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Introduction
Breast cancer is a complex and heterogeneous disease with 
respect to histology, cellular origin, mutations, metastatic 
potential, disease progression, therapeutic response, and 
clinical outcome. More than 1 million women worldwide 
are diagnosed with breast cancer each year, with over 
400,000 deaths.1,2 An estimated 170,000 of these diagnosed 
cases may be defined as triple-negative breast cancer 
(TNBC). TNBC is an aggressive breast cancer subtype that 
may be characterized by lack of expression of both estrogen 
receptor (ER) and progesterone receptor (PR), as well as 
absence of human epidermal growth factor 2 (HER2) 
upregulation.1-3

To better understand the heterogeneity of breast cancer 
and provide new classifications of breast cancer patients, 
genomic studies based on global gene expression analyses 
have established 6 breast cancer intrinsic subtypes, which 
are luminal A, luminal B, HER2-enriched, claudin-low, 
basal-like, and a normal breast-like group. Originally, the 
molecular profile of TNBC has been linked to the basal 
group of breast cancers, the phenotype of which is charac-
terized by a gene expression profile similar to the basal-
myoepithelial layer of normal breast cells.4-7 This profile 
exhibits overexpression of cytokeratins CK5/6 and 
CK14/17, caveolin 1 and 2, cyclin-D1, and P-cadherin, as 
well as mutations in p53.5,8,9 However, gene expression pro-
filing suggests that TNBC and basal-like breast tumors are 
heterogeneous, and overlap is incomplete. Additional sub-
types of breast cancer have been identified in TNBC, 
including claudin-low, HER2-enriched but without HER2 

gene amplification, luminal A, luminal B, molecular  
apocrine, and immunomodulatory, mesenchymal stem- 
like subtypes.10,11 TNBC has also been associated with 
BRCA1/2-related breast cancers.6,7,12 However, although 
germline BRCA1 mutations can be predictive for TNBC, 
only 10% of TNBCs are associated with BRCA1 mutations, 
and other molecular signatures have not been well 
elucidated.6,7

TNBC is associated with high rates of proliferation and 
has a poorer prognosis than other breast cancer subtypes, as 
demonstrated by diminished progression-free survival and 
overall survival rates.1,13,14 There is also a sharp decrease in 
survival relative to other breast cancers within the first 3 to 
5 years after diagnosis. However, distant relapse after 5 to 
10 years becomes less common than in other breast cancers, 
and TNBC can be a potentially curable disease despite its 
overall aggressive nature.1,6,13,15,16 Although early TNBC 
can be sensitive to standard chemotherapy, traditional hor-
mone therapies and targeted agents such as trastuzumab are 
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Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a high rate of proliferation and metastasis, as well as poor prognosis 
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now shows that there is incomplete overlap, with important distinctions associated with each subtype. The biology of TNBC is still poorly understood; 
therefore, to define the relative contributions of major cellular pathways in TNBC, we have studied its molecular signature based on analysis of gene 
expression. Comparisons were then made with normal breast tissue. Our results suggest the existence of molecular networks in TNBC, characterized 
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Moreover, we also characterized TNBC as a cancer of mixed phenotypes, suggesting that TNBC extends beyond the basal-like molecular signature and 
may constitute an independent subtype of breast cancer. The data provide a new insight into the biology of TNBC.
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not effective in this phenotype of cancer.8,17 A greater 
understanding of the molecular mechanisms of TNBC may 
facilitate the identification of therapeutic targets, as well as 
predictive or prognostic biomarkers, and enable an under-
standing of the mechanisms of response or failure to current 
cancer treatments.

Gene expression profiling using microarrays is a 
straightforward, robust method for the study of the molecu-
lar features of cancer at a systems level. The objective of 
this study was to characterize the molecular and pathway 
signatures of TNBC based on global gene expression analy-
ses and comprehensive bioinformatics.

