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Actinomycete strain RB72T was isolated from woodland bluff soil in northern Alabama, USA, and

shown to produce a broad spectrum bacteriocin. Based on morphological and chemotaxonomic

characteristics, the strain was determined to belong to the genus Streptomyces. Phylogenetic

analysis of the near-complete 16S rRNA gene sequence indicated that it differed from those of

the described streptomycetes available in public databases. The distinctive white aerial hyphae

and lack of sporulation suggest a deficiency in the whi pathway of the organism. A combination of

substrate utilization patterns, morphological and chemotaxonomic characteristics and DNA–DNA

hybridization results supported the affiliation of strain RB72T to the genus Streptomyces and

enabled the genotypic and phenotypic differentiation of strain RB72T from closely related

reference strains. Strain RB72T therefore represents a novel species of the genus Streptomyces,

for which the name Streptomyces scopuliridis sp. nov. is proposed. The type strain is RB72T

(5DSM 41917T 5NRRL B-24574T).

The genus Streptomyces, with more than 500 species with
validly published names, contains the largest number of
species of any genus in the domain Bacteria (Hain et al.,
1997). The genus, first proposed by Waksman & Henrici
(1943), includes aerobic, Gram-positive, high G+C
content (69–78 mol%) bacteria. Most members of the
genus Streptomyces possess LL-diaminopimelic acid in the
ultrastructure of their peptidoglycan cell wall and produce
extensively branching networks of substrate mycelia that
give rise to the vertical projection of branching aerial
hyphae (Williams et al., 1983; Embley & Stackebrandt,
1994). Maturity of the aerial hyphae typically culminates in
a sporulation event, resulting in the formation of chains of
uninucleoidal spores from the multinucleoidal, filament-
ous hyphae (Kwak & Kendrick, 1996). The erection of
aerial hyphae generally requires a minimum of 48 h of
substrate mycelium growth, while the maturation of the
spores can take an additional 2 to 4 days (Lawlor et al.,
1987; Willey et al., 1991; Kieser et al., 2000). Mutations in
the regulatory genes guiding this process can result in
alterations of phenotype. Mutations in the bld cascade and/
or the proposed sky pathway cause early termination of
aerial hyphae production with the differentiation of the
colony arrested at the substrate mycelium growth stage
(Claessen et al., 2006). Mutation within the whi cascade

results in the production of an aerial mycelium that does
not generate mature spores and remains white in colour
(Willey et al., 1991; Chater, 2001). Bacteriocin production
within the genus Streptomyces has been previously
reported, with bactericidal spectra described as species-
specific (Zhang et al., 2003) or genus-specific (Roelants &
Naudts, 1964).

In the present study, we isolated strain RB72T from a soil
sample collected at Rainbow Bluff, a woodland bluff in
Lynn, Alabama. Soil-extract medium, developed from a
cold-water extraction of the native soil of the organism
supplemented with 10 mg cycloheximide ml21, 20 mg
nalidixic acid ml21 and 100 U catalase ml21, was seeded
with a soil sample suspension and incubated at 25 uC for
14 days (Farris & Olson, 2007). Strain RB72T was selected
for its appearance as a characteristic streptomycete colony
producing a leathery substrate mycelium and developing
aerial hyphae with colony maturity. Colour production
within the substrate mycelium and aerial hyphae was
evaluated according to the Colour Harmony Manual as
described by Tresner & Backus (1963) and Shirling &
Gottlieb (1966). The isolate was maintained on nutrient
agar slants at 25 uC and as suspensions in nutrient broth
(Difco) with glycerol (20 %, v/v) at 220 uC. Biomass for
the chemotaxonomic and molecular systematic studies was
prepared as described previously (Li et al., 2002). Mannitol
soya flour agar (Hobbs et al., 1989) was used for
maintenance growth, and nutrient broth with 0.4 %
glucose (w/v) was used for biomass growth.

The morphological characteristics of strain RB72T were
examined using light and scanning electron microscopy of
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colonies grown on mannitol soya flour agar, nutrient agar
with 0.4 % glucose (w/v), yeast extract-malt extract
agar [International Streptomyces Project (ISP) medium 2;
Shirling & Gottlieb, 1966] and oatmeal agar (ISP
medium 3) after 7, 14 and 21 days at 25 uC. The coverslip
method of Hopwood (1960) was used to observe hyphal
characters by phase-contrast light microscopy with a Nikon
Eclipse E600 microscope equipped with a Spot RT Colour
imaging system (version 3.4 imaging software; Diagnostic
Instruments). For high-resolution scanning electron micro-
scopy, agar blocks containing mycelium were fixed with
osmium tetroxide (1 %, w/v, in 0.1 M cacodylate buffer,
pH 7.2) for 2 h, passed through increased concentrations of
acetone (25, 50, 75, 90 and 100 %) and dried to critical point
with a Denton DCP-1 critical point drying apparatus. The
dried samples were mounted on graphite-coated aluminium
stubs, coated with gold/palladium alloy by a Technics
Hummer sputter coater, and examined with a Hitachi S2500
scanning electron microscope.

