normal growth; =+, very slow growth; —, no growth. (e) Wild-
type (WT), cut74-Y1 and other strains were spot tested after UV irradiation at 26°C. (f) After UV irradiation (100 J m~2) at 26°C, extracts of the WT and cut74-Y1
cells harvested at intervals were immunoblotted using anti-thymine dimer antibodies. (g) The mitotic segregation defect of cut74-Y7 and cut74-208. DAPI was used
to stain DNA. Scale bar, 10 wm. (h) WT and cut74-Y7 cells were first arrested at the pre-replicative GO phase in nitrogen-deficient medium (EMM2-N) [32] at 26°C
for 24 h, and then shifted to a nitrogen-replenished medium (EMM2) at 26°C (left) or at 36°C (right) for 12 h to measure cell viability (plated at 26°C) and cell
number. The timing of S phase, mitosis and cytokinesis (CK) were determined by FACScan and DAPI-staining, respectively. Aliquots of the cultures were taken at 1 h
intervals after replenishment, and 300 cells of each genotype were plated on three YPD plates for each time point. The plates were incubated at 26°C for 5 days, and

the colony numbers were counted. Circles with solid line, WT; crosses with dashed line, cut74-Y71.

3.6. Synthetic rescue of cut14-Y1 by ssb1-418

After examining more mutants involved in DNA and RNA
metabolism by tetrad dissection, we found that one mutant,
ssb1-418, showed a striking synthetic rescue of the cut14-Y1
ts phenotype at 33°C, and also the HU and UV sensitivities
at 26°C (figure 2b,c). ssb1-418 is a mutant of Ssb1, the largest
subunit of heterotrimeric RPA.

ssb1-418 was isolated as a ts mutant that was suppressed
by a plasmid carrying the ssb1™ gene. The mutation site,
determined by genetic crossing and gene sequencing, con-
sisted of an E substitution at G78, and is located in the
amino-terminal ssDNA-binding domain called DBD F,
which ensures binding to short stretches of ssDNA [41]
(figure 2d). ssb1-418 was sensitive to HU (6 mM) and
UV (100Jm™2) at 33°C, a semi-permissive temperature
(figure 2e), but not at 26—30°C, suggesting that DNA repair
is impaired in ssb1-418 at higher temperatures.

As shown in figure 2f, the colony size of cut14-Y1 is small,
while the colony size of the cut14-Y1 ssb1-418 double mutant
was similar to that of the WT at 26°C. The cut14-Y1 single
mutant frequently exhibited aberrant chromosome segre-
gation, but mitosis in the double mutant appeared mostly
normal at 30°C (figure 2g). In liquid culture, the double
mutant grew exponentially after a temperature shift from
26°C to 30°C (green line, figure 2h), while the cut14-Y1
single mutant arrested after one round of division and
quickly lost viability at 30°C (red lines in figure 2h). Thus,
rescue occurred at the level of mitotic chromosome
segregation and cell viability.

3.7. Ssb1 nuclear foci are observed in cut14-Y1 cells,
but not in the double mutant

Synthetic rescue suggested that Ssbl and the Cutl4 hinge
domain antagonize each other, and that their functional bal-
ance might be important. While Ssb1 is known to stabilize
DNA strand separation, the Cutl4 hinge promotes DNA
annealing. Therefore, Ssbl and condensin may coordinate
the dynamics of ssDNA stabilization and destabilization in
chromatin. To test whether Ssbl might anomalously remain
in mitotic chromatin in the cut14-Y1 mutant, localization of
Ssbl was assessed by immunofluorescence microscopy
using polyclonal antibodies against S. pombe Ssb1 [42].

Anti-Ssb1 antibody revealed that the nuclear Ssb1 signals
were clearly observed in S phase cells. In those S phase cells,
Ssbl appeared as punctate signals in 100 per cent of cells
(arrowheads in figure 3a). In cut14-Y1 mutant cells or the
other mutants, ssb1-418 and ssb1-418 cut14-Y1, at the permiss-
ive temperature, the Ssbl dots in S phase were similarly
observed in 100 per cent of cells (arrowheads) and disap-
peared in G2 phase. These Ssbl signals in S phase are
distinct from the foci observed in cut14-Y1 (see below).

Intense nuclear foci, as detected by anti-Ssb1 antibody
(DNA stained by DAPI), were frequently observed in both
mitotic (red arrow, figure 3a) and interphase (short white
arrows) cut14-Y1 cells. Such foci were scarce in WT, ssbl-
418 and cutl4-Y1 ssb1-418 (double mutant) cells. We
measured the frequency of cells exhibiting these nuclear
foci and, as shown in figure 3b, 22 per cent of the cut14-Y1
cells contained such foci, whereas the foci were infrequent
(less than 2%) in the other three strains. This result suggested
that foci formation in cutl4-Y1 required the presence of
WT Ssb1.

We then examined the localization of these intense foci of
Ssbl in cut14-Y1 mutant cells. The majority (80%) of foci
were located in the rDNA nucleolar region, while the
remaining foci (20%) resided at the periphery of the nucleus
(figure 3c; the illustration shows the location of Ssb1 foci in
cut14-Y1). Figure 3d shows multiple nucleolar foci in the
right cell and one peri-nuclear focus in the left cell.