Results
Finding key pathways of TNBC. We focused our analysis 

on the regulation of major breast cancer cellular pathways. 
Such pathways are assumed to be deregulated (e.g., abnor-
mally activated or suppressed) in a disease state and can 
provide key insights into the mechanisms and molecular 
features of a disease. First, we used Pathway Studio 7 (Ari-
adne Genomics, Rockville, MD), which implements a sub-
network enrichment analysis (SNEA) tool and uses a gene 
expression regulatory network built from facts extracted 
from the literature (for details, see Materials and Methods). 
This network was used to generate a comprehensive collec-
tion of gene sets, each representing immediate downstream 
targets of the individual genes in the network. It is assumed 
that if the downstream expression targets of the central seed 
protein are enriched with differentially expressed genes 
(i.e., the subnetwork is found to be statistically significant 
in the enrichment analysis), then the seed protein is one of 
the key regulators of the observed differential response. As 

the subnetworks were constructed from all known proteins 
in the entire expression network, including ligands, recep-
tors, signaling proteins, and transcription factors, the seed 
proteins of statistically significant subnetworks presumably 
constitute the components of a regulatory network involved 
in the modulation of the observed differential response. The 
key regulators of differential response were identified by 
searching for all expression subnetworks in the ResNet 7 
database enriched with highly differentially changed genes 
(at least 4-fold change, with P < 0.001 in all cancer vs nor-
mal differential expression profiles) using Fisher’s exact 
test (P value cutoff of 0.0001). The identified significant 
regulators are shown in Table 1. More specifically, signifi-
cant regulators include angiotensinogen (AGT) and compo-
nents of the NF-κB pathway, including NF-κB, TIRAP, 
CCL5, CCL4, and IKBKB. Identified NF-κB targets and 
regulators with more than 4-fold differential expression in 
TNBC are illustrated in Figure 1. These data suggest that 
the NF-κB pathway, which controls immune response, 
angiogenesis, the cell cycle, extracellular matrix degrada-
tion, and apoptosis, may represent a key regulator of TNBC.

Analysis of differential gene expression of DNA repair, cell 
cycle, and apoptotic pathways. DNA damage repair is a com-
plex and multifaceted process that is critical to cancer cell 
survival and response to DNA-damaging chemotherapy.4,18 
To define the relative contribution of DNA repair to the 
TNBC phenotype, we investigated the differential changes 
in all known DNA repair pathways. The analysis of proteins 
involved in the regulation of DNA repair pathways was car-
ried out using the ResNet 7 database.19 The significant 
changes in differential gene expression that we found 
among DNA repair molecular networks are presented in 

Table 1.  Key Regulators of Triple-Negative Breast Cancer (TNBC) Identified by Enrichment Analysis of 4-fold Differentially Expressed 
Genes in TNBC Samples in Comparison with Normal Breast Tissue

Subnetwork Pathway Size Gene Set Seed P value

AGT 363 AGT 8.87 × 10–7

NF-κB 659 NF-κB 1.37 × 10–6

PDGF 274 PDGF 2.35 × 10–6

TP53 465 TP53 2.48 × 10–6

CLSPN 1 CLSPN 4.75 × 10–5

Arachidonate 15-lipoxygenase 11 Arachidonate 15-lipoxygenase 6.71 × 10–5

CCL5 33 CCL5 8.35 × 10–5

TIRAP 12 TIRAP 8.68 × 10–5

CCL4 13 CCL4 1.099 × 10–4

FGF2 350 FGF2 1.312 × 10–4

IL1 family 284 IL1 family 1.365 × 10–4

MELK 2 MELK 1.419 × 10–4

MASTL 2 MASTL 1.419 × 10–4

ESR1 288 ESR1 1.517 × 10–4

IKBKB 39 IKBKB 1.595 × 10–4

IL22 39 IL22 1.595 × 10–4

AGT = angiotensinogen; ESR1 = estrogen receptor 1; FGF = fibroblast growth factor; IL = interleukin; PDGF = platelet-derived growth factor.
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Figure 2 (see also Suppl. Table S1). Several genes involved 
in DNA repair are upregulated, including CHEK1, BLM, 
NEIL3, PARP1, FANCI, FANCD2, and EXO1. Interestingly, 
and in contrast, most of the genes involved in the excision 

repair pathway are transcriptionally 
repressed, including DDB2, RPA1, 
XAB2, and RAB23A. Furthermore, 
most of the genes involved in DNA 
mismatch repair are upregulated, 
including MLH1, MSH3, PMS1, and 
PMS2, and the critical genes involved 
in homologous recombination 
(BRCA2, RAD54B, RAD51, and 
RAD51L1) and DNA repair synthesis 
systems (POLQ and PCNA) are also 
upregulated.