Colony morphology of strain RB72T was observed on
several standard media [ISP2, ISP3, inorganic salts-starch
agar (ISP4), glycerol-asparagine agar (ISP5)] after 14 days
of incubation at 25 uC. Examination of strain RB72T for a
range of biochemical and physiological characters was as
described by Shirling & Gottlieb (1966), Williams et al.
(1983) and Kämpfer et al. (1991). Tolerance to salt,
temperature and pH was tested on nutrient agar with 0.4 %
(w/v) glucose plates incubated for 7–14 days.

Liquid cultures of strain RB72T, Streptomyces hachijoensis
NRRL B-3106T and Streptomyces kentuckensis NRRL
B-1831T were grown under identical conditions (nutrient
broth with 0.4 %, w/v, glucose, 225 r.p.m., 30 uC) until late
exponential phase (8 days), washed, lyophilized and whole-
cell fatty acid profiles determined for triplicate samples
following standard protocols (Sasser, 2001) except that
fatty acids were identified by co-elution with known
standards and mass spectral analysis of their methyl and
picolinyl esters (Christie, 1998).

Genomic DNA was extracted from biomass of actively
growing cultures on nutrient agar supplemented with 0.4 %
glucose (w/v) as described by Olson et al. (2002). PCR
amplification using universal primers 24f and 1492r was
performed as described by Farris & Olson (2007).
Amplified fragments were ligated into pCR2.1 cloning
vector (TA cloning kit; Invitrogen) and used to transform
Escherichia coli DH10B (Invitrogen) according to the
manufacturer’s instructions. Plasmids with inserts of the
correct size were sequenced at the Macrogen (Korea)
sequencing facility. Genomic DNA isolated from strain
RB72T using the method of Bollet et al. (1991) was sent to
the HudsonAlpha Genomic Services Lab (Huntsville, AL)
for Illumina Genome Analyser IIx sequencing.

16S rRNA gene sequence data were aligned using
Sequencher version 4.5 (Gene Codes) and relatedness to
gene sequences of type strains of characterized species of
the genus Streptomyces was determined via NCBI BLAST

searches (Altschul et al., 1997). The reference sequences
and strain RB72T sequence (GenBank accession number
EF657884) were aligned in BioEdit Sequence Alignment
Editor, version 7.0.5.3 (Hall, 1999), using CLUSTAL W

(Thompson et al., 1994). The neighbour-joining (Saitou
& Nei, 1987) and maximum-parsimony algorithms of
PAUP* version 4.0b 10 (Swofford, 2002) were used to infer
the phylogenetic relatedness of the sequences. The method
of Kimura (1980) was used to generate evolutionary
distance matrices for the neighbour-joining algorithm.
Tree topologies were calculated by bootstrap analyses based
on 1000 resamplings.

DNA–DNA relatedness experiments were performed
between strain RB72T and two closely related strains,
Streptomyces hachijoensis NRRL B-3106T and Streptomyces
kentuckensis NRRL B-1831T (5Streptomyces netropsis;
Hatano et al. 2003), using the fluorometric method
described by Gonzalez & Saiz-Jimenez (2005). Briefly,
strains RB72T, Streptomyces hachijoensis NRRL B-3106T

and Streptomyces kentuckensis NRRL B-1831T were grown in
either nutrient broth (Difco) or SYZ (15 g soluble starch, 2 g
yeast extract, 4 g NZ amine, 2 g glucose, 1 l deionized H2O;
pH 6.2) medium. Genomic DNA was isolated from the
above strains using the method of Bollet et al. (1991). The
purified genomic DNA samples possessed A260/A280 ratios
between 1.8 and 2.0. Homoduplex and heteroduplex DNA–
DNA hybridizations were performed as described by
Gonzalez & Saiz-Jimenez (2005) using a Tor of 82.7 uC.
Thermal denaturation experiments contained 0.2 mg duplex
DNA ml21, 0.16 SSC (pH 8.0) and SYBR Green nucleic acid
stain diluted 1 : 100 000. Melting curve analysis was
performed using a MyiQ Real-time PCR Detection System
(Bio-Rad). Tm values for homoduplex and heteroduplex
genomic DNA solutions were calculated as the temperatures
corresponding to a 50 % decrease in fluorescence. DTm

values were calculated as the difference between the Tm of
the heteroduplex genomic DNA solution and the Tm of the
reference strain homoduplex genomic DNA solution.