3.8. Live cell analysis of Ssb1-YFP foci in cut14-Y1
mitotic cells

To further investigate the results above, we constructed strains
carrying chromosomally integrated Ssbl-YFP that was
expressed from its native promoter, and observed Ssb1-YFP
signals in WT or cut14-Y1 living cells. Ssb1-YFP was also
located in the mitotic nucleoli in WT and in cut14-Y1 (figure
3ef). In the electronic supplementary material movies, the
dynamics of Ssb1-YFP signals in mitosis followed by S phase
from WT and cut14-Y1 cells are shown. The YFP signals in
WT were smoothly located in the nuclear chromatin region
during mitosis (figure 3e) and became punctate during
S phase (electronic supplementary material, movie S1). In
cut14-Y1 cells, intense Ssb1 foci were observed in the nucleolar
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Figure 2. (Caption overleaf.)
region of aberrantly elongated mitotic chromosome (figure 3f only in 4 per cent (6/151) of the WT mitotic cells (figure 3g).
and electronic supplementary material, movies S2—54). Movies clearly showed that the cut14-Y1 mutant cells containing
After analysing a large number of movies, Ssb1-YFP foci foci were not delayed prior to the entry into mitosis, suggesting

were found in 39 per cent (24/62) of mitotic cut14-Y1 cells, but that the mitotic checkpoint was not activated (see below).
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Figure 2. (Overleaf.) cut14-Y1 defects are additive with many DNA metabolic and checkpoint mutants, and are rescued by ssb7-418. (a) Strains crossed with cut74- ||}
YT to obtain the double mutants are shown. Crosses with group A (15 strains) did not yield viable double mutants, while those with group B (5 strains) produced
double mutants with additive defects. Crosses with group C (14 strains) produced double mutants that did not display any additive defect (see also electronic
supplementary material, figure S3). Group A included mutants that are involved with the 9-1-1 complex (rad9, rad7 and hus7), double strand break repair (rhp57,
rad22, mus81 and ku70), replication (cdc6, cdc22 and orc5), 14-3-3 (rad24 and rad25), ssDNA nuclease (rad73) and DNA damage checkpoint (rad77 and rad26),
many of which interact with single-stranded (ss) DNA or ssDNA-associated RPA [36,37]. Group B included five DNA checkpoint mutants (rad3, chk1, cds, crb2 [38]
and swiT [39]), suggesting that the hinge of Cut14 might have a checkpoint function. Most of the group C mutants were related to replication, cell cycle and mitosis,
although two were involved in DNA repair (uvde and rgh1 [40]). (b) ssb7-418 showed a striking synthetic rescue of the cut74-Y1 ts phenotype at 30°C and 33°C.
(c) ssb1-418 also rescued the 2—4 mM HU and 50 J m ™2 UV sensitivity of cut74-Y7 at 26°C. (d) The ssb7-418 strain contains a G78E amino acid substitution in the
DBD F. () Single ssb7-418 mutants were sensitive to HU and UV at the semi-permissive temperature (33°C). (f) The colony formation of single and double mutants
was examined at 26°C. Scale bar, 5 mm. The colony size of cut74-Y7 single mutants was smaller than that of the cut74-Y7 ssb7-418 double mutant at 26°C. The
doubling time of single cut74-Y7 was 4.5 h at 26°C, while that of the double mutant and the WT was 3.5 h at 26°C. (g,h) In YPD liquid medium at 33°C, the
cut14-Y1 single mutant lost viability and displayed frequent mitotic defects, while the double mutant and ssb7-418 grew normally. The asynchronous cultures of
cut14-Y1, ssb1-418 and the double mutant in the YPD liquid medium were shifted from 26°C to 30°C. The cell number (per millilitre) was counted by the cell
counter. The viability was measured at each time point by plating 300 cells spread on YPD plates, incubated at 26°C for 5 days, and resulting colonies were counted.

Scale bar, 10 um. (h) Black diamonds, ssb7-418; red squares, cut14-Y1; green triangles, cut14-Y1 ssb1-418.

3.9. Ssh1 accumulated in the rDNA region of cut14-Y1,
but not in the double mutant

Chromatin immunoprecipitation (ChIP) of rDNA non-coding
regions was performed using chromosomally integrated
Ssb1-FLAG expressed from its native promoter. Antibodies
against FLAG were used for ChIP of cells cultured in the
presence or absence of 4 mM HU. As shown in figure 3h,
more Ssbl bound to rDNA (primer NTS1) in cut14-Y1 cells
cultured at 26°C compared with WT. In the presence
of HU, the level of Ssbl bound to rDNA increased in
cut14-Y1, indicating that more Ssbl was bound to rDNA
in cut14-Y1.

To analyse the level of Ssb1-418 mutant protein that
bound to rDNA, polyclonal antibodies against Ssb1l were
used. As shown in figure 3i, the level of Ssbl mutant protein
bound to rDNA was diminished in the cut14-Y1 ssb1-418
double mutant when cultured at 26°C. This defect of the
Ssb1-418 protein may explain why the ssb1-418 mutant
suppresses the phenotypes of cut14-Y1.