Cells with deficiencies in BRCA1, 
BRCA2, or other critical regulators 
of homologous recombination-medi-

ated DNA repair are highly sensitive to poly ADP ribose 
polymerase (PARP) inhibitors.20-22 Although it has been 
shown that several members of the PARP family can be 
associated with breast cancer, it remains unclear how the 

Figure 1.  Gene expression changes in the NF-kB pathway in triple-negative breast cancer.  
ECM = extracellular matrix.

Figure 2.  Gene expression changes in DNA repair pathways in triple-negative breast cancer.



Molecular pathways of triple-negative breast cancer / Ossovskaya et al.	 873

combined actions of the PARP network and pathways could 
contribute to TNBC biology and response to chemother-
apy.17,23 The PARP1 pathway in TNBC was therefore ana-
lyzed by selecting all upstream and downstream regulators 
in the ResNet 7 database with at least 2-fold differential 
changes (P < 0.001). The pathway is depicted in Figure 3 
and shows that most genes in this pathway are upregulated 
in TNBC. All changes that were found are documented in 
Supplementary Table S2.

Differential changes in cell cycle pathways are presented 
in Figure 4. The major regulators of TNBC were found to 
map mitotic spindle checkpoint, spindle assembling, sister 
chromatid cohesion, DNA replication, and centrosome sep-
aration pathways (Table 2 and Suppl. Table S3). The major-
ity of apoptotic pathways were not significantly affected in 
TNBC. Differential changes were observed only in the 
expression of individual genes of the BCL2 family (Fig. 5 
and Suppl. Table S4).

Analysis of differential gene expression in metabolic path-
ways. Because the cell cycle is functionally linked to cellu-
lar metabolism and energy production, all metabolic 
pathways in the ResNet 7 database were analyzed using the 
gene set enrichment analysis (GSEA) algorithm and a 
Mann-Whitney test with a P value cutoff of 0.01. Signifi-
cant changes in metabolic pathways of TNBC were found 
(Table 3). Purine, folate, and pyrimidine metabolism were 
the most significantly changed, consistent with the active 
proliferation of TNBC cells.

Analysis of differentially regulated 
cellular processes. The SNEA described 
for the identification of key regulators 
in this study was also applied to detect 
the cellular processes significantly 
affected by differential expression 
changes in TNBC. In this approach, 
subnetworks were built around each 
cell process in the ResNet 7 database, 
to contain all proteins known to be 
involved in the regulation of the pro-
cess. SNEA (Mann-Whitney test) was 
applied using a P value cutoff of 0.05. 
Most of the significantly affected pro-
cesses are related to cellular prolifera-
tion (spindle assembly, chromosome 
segregation, kinetochore assembly) 
and inflammation (leukocyte migra-
tion, lymphocyte activation, macro-
phage chemotaxis), as well as 
angiogenesis (Table 2).

Figure 3.  Gene expression changes in PARP1 pathways in triple-
negative breast cancer.

Figure 4.  Gene expression changes in cell cycle pathways in triple-negative breast cancer.
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Analysis of differential gene expression of oncogenes and 
tumor suppressors. As cell oncogenes and tumor suppressors 
play a significant role in the regulation of cell proliferation, 
gene transcription, and inflammation, we next investigated 
273 oncogenes and 92 tumor suppressors in a TNBC molec-
ular network using Ariadne Ontology in the ResNet 7 data-
base. The changes in expression among analyzed oncogenes 
and tumor suppressors with at least a 2-fold change (P < 
0.001) are documented in Table 4. The complete list of 
oncogenes and tumor suppressors that were analyzed in this 
study is presented in Supplementary Tables S5 and S6. 
Most of the oncogenes are downregulated in TNBC com-
pared with normal breast tissue. The only exceptions are 
epithelial cell–transforming sequence 2 oncogene (ECT2), 
which is upregulated 3.5-fold, and MYBL1, which 

is upregulated 2.8-fold. Surprisingly, the changes in tumor 
suppressor pathways do not conform to any detectable trends. 
This may be attributed to an accumulation of mutations, 
rather than gene expression, during TNBC biogenesis.