The organism exhibited a range of chemotaxonomic and
phenotypic characters typical of the members of the genus
Streptomyces (Table 1 and Supplementary Table S1,
available in IJSEM Online). Strain RB72T formed an
extensively branched substrate mycelium and aerial hyphae
on several standard growth media (Supplementary Figs S1
and S2). The organism produced white aerial hyphae with
no spores and a golden brown substrate mycelium on all
standard morphological media tested with the exception of
ISP2, on which the extent of the aerial hyphae formation
was reduced and the substrate mycelium did not produce
pigment. Sporulation of the aerial hyphae was not detected
after 14 days, and the aerial hyphae remained white in
colour, typical of other Streptomyces strains that do not
sporulate (Hopwood et al., 1970; Chater, 1972, 1993; Aı́nsa
et al., 2000; Gehring et al., 2000). Interestingly, analysis of
the genomic sequencing failed to identify highly conserved
(within the genus Streptomyces) primers for the bacterial
signal recognition particle receptor FtsY, which has been
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shown to regulate sporulation in Streptomyces coelicolor
through interaction with whiH (Shen et al., 2008). These
results suggest a deficiency (or silent transcription) in the
whi pathway of the organism.

In addition to the characters in Table 1, strain RB72T

reduced nitrate to nitrite and growth occurred at sodium
chloride concentrations of 4 and 7 %, but not at 10 or
13 % (w/v). Growth occurred at pH 6.0–11.0 (optimum,
pH 7.0) and 15–37 uC (optimum, 25 uC). Strain RB72T

hydrolysed adenine, casein, aesculin, gelatin, hypoxanthine,
L-tyrosine, starch and xanthine but not cellulose.

The whole-cell fatty acid profiles of all of the species of the
genus Streptomyces analysed were mainly comprised of iso-
branched, even- and odd-chain, saturated and monounsa-
turated fatty acids (Supplementary Table S1). Strain RB72T

was unique in that the iso-branched, odd-chain, unsat-
urated fatty acid iso-C17 : 1v8 comprised greater than 10 %
of its total fatty acids.

A near-complete 16S rRNA gene sequence (1376 nt) was
determined for strain RB72T. Comparison of the sequence

with sequences of reference micro-organisms confirmed that
the unknown isolate was closely related to species of the
genus Streptomyces. Phylogenetic analysis showed that strain
RB72T formed a sister grouping with Streptomyces kentuck-
ensis NRRL B-1831T (98.47 % similarity), Streptomyces
netropsis NBRC 12893T (98.45 %), Streptomyces stramineus
NBRC 16131T (98.45 %), Streptomyces hachijoensis NRRL
B-3106T (98.61 %) and Streptomyces celluloflavus NBRC
13780T (98.59 %) (Fig. 1). Streptomyces kentuckensis NRRL
B-1831T is considered a subjective synonym of Streptomyces
netropsis (Labeda, 1996; Hatano et al., 2003). Genomic
sequencing revealed 70.3 mol% DNA G+C content for
strain RB72T.

Analysis of DNA–DNA relatedness was performed between
strain RB72T and the closely related strains Streptomyces
hachijoensis NRRL B-3106T and Streptomyces kentuckensis
NRRL B-1831T using the fluorometric method described by
Gonzalez & Saiz-Jimenez (2005). This method measures the
difference in the thermal denaturation midpoints of
homoduplex versus heteroduplex genomic DNA (DTm)
and has been used successfully in the characterization of
other species of the genus Streptomyces (Kumar &
Goodfellow, 2008). Distinct genomic species have a DTm

equal to or greater than 5 uC (e.g. Wayne et al., 1987;
Stackebrandt & Goebel, 1994; Rosselló-Mora & Amann,
2001). For each species–species comparison, two independ-
ent experiments were performed. The following temperature
differences represent the means and single standard devia-
tions (given in parentheses) of these experimental sets. We
found a difference in melting temperature of Streptomyces
hachijoensis homoduplex genomic DNA versus RB72T–
Streptomyces hachijoensis heteroduplex genomic DNA of
12.2 uC (1.0 uC), confirming a definite species delineation.
Likewise, the melting temperature difference between
Streptomyces kentuckensis homoduplex genomic DNA and
RB72T–Streptomyces kentuckensis heteroduplex genomic
DNA was 7.6 uC (1.9 uC), also corroborating species
delineation.