3.10. Ssh1-YFP foci are also observed in cnd2-1 cells
but not in mitotic cells

Non-SMC mutant cnd2-1 was also DNA damage sensitive
[31]. However, the phenotypes of cnd2-1 were not rescued
by ssb1-418 (figure 4a). The reason for this failure of suppres-
sion might be due to the loss of the Ssb1-YFP foci in mitotic
cnd2-1 cells (described below). When the temperature of the
cnd2-1 culture was shifted from 26°C to 36°C, the septation
index (SI) declined rapidly owing to activation of the Cdsl-
dependent checkpoint [31], whereas no decrease of the SI
occurred in cut14-Y1 (figure 4b). The results (explained in
the legend) suggest that at 36°C, the DNA checkpoint was
activated in cnd2-1, but not in cut14-Y1, and the cnd2-1 cells
that entered mitosis after the delay did not contain Ssbl-
YFP foci. However, the Ssb1-YFP foci were found in about
20 per cent of interphase cells of cnd2-1 (figure 4c).

The Ssb1-YFP foci were located in the non-nucleolar chro-
matin region of cnd2-1 mutant cells. Examples of these cells
are shown in figure 4d. Consistently, ChIP of Ssb1-FLAG
shows that Ssb1-FLAG is not enriched in the rDNA in
cnd2-1 cells (figure 4e), in sharp contrast to the result

in cutl4-Y1. Taken together, Ssbl probably binds to non-
nucleolar chromosomal regions in cnd2-1, leading to the
Cdsl-dependent DNA damage checkpoint delay.

3.11. Purified condensin and structural maintenance of
chromosomes dimer preferentially interact with
ssDNA

To examine DNA—protein interactions, we purified conden-
sin protein complexes from S. pombe cells where all the
condensin subunits were simultaneously overexpressed
[20,21]. Protein preparations were run on a sodium dodecyl
sulphate polyacrylamide gel electrophoresis (SDS-PAGE)
gel and stained with Coomasie brilliant blue (figure 5a).
Holocondensin and the SMC dimer were incubated with
short ssDNA (86 nucleotide long) and dsDNA (86 bp) for
10 min at 30°C. Although both bound to ssDNA and
dsDNA, they bound preferentially to ssDNA, as seen in the
acrylamide native gel (figure 5b). The band intensity of
ssDNA decreased greatly when increasing amounts of con-
densin or SMC dimer were added. The SMC dimer
appeared to have a stronger affinity for ssDNA than holocon-
densin. The associated protein-DNA complex did not
produce a band shift, but instead remained in the well
owing to the aggregate formation of DNA—protein [21].

3.12. Weak DNA binding and reannealing by the
mutant structural maintenance of chromosomes
dimer protein

We then examined whether the mutant Cut14-Y1 protein was
similarly capable of binding DNA, by using a Cut3-Cut14-Y1
heterodimer. M13 phage ssDNA (7.2 kb long) was purchased
(NEB) and used for the DNA-protein binding experiments.
As seen in figure 5c, M13 ssDNA (producing two bands)
moved to the top of the native agarose gel, which had no
sodium dodecyl sulphate (SDS) added, when mixed with
the WT and mutant SMC dimer (lanes 2 and 3). If the protein
preparations were pre-treated with heat (42°C for 10 min
[20]), M13 ssDNA associated with the WT SMC complex
still remained at the top of gel (lane 4), whereas the mutant
Cut3-Cutl4-Y1 dimer produced smeared bands from the
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Figure 3. (Caption overleaf.)

position of the M13 ssDNA band to the gel top (lane 5),
suggesting that the complex formation of the mutant dimer
on ssDNA was greatly diminished after heat treatment.

We then compared the DNA reannealing activity of WT
and mutant SMC dimer with or without heat pre-treatment.
As shown in figure 54, WT and mutant (Cutl14-Y1) SMC
dimers with (42°C) or without (—) pre-heat treatment were
incubated with heat-denatured (hd) DNA (single cut linear