Analysis of biomarkers of different subtypes of breast cancer. 
To build a more detailed molecular profile of TNBC, the 
molecular signatures of individual tumors and normal 
breast tissue samples were compared with a panel of bio-
markers previously linked to different subtypes of breast 
cancer (luminal A, luminal B, HER2-enriched, basal-like, 
and normal breast-like) and described by Parker et al.24 The 
expression of some basal breast cancer markers was indeed 
found to be associated with TNBC in this study (Fig. 6, 
upper part of the panel). However, 5 genes—KRT17, KRT5, 
SFRP1, BCL2, and KRT14—were downregulated in all 
TNBC samples, and these changes are more likely to be 
characteristic of the luminal B subtype (Fig. 6). Several 
genes, such as MIA, FOXC1, ACTR3B, PHGDH, CDH3, 
and EGFR, also show changes that are inconsistent with the 
basal phenotype described previously.24 The established 
profile of basal-like breast cancers suggests that these mark-
ers should be upregulated; however, they were either down-
regulated or unchanged in all analyzed TNBC samples. 
These data suggest that TNBC does not completely overlap 
with basal-like breast cancer as it has been suggested previ-
ously and can be considered a heterogeneous subtype of 
breast cancer.

Discussion
Breast cancer represents a heterogeneous collection of can-
cer subtypes that arise as a consequence of altered gene 
expression and mutations acquired during carcinogenesis. 
This heterogeneity is apparent in cancers with different ER, 
PR, or gene expression profiles that reflect the origin of the 
tumor, such as basal or luminal.9,25 This leads to the notion 
that breast cancer is a nonspecific description of the disease 
and emphasizes the critical need for better characterization 
and classification of breast cancer subtypes, including 
TNBC. Molecular signatures of breast cancer subtypes can 
underline the mechanistic basis of this complex disease 
and, more important, can facilitate a development of novel 
targeted therapy for patients with breast cancer.

Subnetwork enrichment analysis (SNEA). Here we describe 
major cellular pathways that are significantly altered in 
TNBC using SNEA, which is a variation of the GSEA algo-
rithm. Unlike conventional GSEA, which uses a predefined 
collection of hand-curated gene sets, SNEA uses the global 
literature-extracted gene-gene expression regulation net-
work to generate a comprehensive collection of gene sets. 
The gene sets are constructed for each individual protein 

Table 2.  Cellular Processes Significantly Affected in Triple-
Negative Breast Cancer by Subnetwork Enrichment Analysis

Cellular Process
Fold Change 

(Median) P Value

Spindle assembly 1.09543 2.97 × 10–8

Chromosome segregation 1.24326 5.59 × 10–8

Kinetochore assembly 1.24326 5.87 × 10–7

Mitotic entry 1.22061 1.28 × 10–6

DNA replication checkpoint 1.42698 3.45 × 10–6

Mitotic spindle assembly 1.54118 6.22 × 10–6

Cell cycle checkpoint 1.22404 9.29 × 10–6

DNA replication initiation 1.36079 1.00 × 10–5

Mitotic checkpoint 1.31549 1.26 × 10–5

Centriole duplication 1.27286 1.35 × 10–5

Cytokinesis 1.08512 1.59 × 10–5

Diapedeses 1.02289 1.74 × 10–5

Wound healing −1.05818 4.89 × 10–5

Exit from mitosis 1.27715 6.02 × 10–5

Drug resistance 1.03805 7.22 × 10–5

Leukocyte migration 1.0225 9.92 × 10–5

Angiogenesis −1.04112 9.95 × 10–5

Extracellular matrix −1.03602 0.000119
G2/M checkpoint 1.21602 0.000129
Mitotic cell cycle 1.30762 0.000145
Sister chromatid cohesion 1.41186 0.000157
G2 phase 1.16087 0.000166
Lymphocyte activation 1.1126 0.000224
Genetic instability 1.31549 0.000242
Mitotic spindle checkpoint 1.5886 0.000314
Immune cell chemotaxis 1.04873 0.000378
S phase 1.04246 0.000387
Centrosome separation 1.40222 0.000415
Rosetting 1.15516 0.000563
Meiosis II 1.4697 0.000583
Lymphangiogenesis −1.28571 0.000745
M/G1 transition 1.56147 0.000765
Cell invasion −1.01397 0.000835
Macrophage chemotaxis 1.01991 0.000898
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(“seed”) in the global expression network and consist of all 
its downstream expression targets. The central idea of the 
SNEA approach is that if the downstream expression targets 
of a “seed” protein are enriched with differentially expressed 
genes, then the “seed” protein is one of the key regulators of 
the differential expression profile. The global expression 

network used for SNEA in our study comprised more than 
160,000 relations.