Strain RB72T demonstrated a broad spectrum of bacteri-
olytic activity. The purified bacteriocin (data not shown)
was active against the Gram-positive bacteria Streptomyces
avermitilis MA-4680T, Streptomyces coelicolor A3(2),
‘Streptomyces lividans’ 66, Streptomyces venezuelae NRRL-
ISP 5230T, Nocardia salmonicida NRRL B-2778T, Nocardia
vaccinii NRRL WC-3500T, Rhodococcus marinonascens DSM
43752T, Bacillus megaterium ATCC 14581T, Bacillus subtilis
168, Staphylococcus aureus FDA209, Streptococcus pyogenes
ATCC 14289, Enterococcus faecalis ATCC 29212 and
Micrococcus luteus strain 85W0996, and the Gram-negative
bacteria Escherichia coli DH10B and Klebsiella pneumoniae
ATCC 13883T.

Strain RB72T warrants classification as the type strain of a
novel species of the genus Streptomyces based on compar-
ison of its 16S rRNA gene sequence with other known
species of the genus Streptomyces and the phenotypic
characters of sole carbon source utilization, genomic DNA

Table 1. Comparison of morphological, cultural and physio-
logical characteristics of strain RB72T and related species of
the genus Streptomyces

Strains: 1, RB72T; 2, S. hachijoensis NRRL B-3106T; 3, S. kentuckensis

NRRL B-1831T. All data were determined in the laboratory under the

same growth conditions. ND, Not determined; d, variable; +, positive;

2, negative. All strains were positive for growth on D-glucose and

myo-inositol and negative for growth on sucrose.

Characteristic 1 2 3

Morphology and pigmentation

Aerial mass on oatmeal agar White Beige Red–white

Spore-chain arrangement 2 ND ND

Spore surface 2 ND ND

Melanin production 2 2 +

Production of diffusible pigments 2 2 2

Growth on sole carbon

sources (1 %, w/v)

L-Arabinose + 2 2

D-Fructose 2 d 2

D-Galactose + 2 +

D-Mannitol 2 2 2

D-Raffinose + 2 2

L-Rhamnose + 2 2

D-Xylose + 2 2

Sorbitol 2 + +

Cellobiose + 2 +

Melibiose + 2 +

L-Sorbose 2 2 2

Maltose + + +

Adonitol + + +

Lactose + 2 +

D-Mannose + + +

Dextrin + + +

Inulin 2 + +
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hybridization/thermal denaturation experiments, chemo-
taxonomic characters, broad spectrum bacteriocin pro-
duction and lack of sporulation that set it apart from
other described species of the genus Streptomyces. For
strain RB72T, we propose the name Streptomyces scopu-
liridis sp. nov.

Description of Streptomyces scopuliridis sp. nov.

Streptomyces scopuliridis (scop.ul.i9rid.is. L. masc. n.
scopulus cliff, bluff, crag; L. gen. n. Iridis of or belonging
to the goddess of the rainbow; N.L. gen. n. scopuliridis from
a rainbow cliff, referring to the location of isolation,
Rainbow Bluff, a woodland bluff in Lynn, Alabama).

Aerobic, Gram-positive, non-motile, non-spore-forming
actinomycete. Substrate and aerial mycelia are produced;
however, the aerial hyphae fail to undergo the sporulation
process. The substrate and aerial hyphae branch exten-
sively, and the aerial hyphae remain white upon matura-
tion. The reverse side of the substrate mycelium produces a
golden brown pigment on ISP3, ISP4 and ISP5 media. In
addition to the characters described in Table 1, nitrate is
reduced to nitrite and growth occurs at sodium chloride
concentrations of 4–7 % (w/v), at pH 6.0–11.0 and at
temperatures of 15–37 uC. Hydrolyses adenine, casein,
aesculin, gelatin, hypoxanthine, L-tyrosine, starch and
xanthine, but not cellulose. The four most abundant fatty
acids are iso-C16 : 0, iso-C17 : 1v8, iso-C15 : 0 and anteiso-
C15 : 0 and the G+C content of the genomic DNA of the
type strain is 70.3 mol%. Produces a broad spectrum

bacteriocin with activity against Gram-positive and Gram-
negative bacteria.

The type strain, RB72T (5DSM 41917T 5NRRL
B-24574T), was isolated from a soil sample collected from
Rainbow Bluff, a woodland bluff in Lynn, Alabama.

Acknowledgements

Funding for this study was partially provided by a National Institutes
of Health grant (1R15GM069402-01) to J. B. O.

References

Aı́nsa, J. A., Ryding, N. J., Hartley, N., Findlay, K. C., Bruton, C. J. &
Chater, K. F. (2000). WhiA, a protein of unknown function conserved
among Gram-positive bacteria, is essential for sporulation in
Streptomyces coelicolor A3(2). J Bacteriol 182, 5470–5478.
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