3.0 kb blue script), then the reactions of hdDNA with SMC
at 30°C for 0—30 min were stopped by the addition of 0.2
per cent SDS. At 0 min, only hdDNA was observed. The
WT SMC dimer promoted annealing to produce dsDNA.
Upon heat pre-treatment of the WT SMC dimer, a dsDNA
band was also formed. Without heat treatment, the mutant
SMC dimer could form dsDNA, but completely failed to
reanneal hdDNA upon heat treatment.
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Figure 3. (Overleat.) Intense Ssb1-YFP foci formed in the nucleolus of cut74-Y7, but not in the double mutant. (a) Intense nuclear foci were detected by anti-Ssb1  [JEJ
antibody (DNA stained by DAPI). Immunofluorescence micrographs are shown for WT, single cut74-Y1, ssb7-418 and the double mutant cells that were shifted from
26°C to 30°C for 1 h. The Ssh1 foci were observed in both mitotic (red arrows) and interphase (white arrows) cut74-Y1 cells. Such foci were scarce in WT, ssb7-478
and cut14-Y1 ssb1-418 (double mutant) cells. The nuclear Ssh1 signals were clearly observed in S phase cells (white arrowheads). The S phase occurs in binucleated
septated cells, allowing S phase cells to be easily distinguished. In those S phase cells, nuclear accumulation of Ssh1 appeared as punctate signals, distinct from the
foci observed in cut74-Y1. Scale bar, 10 wm. (b) Quantitative data (percentage cells with Ssh1 foci) are shown. Three hundred cells were observed for each strain.
(c) Anti-Ssb1 antibodies revealed that the intense foci were mostly (approx. 80%) located in the nucleolar region of the cut74-Y7 single mutant. The S. pombe
interphase nucleus consists of the hemispherical chromatin region (Chr) and the remaining nucleolar (Nucl) region [43]. (d) The enlarged, merged micrograph of
cut14-Y1 cells. Blue, DAPI; purple, Ssb1. Scale bar, 5 pum. (ef) Live cell images of WT (e) and cut74-Y7 mutant (f) cells that express both Ssb1-YFP (green) and
Sad1-mCherry (SPB, red). Scale bar, 10 .m. See electronic supplementary material, movies S1—S54. (g) The frequency (%) of cells showing Ssh1-YFP foci in WT and
cut14-Y1 mitotic mutant cells were determined after the shift to 30°C (the restrictive temperature) from 26°C for 1 h in EMM2. (h) Chromatin immunoprecipitation
(ChIP) experiment using anti-FLAG antibodies. The ssb7™ gene was chromosomally tagged with FLAG in the WT and cut74-Y7 strains, and expressed under the
native promoter at 26°C in the absence (upper panel) or presence (lower panel) of 4 mM HU for 3 h. Two rDNA probes and one negative control (lys7™) probe were
used. Blue and red columns indicate ChIP without and with antibodies against FLAG. An untagged (no tag) strain was used as the negative control. (i) ChIP

experiment using anti-Ssb1 antibodies for the four strains cultured at 26°C. (h,) Blue bars, —antibodies; red bars, +antibodies.

3.13. DNA reannealing promotes the release of
replication protein A bound to heat-denatured
ssSDNA

To determine whether the SMC dimer promoted reannealing
in vitro when complementary ssDNAs were previously
coated with purified heterotrimeric RPA [42], hdDNAs
were first mixed with S. pombe heterotrimeric RPA (produ-
cing diffuse bands in the native gel) and then briefly
incubated with the SMC heterodimer, yielding a duplex
dsDNA band that formed within 3 min (figure 6a). Holocon-
densin also reannealed RPA-coated hdDNA, but less
efficiently than the SMC dimer (figure 6b).

In order to firmly confirm that the diffuse bands produced
by hdDNA and RPA were indeed owing to complex formation
between RPA and ssDNA, and not with dsDNA, the complex
formed by hdDNA (40 ng) and RPA on ice for 10 min was
treated with 1 per cent SDS (4 SDS; figure 6c). When the mix-
ture was examined in the absence of SDS (—SDS), smeared
bands were observed, but not in the presence of SDS. No
dsDNA formation thus occurred in this experiment.

To visualize the removal of RPA from hdDNA, atomic force
microscopy (AFM) was used [4,21] (figure 6d4—f). Highly puri-
fied bacterial single-strand DNA binding protein (SSB;
purchased from Promega)-coated hdDNA was incubated
with the S. pombe SMC dimer. Within 10 min, a sharp dsDNA
band was formed (figure 64). AFM images of hdDNA before
and after the addition of SSB, followed by the addition of the
SMC dimer, are shown in figure 6e. Beaded ssDNA coated
with SSB was observed for hdDNA mixed with SSB (middle),
while dsDNA was plentifully produced 30 min after the incu-
bation with SMC dimer (right; control hdDNA and dsDNA
images, left top and bottom, respectively).

Purified S. pombe RPA was also examined by AFM
(figure 6f, left). Coated ssDNA similar to that produced by
bacterial SSB was observed. Thirty minutes after the incu-
bation with SMC dimer, dsDNA was plentifully observed
(figure 6f, right). Taken together, our data show that conden-
sin SMC promotes DNA reannealing and releases bacterial
SSB or S. pombe RPA bound to complementary ssDNA.

3.14. Interactions of condensin structural maintenance
of chromosomes to RNA and RNA—DNA hybrid

To substantiate these findings in a broader physiological con-
text, condensin binding to RNA was examined. As shown in

figure 6g, both condensin and the SMC dimer were bound to
830 nt RNA (electronic supplementary material, figure S5)
and formed a complex that did not enter the gel, though
the SMC dimer was bound to RNA more efficiently. To our
knowledge, this is the first demonstration of the interaction
of RNA with condensin SMC.

An RNA-DNA hybrid was then constructed by mixing
transcribed RNA with hdDNA (described in electronic sup-
plementary material, figure S5) and then adding the SMC
dimer or condensin. RNase H was used to verify the
hybrid. The SMC dimer reduced the amount of the RNA—-
DNA hybrid and increased the level of dsDNA, suggesting
that condensin SMC might interact with RNA-DNA
hybrid and remove RNA, followed by the formation of
dsDNA (figure 6h; SDS was added before electrophoresis).
Another interpretation might be possible, such that conden-
sin SMC might interact with the RNA-DNA hybrid to
form the higher-order aggregate.