The main advantage of SNEA is in the unbiased  
knowledge-driven nature of the algorithm. Subnetworks in 
SNEA are calculated from “facts” of regulation of gene 
expression extracted across the entire public domain. 

Figure 5.  Gene expression changes in apoptotic pathways in triple-negative breast cancer.

Table 3.  Metabolic Pathways Significantly Changed in Triple-Negative Breast Cancer by Gene Set Enrichment Analysis

Pathway Size Gene Set Seed P value

Purine metabolism 151 1.04794 2.76 × 10–5

Folate biosynthesis 70 1.32692 0.000742
Pyrimidine metabolism 106 1.11415 0.001049
Biosynthesis of cholesterol 83 1.13374 0.002436
Amino sugars synthesis 57 1.33648 0.002488
Respiratory chain and oxidative phosphorylation 34 1.16559 0.003506
Tryptophan metabolism 110 1.03413 0.004232
Nicotinate and nicotinamide metabolism 46 1.03603 0.011342
Lysine metabolism 74 −1.00047 0.012182
Tricarboxylic acid cycle 55 1.07236 0.014528
Bile acids metabolism 70 −1.03581 0.020433
Urea cycle and arginine metabolism 86 −1.03614 0.022182
Phenylalanine and tyrosine metabolism 103 −1.00657 0.025452
Ser/Gly/Thr/Cys metabolism 133 1.01691 0.026181
Histidine metabolism 48 −1.08427 0.040691
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Another critically important power of SNEA resides in its 
ability to find genes and proteins for which changes in cancer 
are not on the level of mRNA but rather on a level of biologi-
cal activity (i.e., “hidden” regulators). This is particularly 
important for proteins in which activity is regulated at post-
transcriptional levels (e.g., by posttranslational protein modi-
fication and protein stability). The vast majority of cancer 
signaling pathways are activated or inactivated by virtue of 
phosphorylation of individual protein kinases, an event that 
is unlikely to be reflected on the level of mRNA measured in 
gene expression profiling. Similarly, activity of many tran-
scription factors downstream of major signaling cascades is 
regulated by phosphorylation, and these changes would be 
overlooked in traditional gene expression profiling. SNEA 
can detect such regulators by looking at the changes in down-
stream gene signal transduction, not just gene expression 
itself. Another important advantage of SNEA is its ability to 
“summarize” the individual gene expression changes and 
“project” them to the system-level cellular signaling map. 
Thus, it allows interpretation of expression changes on the 
level of comprehensive cancer pathways.

TNBC pathways. SNEA analysis and comparison of TNBC 
with normal breast tissues revealed an unambiguous molecu-
lar signature of TNBC. The AGT, NF-κB, platelet-derived 

growth factor receptor (PDGFR), and p53 pathways were 
found to be the most significant regulators of TNBC. Surpris-
ingly, the most significant regulator was found to be the AGT 
molecular network. The relationship between AGT and 
breast cancer has not been previously well characterized, 
although AGT has been reported to significantly increase 
angiogenic proteins in receptor-negative cells.26 Some 
changes in NF-κB, PDGFR, and p53 in breast cancer have 
been reported previously.27-29 Consistent with the aggres-
sively proliferative phenotype of TNBC cells, the most sig-
nificantly affected cellular processes were those involved in 
cell cycle regulation, although several inflammation-related 
processes were also significantly changed, suggesting an 
inflammatory component in the pathogenesis of TNBC. 
Interestingly, we identified several significantly changed bio-
chemical pathways of purine/pyrimidine biosynthesis, oxida-
tive phosphorylation, energy production, and nicotinamide 
metabolism.

The analysis of differential expression changes among 
the genes of DNA repair revealed that several DNA repair 
pathways, such as homologous recombination, mismatch 
repair, and DNA repair synthesis genes, were transcription-
ally upregulated in TNBC. In contrast, most of the genes 
involved in excision repair pathways were transcriptionally 
repressed. These data suggest that DNA repair pathways 

Table 4. Tumor Oncogenes and Tumor Suppressors with at Least 2-fold Differential Gene Expression Change

