Nucleotide sequence of a cDNA for ϕ_0 , a histone to protamine transition protein from sea cucumber spermatozoa

Eva Prats^{1.2}, Lluís Cornudella^{1*} and Adolf Ruiz-Carrillo²

¹Unit of Macromolecular Chemistry, CSIC and Universitat Politècnica de Catalunya, 08028 Barcelona, Spain and ²Department of Biochemistry School of Medicine and Cancer Research Center, Laval University, Québec G1R 2J6, Canada Submitted November 7, 1989 EMBL accession no. X16364

Chromatin from spermatozoa of the echinoderm *Holothuria tubulosa* contains a highly basic protein called ϕ . (1) and a specific arginine-rich H1 subtype (2), in addition to the other main histones. Protein ϕ . has an amino acid composition in between that of the C-terminal half of echinoderm H1-S and that of protamines, provided that Arg is considered equivalent to Lys, with an average M, of 8640 Da (3). Accumulation of ϕ . occurs during spermiogenesis and represents about 4% of the histone moiety of the mature spermatozoa (1). Moreover, the nucleosomal organization of chromatin is not altered by the presence of ϕ . (4).

organization of chromatin is not altered by the presence of ϕ . (4). Cell-free translation of oligo(dT)-fractionated RNA has suggested that ϕ -mRNA is polyadenylated. A gonad-specific λ gt11 cDNA library (5) has been constructed and screened with polyclonal anti- ϕ . antibodies (6). Several positive clones have been characterized and the longest insert sequenced on both strands (7). The cDNA sequence, shown below, spans an open reading frame for a basic protein of 77 residues (8550 Da), flanked by leader and trailer tracts. The deduced protein sequence conforms to the partial amino acid sequence of ϕ . previously established. Poly(A)' RNA and DNA blot hybridizations with the cloned cDNA indicate that the ϕ -mRNA is about 600 nt long and suggest that the ϕ - gene is present as a single copy in the *H. tubulosa* genome.

tccd	cctt	gtgt	cgga	aaatt	ccaa	acta	caato	$\frac{\text{ATG}}{\text{M}}$	GTA V	GCC A	AGA R	CGA R	CAA Q	ACA T	AAG K	63		
AAA K	GCT A	AGG R	AAG K	CCT P	GCA A	GCC A	AGG R	AGA R	CGC R	AGC S	GCA A	GCC A	AAA K	CGC R	GCA A	GCC A	CCA P	117
GCT A	GCG A	AAG K	AAA K	GCG A	GCG A	AGT S	CGC R	CGT R	CGT R	CCA P	AAG K	AGT S	GCT A	AAG K	AAG K	GCT A	AAG K	171
CCC P	GCA A	GCA A	AGG R	AGA R	CGC R	AGC S	AGC S	GTC V	AAA K	CCT P	AAA K	GCA A	GCA A	AAA K	GCA A	GCC A	GCC A	225
caa Q	GTC V	CGT R	CGC R	AGG R	AGC S	CGA R	CGA R	ATT I	CGC R	CGT R	GCG A	тсс S	GTG V	TCA S	AAG K	$\frac{\text{TAA}}{\text{end}}$	tcc	279
aato	aatggaagactgatcattaaatcgtaaccccttcaaaagactaaatttattaattttagttttgtagaact															aact	350	
gtco	${\tt ytccaaattttctagaatattgcagaactgaacatttaaaacacatccaaattcgtaagcgaacaagcaag$														caag	421		
caad	gato	gacct	cacaa	aaaaa	a													441

Acknowledgements: Supported by grants from NATO (86-304), the Spanish DGICyT (PB87-0211), and the Medical Research Council of Canada.

*To whom correspondence should be addressed

<u>References</u> (1) Subirana, J.A. (1970) *Exp. Cell Res.* 63, 253-260. (2) Phelan, J.J. et al. (1972) *Eur. J. Biochem.* 31, 63-68. (3) Ausió, J. and Subirana, J.A. (1982) *Biochemistry* 21, 5910-5918. (4) Cornudella, L. and Rocha, E. (1979) *Biochemistry* 18, 3724-3732. (5) Young, R.A. and Davis, R.W. (1983) *Proc. Natl. Acad. Sci. USA* 80, 1194-1198. (6) Casas, M.T. et al. (1989) *Exp. Cell Res.* 182, 14-25. (7) Zhang, H. et al. (1988) *Nucleic Acids Res.* 16, 1220.