3.15. Ssh1-418 mutant protein exhibits diminished
ssDNA binding

To further examine why ssb1-418 rescued the phenotypes of
cutl4-Y1, we characterized the properties of the mutant
Ssbl protein. ssDNA binding was tested using short and
long ssDNAs. The heterotrimeric RPA containing the Ssbl-
418 protein was purified and mixed with ssDNAs. Binding
of the mutant RPA to short 86 nt ssDNA was greatly dimin-
ished (figure 7a), whereas the binding to long 7.2 kb
M13 ssDNA was only slightly diminished (figure 7b) in
comparison with WT RPA.

We then examined whether cut14-Y1 mutant SMC-
mediated RPA removal from ssDNA differed when the WT
or mutant RPA was employed. As shown in figure 7c (lane
3-7), the WT SMC dimer was more efficient than the mutant
SMC dimer for the removal of WT RPA from ssDNA by rean-
nealing. In contrast, when the mutant RPA was employed
(lane 8-12), the removal of the mutant RPA from ssDNA was
equally efficient by reannealing promoted by the WT and
mutant SMC dimer. These results may explain the genetical
rescue of the double mutant cut14-Y1 ssb1-418.

3.16. Intragenic suppressor mutations of cut74-Y1

We attempted to isolate extragenic suppressors of cut14-Y1,
and obtained 16 Ts' (at 33°C) suppressors of cut14-Y1.
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Figure 4. The checkpoint response and nuclear localization of Ssb1-YFP differ in cnd2-7 and cut14-Y1. (a) Whereas the DNA damage sensitivities of cut74-Y7 were
greatly rescued by ssb7-418 mutation, those of cnd2-1 were not. (b) WT, cut74-Y1 and cnd2-1 were cultured at 36°C for 0—4 h, and the percentage septation index
(SI) and the number of cells displaying aberrant chromosome (¢ phenotype) were measured. The frequency of aberrant mitotic chromosomes sharply increased in
cut14-Y1 (blue diamonds with solid line, WT; red squares with solid line, cut74-Y7; green triangles with solid line, cnd2-7; top), while the appearance of such
mitotic cells was delayed in cnd2-1 (blue diamonds with dashed line, WT; red squares with dashed line, cut74-Y1; green triangles with dashed line, cnd2-7;
bottom). Notably, the aberrant mitotic chromosomes in cnd2-7 did not contain Ssb1 foci (96%). (c) The intense foci of Ssh1-YFP were observed in cnd2-1 cells. Note
that the YFP dot (the focus) is located in the nuclear periphery chromatin region. (d) Distinct nuclear localization of the Ssh1-YFP signals in cnd2-7 and cut14-Y1.
The WT cell nucleus did not show the foci of Ssb1-YFP. Two cut74-Y1 cells display the intense Ssb1-YFP foci, which are located in the nucleolar region. Two cnd2-1
cells also show the intense Ssh1-YFP foci, which are located in the non-nucleolar nuclear chromatin region. Sixty per cent of cells examined showed the nuclear
chromatin localization of Ssb1-YFP foci in cnd2-7 mutant cells. () ChIP experiment of Ssb1-FLAG for the rDNA probe NTS1 using WT, cut74-Y7 and cnd2-1 strains.
The procedures are the same employed in figure 3h. Blue bars, —antibodies; red bars, +antibodies.
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Figure 5. Interaction of isolated condensin and SMC dimer with different DNAs. (a) SDS-PAGE patterns of holocondensin (Cut3-Cut14-Cnd1-Cnd2-Cnd3), the SMC
dimer (Cut3-Cut14) and the non-SMC trimer (Cnd1-Cnd2-Cnd3), together with single Cut3 and Cut14 as controls, stained with Coomasie brilliant blue. The
procedures of isolation were previously described, and the degree of purity for these preparations was similar to those previously reported [20,21]. The Cut14 and
(nd1 overlap, and the (nd2 band is diffuse and less intense than the other non-SMC subunits, probably owing to phosphorylation and/or degradation [9]. Limited
proteolysis of Cut3 has been reported [20]. (b) Condensin and SMC dimer were incubated with a mixture of ssDNA and dsDNA, then analysed on a 10% non-
denaturing acrylamide gel in the absence of SDS. DNA used was tagged with fluorescent FITC. (c) WT and mutant SMC dimer were incubated with M13 ssDNA with
or without the pre-heat treatment at 42°C for 10 min, then analysed on a 0.7% native agarose gel in the absence of SDS. The mutant dimer was obtained by
simultaneous overexpression of Cut3 and Cut14-Y1, and purified by affinity chromatography, stained with SYBR Gold. (d) WT and mutant SMC dimers were
incubated with hdDNA with or without pre-heat treatment of the SMC dimers (see text), stained with ethidium bromide.

Surprisingly, the mutations all mapped to within the cut14
locus and were all located within the hinge domain (519-
64laa; figure 8a,b). Four were true revertants (S543L) and
formed colonies at 36°C. One suppressor also contained a
substitution at the same residue (S543T) but, curiously,
behaved like the WT. Eleven contained a second site mutation
in addition to the original L543S mutation. Based on the
three-dimensional structure [30], the additional mutation
sites (blue) surrounded the L543 site, but resided largely
out of the dimerization domain (red; figure 8c). These sup-
pressor mutations appeared to restore the DNA binding
and reannealing activity of the hinge. The hinge may thus
be a flexible structure in which deleterious mutations can
be compensated by the presence of the additional mutations
within the hinge domain.