Tumor Suppressor Description Log2 Change

JUN jun oncogene −1.2
KLF6 Kruppel-like factor 6 −1
CDON Cdon homolog (mouse) −1.2
FOS v-fos FBJ murine osteosarcoma viral oncogene homolog −1.9
THRA Thyroid hormone receptor, alpha (erythroblastic leukemia viral [v-erb-a] oncogene homolog, 

avian)
−1

FOSB FBJ murine osteosarcoma viral oncogene homolog B −2
MYBL2 v-myb myeloblastosis viral oncogene homolog (avian)–like 2 1
ETS2 v-ets erythroblastosis virus E26 oncogene homolog 2 (avian) −1.5
ERG v-ets erythroblastosis virus E26 oncogene homolog (avian) −1.1
ECT2 Epithelial cell transforming sequence 2 oncogene 1.8
THRB Thyroid hormone receptor, beta (erythroblastic leukemia viral [v-erb-a] oncogene homolog 

2, avian)
−1.3

KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog −1.8
CXCL2 Chemokine (C-X-C motif) ligand 2 −1.1
EGFR Epidermal growth factor receptor (erythroblastic leukemia viral [v-erb-b] oncogene  

homolog, avian)
−1.1

GL13 GLI family zinc finger 3 −1.3
MYBL1 v-myb myeloblastosis viral oncogene homolog (avian)–like 1 1.5
BRCA2 Breast cancer 2, early onset 1.2
DLGAP5 Discs, large (Drosophila) homolog-associated protein 5 2.5
TGFBR2 Transforming growth factor, beta receptor II (70/80 kDa) −1.3
EAF2 ELL-associated factor 2 1.3
TRIM59 Tripartite motif-containing 59 1.4
FAT4 FAT tumor suppressor homolog 4 (Drosophila) −1.4
FAT2 FAT tumor suppressor homolog 2 (Drosophila) −1.3
PDGFRL Platelet-derived growth factor receptor-like −1.5
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can contribute to the biology of TNBC and could be consid-
ered for further investigation as potential targets for thera-
peutic intervention.

Analysis of breast cancer subtype biomarkers from 
TNBC patients revealed that TNBC shows mixed pheno-
typic characteristics, encompassing elements of other sub-
types along with basal. These observations are consistent 
with previous reports that TNBC can represent a mixture of 
the basal and luminal subtypes and suggest that TNBC may 
constitute an independent group of breast cancer.9-11,25

In conclusion, taking all data together, this study shows 
that TNBC is characterized by a molecular signature and 
complex alterations in different tumor molecular path-
ways. The comparison of TNBC with normal breast tissue 
has shown substantial changes in the NF-κB signaling 
pathway, which controls inflammatory response, angio-
genesis, and apoptosis. We also found significant changes 
in biochemical pathways of cell metabolism, nucleotide 
synthesis, the cell cycle, and regulation of DNA repair. 
Interestingly, we did not find meaningful changes in tumor 
suppressor genes in TNBC, although most of the onco-
genes were downregulated. The data also illustrate that 
TNBC represents a heterogeneous group of breast can-
cers, and the established original classification of TNBC 
as a basal-like cancer needs to be revised, with a need for 
a further investigation and the creation of additional, 
improved, and highly specific biomarkers for this type of 
cancer. Taken together, these findings suggest that the 
characterization of breast cancer based on experimentally 
derived pathway signatures of primary human cancers 
provides a comprehensive approach for a greater under-
standing of the molecular framework linked to defined 
biology and better therapeutic strategies for the treatment 
of breast cancer.

Materials and Methods
RNA isolation. Sets of fresh-frozen TNBC and adjacent 

pathologically normal breast tissue samples from 20 
patients were obtained from Cureline Biobank (Cureline, 
Inc., San Francisco, CA). The clinicopathological data are 
provided in Supplementary Table S7. The microarray meth-
ods were carried out according to published microarray 
studies.30 RNA was extracted from 10 to 30 mg of fresh 
frozen tissue using QIAGEN RNeasy kits (QIAGEN, 
Valencia, CA), and then RNA samples were treated with 
RNase-free DNase I (Ambion, Austin, TX).

RNA amplification: Synthesis of cDNA and labeling. RNA 
samples were amplified by conversion to cDNA using the 
NuGEN WT-Ovation FFPE RNA Amplification System 
(NuGEN Technologies, San Carlos, CA). Briefly, 50 ng of 
RNA was reverse transcribed to antisense cDNA, amplified 
using kit reagents, and purified using a QIAGEN PCR Puri-
fication Kit (QIAGEN). DNA concentration was deter-
mined using a Nanodrop ND-1000 spectrophotometer from 
1 µL of purified product.31,32 Sense transcript cDNA (ST-
cDNA) was generated from 2 to 4 µg of purified antisense 
cDNA using the kit reagents according to the manufactur-
er’s instructions. ST-cDNA was purified using a QIAGEN 
PCR Purification Kit. Up to 5 µg of purified ST-DNA was 
fragmented and biotin labeled using a NuGEN Encore Bio-
tin Module Kit.