4. Discussion

Understanding the mechanisms of how condensin functions
in mitosis and DNA repair is of great importance. We ident-
ified a fission yeast fs mutant cut14-Y1 that contains a point
mutation in the hinge domain of SMC2, a subunit of con-
densin. This mutant displayed severely reduced viability
during mitosis at elevated temperatures and after exposure

to DNA damage agents at the permissive temperature.
Repair of UV-induced DNA damage is defective. Other
phenotypes include a mitotic segregation defect and an
inability to reanneal heat-denatured complementary DNAs
(hdDNA). Further genetic analysis showed that a mutant of
the large subunit of RPA (ssb1-418) rescued almost all the
cut14-Y1 phenotypes observed.

Strikingly, we found that nucleolar RPA foci formation
and Ssb1 binding to rDNA in cut14-Y1 were largely reduced
in the cutl4-Y1 ssb1-418 double mutant. In vitro assays
demonstrated that RPA was removed by SMC-promoted
reannealing of hdDNA. We propose that condensin may
compete with RPA-induced DNA strand separation by re-
annealing separate ssDNA strands after DNA repair and
prior to mitosis in order to unload chromosomal com-
ponents. We speculate that the regulation of the non-SMC
trimer by Aurora kinase B [9-11] or its interaction with his-
tone H2A [47] during mitosis may be important for the
activation of its reannealing activity. In vitro, the non-SMC
trimer has been shown to inhibit DNA reannealing [21].
Non-SMC trimer may thus be negatively regulated by
Aurora kinase B during mitosis.

We previously showed that the non-SMC condensin
cnd2-1 mutant was sensitive to DNA damage and exhibited
cell cycle delays owing to DNA repair [31], but it remained
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Figure 6. Condensin SMC-mediated elimination of RPA from hdDNA. (a) SMC dimer promotes reannealing of RPA-coated hdDNA. Lanes 1,2: control ds and hdDNA;
3-5: naked hdDNA (heat denatured and then rapidly cooled) was incubated with or without SMC for 0, 3 or 10 min; 6—9: hdDNA pre-coated with RPA was
further incubated with (lanes 6—8) or without (lane 9) the SMC dimers. After incubation, samples were analysed on a 0.7% native agarose gel (without SDS).
(b) Holocondensin also produced dsDNA from RPA-coated hdDNA. Native agarose gel was used. (c) hdDNA incubated with RPA complex was analysed in the absence
or presence of SDS. See text. (d) Lanes 1,2: hdDNA incubated alone for 0 or 30 min; 3: dsDNA; 4—9: hdDNA pre-coated with SSB for 5 min at 30°C, and further
incubated for 30 min without (lanes 4,5) or with SMC for 0—30 min (lanes 6—9). The reaction mixtures were analysed by native agarose gel electrophoresis. (e)
AFM images hdDNA (top left), dsDNA (bottom left), hdDNA coated with SSB (middle). SMC was added and incubated with SSB-coated hdDNA for 30 min (right).
(f) AFM images of hdDNA coated with S. pombe RPA (left); SMC dimer was added and incubated with RPA-coated hdDNA for 30 min (right). (g) Condensin and
SMC dimer binding to RNA that was made in electronic supplementary material, figure S5. The samples were analysed using a 4% native agarose (NuSieve) gel in
the absence of SDS. (h) (left) The mixture of hdDNA and DNA—RNA hybrid was digested with DNase | or RNase H. The hybrid band was selectively digested with
RNase H. (right) Condensin and SMC dimers (0—100 nM) were incubated with the mixture, and SDS was used to stop the reactions. The samples were analysed
using a 0.7% agarose gel. Staining with (a—d,h) ethidium bromide and (g) SYBR Gold.
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Figure 7. Interaction of mutant RPA with DNA and the mutant SMC dimer. (a,b) Interaction of WT and mutant RPA complexes with (a) short and (b) long ssDNA.
The heterotrimeric RPA that contained the Ssb1-418 mutant protein was purified and mixed with (a) short 86 nt ssDNA and (b) long M13 ssDNA, followed by
(a) native acrylamide and (b) native agarose gel electrophoresis (in the absence of SDS). Binding of the mutant RPA to short 86 nt ssDNA was greatly diminished,
whereas the binding to M13 ssDNA was only slightly diminished. (c) WT and mutant RPA (80 nM) were bound to heat-denatured hdDNA for 5 min on ice, followed
by the addition of WT and mutant SMC dimer-containing Cut14-Y1 (0, 25, 50 nM) for the reannealing reaction at 30°C for 30 min. Resulting reaction mixtures were
analysed using 0.7% native agarose gels and stained with ethidium bromide. Diffuse bands represented hdDNA coated with RPA, which formed with the WT and
mutant RPA. The ability of mutant SMC dimer (Cut14-Y1) for reannealing was diminished for hdDNA precoated with the WT RPA, whereas the reannealing went
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possible that Cnd2 might have a role unrelated to condensin.
Our present data provide additional convincing evidence
supporting the idea that condensin is required for the
repair of DNA damage. We also show that the condensin
Cut14/SMC2 hinge may be required for damage checkpoint
activation. Consistently, the damage checkpoint activation
occurs in cnd2-1 that contains the WT SMC2 hinge.

Our in vitro results showed that the SMC dimer and holo-
condensin promote the removal of DNA-bound RPA through
reannealing. This is consistent with our in vivo results demon-
strating that the Ssbl foci observed by immunofluorescence
and live cell imaging are produced in the cut14-Y1 hinge
mutant cells, which contain aberrant mitotic chromosomes.
The striking rescue of cut14-Y1 by ssb1-418 suggested that the
weakened Ssbl activity alleviated the defects generated by
the Cut14 hinge mutation. Indeed, results from ChIP and in
vitro reannealing assays suggested that RPA containing the

mutant Ssb1-418 subunit may be removed by mutant conden-
sin. As shown in figure 84, we speculate that Ssb1 and Cutl14
coordinate to regulate the dynamics of ssDNA stabilization.

The damage repair defect in cnd2-1 activates damage
checkpoint in a Cds1l-dependent manner, and delays mitotic
entry [31], whereas the damage in cut14-Y1 is slowly repaired
and does not seem to activate the checkpoint. It is possible
that the SMC2 hinge may act in parallel with the damage
checkpoint. Ssbl formed intense nucleolar foci in cut14-Y1,
which may not be recognized by the DNA damage check-
point and may also not be removed prior to mitosis owing
to the condensin defect. By contrast, cnd2-1 formed similarly
intense Ssb1 foci, but the foci were located in non-nucleolar
regions. Additionally, the Ssb1-YFP foci did not remain in
the aberrant chromosomes of mitotic cells after the delay.
This striking difference is consistent with the failure of the
rescue of cnd2-1 by ssb1-418.
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Figure 8. The hinge of SM(2/Cut14 is a functional entity. (a) Mapping of pseudo-revertants of cut74-Y1 that formed colonies at 33°C. The four mutants are true
revertants (S543L, red column) that formed the normal colonies at 36°C. See text. (b) The mutation sites are shown by the vertical lines. The hinge region is between the
residues 519 and 641. cc, coiled-coil. (c) Location of the mutation sites in the three-dimensional structure of the mouse condensin hinge [30]. The amino acid residue
number is adapted for the S. pombe Cut14. The original cut74-Y1 mutation site is indicated by the red colour, while the second suppressing mutation sites are shown by
blue. The residues 594 and 641 situating behind are faded. (d) A diagram depicting the relationship between the condensin SMC Cut14 hinge and Ssb1. Condensin
preferentially binds to ssDNA [30,34] and promotes annealing to complementary ssDNA in vitro, and appears to oppose the action of RPA. RPA acts as a platform for various
proteins involved in DNA metabolism, such as damage repair and replication through ssDNA stabilization [44—46]. The role of condensin in damage repair remains unclear,
but we propose that it may be required for completing/exiting repair processes by removing RPA and forming dsDNA through reannealing.

The regulation of the positive supercoiling activity [48] of
condensin by protein kinases such as Cdkl [49], Aurora B
and polo kinases [50], and its relationship to DNA topoi-
somerase II [51], have been extensively studied. These
studies emphasized the role of condensin in chromatin pack-
ing, though the mechanism of how the complex functions has
not been elucidated. In this study, we present evidence
suggesting that condensin may have a function in clearing
DNA [19]. The transition from fuzzy chromatin in the inter-
phase nucleus to compacted mitotic chromosomes may
require the removal of interphase protein components such
as RPA. The SMC hinge appears to be critical for this
transition. Ctil/C1D, which directly interacts with the

condensin Cut3/SMC4 hinge and rescues cnd2-1 [52], is
required for RNA degradation [53]. Previous structural and
mutational analyses showed that the hinge is required for
DNA binding and dimerization [5,30,35]. It has been
suggested that the cohesin hinge may open upon DNA bind-
ing [54-56]. Based on our results, the hinge appears to be
important for binding with DNA and RNA, DNA annealing,
damage repair, elimination of protein and RNA from DNA,
and chromosome condensation. Thus, uncovering how the
condensin hinge functions may be key to understanding the
many roles of condensin.

RPA and condensin appear to antagonize each other,
but a balance in their activities may be important for
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coordinating the dynamics of strand separation. Prior to
mitosis, RPA may need to be excluded from chromosomes,
and condensin may remove RPA or possibly other com-
ponents such as transcribed RNA to ensure that mitotic
chromosomes are properly formed and maintained. The pro-
motion of DNA reannealing by condensin SMC involves the
winding up of DNA strands, which is similar to the for-
mation of positive supercoiling (figure 84). Condensin may
supercoil DNA strands to unload chromosomal components
after DNA repair and prior to mitosis. Our present finding
that condensin winds up DNA to clear the DNA-bound com-
ponents may provide a physiological meaning of SMC-
mediated DNA reannealing. Instead, unwinding the double-
stranded DNA leads to the formation of negative supercoil,
which results in the association of transcription machinery
and replication apparatus to unwound chromosomal DNA
regions. This hypothesis will require further investigation.