Figure 6.  Heat map depicting patterns of triple-negative breast cancer 
samples in gene expression selected by the relationship with intrinsic 
subtypes of breast cancer, such as luminal A, luminal B, HER2-enriched, 
basal-like, and a normal breast-like group4–7,24 (for details of the analysis, 
see Materials and Methods).
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Hybridization, washing, and analysis. Biotin-labeled cDNA 
from each sample was directly hybridized to GeneChip 
Human Gene 1.0 ST Arrays (Affymetrix, Santa Clara, CA). 
Samples were incubated at 45°C in an Affymetrix Hybrid-
ization Oven 640 at 60 rpm for 16 hours and washed  
with an Affymetrix GeneChip Fluidics Station 450 accord-
ing to the manufacturer’s specifications. Scanning was per-
formed using the Affymetrix GeneChip 7G scanner using 
manufacturer-recommended default settings.

Data analysis. An Affymetrix Expression Console was 
used to generate QC parameters, process probe intensity 
files and CEL-format data files, and normalize and sum-
marize a gene expression measurement for each probe set 
on the array through a robust multiarray averaging algo-
rithm.33 For each individual sample, differential expression 
profiles of cancer versus normal breast tissue were calcu-
lated. In addition, the differential profile of all cancer sam-
ples versus all normal breast samples was calculated using 
an unpaired t test.

All gene expression analyses were performed in Path-
way Studio 7 using the ResNet 7 database (Ariadne Genom-
ics).31,33-37 Enrichment analysis in Pathway Studio 7 was 
performed by GSEA and SNEA algorithms.33,38 Functional 
enrichment was performed using Fisher’s exact test.

SNEA enrichment in Pathway Studio was calculated 
using the Mann-Whitney test, a nonparametric method for 
comparing the medians of nonnormal distributions X and Y. 
Both samples (having sizes N and M) are combined into one 
array in ascending order with each element then replaced by 
its rank in the array, from 1 to N + M. The ranks of the first 
sample elements were summarized and a Mann-Whitney U 
value calculated using

U NM
N N

xi
xi

= +
+

− ∑( )
( ).

1

2
Rank

If the U value is close to the mean of U (i.e., 0.5·N·M) 
then the medians of X and Y are similar. The significance 
level of the U statistic can be derived from the distribution 
quantiles. When applied to gene expression data, two distri-
butions are typically derived from the gene set or subnet-
work and from entire gene expression profiles measured on 
chip. The following steps describe the computational steps 
performed by the SNEA algorithm.

SNEA was used to build subnetworks from the relation-
ships in a database, based on criteria specified by the user. 
Initially, a central “seed” is created from all relevant entities 
in the database, and associated entities are retrieved based 
on their relationship with the seed (binding partners, expres-
sion targets, and protein modification targets).

Calculation of the background distribution algorithm 
was used to calculate a background distribution of all 

expression values for the selected sample in the experiment, 
typically from a differential measurement such as that result-
ing from the “Find Differentially Expressed Genes” tool.

Calculation of the subnetwork distribution algorithm 
was used to create a subnetwork distribution of the expres-
sion values in a similar manner for all subnetworks con-
structed in the previous step. More important, during 
distribution calculation, the expression value for each entity 
connected to a “seed” is accounted for as many times as the 
connectivity of that entity in ResNet. The purpose of this is 
to correct the bias introduced by different connectivity of 
entities in ResNet.

Statistical comparison of subnetwork distribution with back-
ground distribution. This algorithm was used to compare the 
statistical significance (P value) for the difference between 
the subnetwork and background distributions, using a one-
sided Mann-Whitney U test.

Presentation and prioritization of results was carried out 
with Pathway Studio, which presents the “seed” entity for 
each subnetwork along with the subnetworks themselves in 
the user interface, ranked from lowest (best) to highest 
(worst) P value. Note: the percentage overlap is also pre-
sented to provide an adequate measurement of significance 
and confidence in various statistical tests of overlap.
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