5. Material and methods
5.1. Isolation of cut14-Y1 and ssb1-418

These two strains were isolated by screening the S. pombe ts
strain collection made by random mutagenesis using pro-
cedures similar to those described previously [57]. cut14-Y1
was isolated owing to its cytological defect in mitotic conden-
sation, while ssb1-418 was rescued by plasmids carrying the
ssb1™ gene. Gene cloning and tetrad dissection confirmed
the tight genetic linkage of the cut14-Y1 ts phenotype to the
cutl4 locus, whereas ssb1-418 is caused by a mutation in
the ssbl locus. The mutation sites of both cut14-Y1 and
ssb1-418 (G78E) were determined by nucleotide sequencing
of the mutant genes isolated by PCR.

5.2. Media, strains and plasmids

Yeast extract, polypeptone, d-glucose (YPD), sporulation agar
(SPA) sporulation and minimal Edinburgh minimal medium
2 (EMM2) media were used for culturing S. pombe cells. The
pre-replicative GO cells made under nitrogen starvation con-
ditions were replenished by the addition of 0.5 per cent
NH4C1 [32]. The chromosomally integrated strain of YFP-
tagged Ssbl strain expressed under the native promoter was
made as described [28]. The Sadl-mCherry was used as the
spindle pole body (SPB) marker [58]. Plasmids used in this
study are shown in electronic supplementary material, table S1.

5.3. Visualization of mutation sites in the
three-dimensional structure

The images of mutation sites in the three-dimensional struc-
ture were made using molecular structure visualization
software (MoLFEat; FiaTLux). The mouse SMC2-4 structure
[30] was obtained from the RCSB Protein Data Bank
(http://www.pdb.org/pdb/home/home.do).

5.4. DNA damage sensitivity, ultraviolet irradiation
and thymine dimer detection

The procedures for UV irradiation, HU and other drug sensi-
tivity measurements, and the detection of thymine dimers,
were previously described [31].

5.5. Immunofluorescence microscopy and chip

The procedures for DAPI staining and immunofluorescence
microscopy were previously described [58]. The anti-Ssbl
antibody was previously made and characterized [42]. The
ChIP method was performed as previously described [58],
with slight modifications. Immunoprecipitation was per-
formed using anti-FLAG M2 antibody (Sigma-Aldrich) or
anti-Ssb1 antibody. Real-time PCR was performed on the Exi-
cycler (Bioneer). The PCR primers used were previously

described [58].

5.6. Live cell analysis

Live cell analysis (figure 3e—g; electronic supplementary
material, movies S1-S4) was performed as previously
described [58]. In brief, S. pombe cells were cultured at 26°C
in EMM2 medium and were shifted to 30°C for the appropri-
ate duration. Cells were transferred to a glass-bottomed dish
(IWAKI Glass) coated with concanavalin A (Wako) before
being examined under the microscope (DeltaVision; Applied
Precision). Time-lapse images were recorded by three-
dimensional microscopy using the DeltaVision system.
For imaging of the Ssbl-YFP with Sadl-mCherry, three
optical sections were collected at 0.5 min intervals at 30°C.
The vertical separations between these sections were
0.5 pm. Image projection and deconvolution were performed
using an imaging workstation (SoftWoRx; Applied Pre-
cision). Video images (electronic supplementary material,
movies S1-54) were taken at 0.5 min intervals. The display

speed is 3 frames s~ .

5.7. Protein purification and DNA annealing assay

Schizosaccharomyces pombe single condensin subunits, hetero-
pentameric holocondensin, dimer or trimer subcomplexes
[20,21] and the heterotrimeric RPA complex [42] were puri-
fied as described. Bacterial SSB was purchased from
Promega. DNA annealing assay (in the absence of RPA or
SSB) was performed as described [20]: the reactions were
stopped by the addition of SDS (final 0.2%). For the protein
(RPA or SSB) elimination assay, 40 nM E. coli SSB or 40 nM
S. pombe heterotrimeric RPA was used for the precoating
of hdDNA (linearized and heat-denatured Bluescript
plasmid), and incubated with hdDNA on ice for 10 min.
Condensin or the SMC dimer was then added. The anneal-
ing reaction was terminated with loading dye in the
absence of SDS followed by electrophoresis. For the RNA
elimination assay, 830 nt RNA was made by in vitro transcrip-
tion T7 (TaKaRa). See electronic supplementary material,
figure S5.

5.8. Gel shift assay

Synthetic 86 nt ssDNA [59] labelled with fluorescein isothio-
cyanate (FITC; Sigma-Aldrich) was incubated with a series of
concentrations of condensin, the SMC dimer or individual
subunits in 20 pl of binding buffer (20 mM Tris—HCI at pH
7.5, 50 mM NaCl, 2 mM MgCl,, 10 per cent glycerol, 1 mM
dithiothreitol) for 10 min at 30°C. The mixtures were then
analysed in 10 per cent non-denaturing polyacrylamide gels
made in 0.5 x TBE (44.5mM Tris-borate, 1 mM EDTA)
buffer, followed by fluorescent imaging (Typhoon9200).
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The same conditions were used for M13 ssDNA, but the
samples were analysed in 0.7 per cent native agarose gels, fol-
lowed by SYBR Gold staining (Molecular Probes). For RNA-
binding assay, 4 per cent agarose (the NuSieve 3:1, TaKaRa)

gel was used.

5.9. Atomic force microscopy imaging
AFM imaging was performed as previously described [4,21].
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