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Introduction

While advances in free trade and globalization increase

the movement and accelerate the accumulation of inva-

sive species (Lockwood et al. 2005), it is still unclear how

introduced populations can successfully establish. As

Elton (1958) pointed out, for every successful invasion

that occurs, ‘there are enormously more invasions that

never happen, or fail quite soon or even after a good

many years’ (page 109). What then determines success

and failure? This modern biological paradox cannot read-

ily be reconciled, especially in the characteristic case

where the founder population is small, as ‘such popula-

tions are definitely in a precarious position’ (Mayr 1965;

page 42). Introductions of populations at low density

and/or small size are often faced with inverse density

dependent effects, attributed to demographic stochasticity

or reduced cooperative interactions (Courchamp et al.

1999). Allee (1931) first proposed that under these condi-

tions, populations may suffer a decrease in the per-capita

rate of increase, from here on referred to as the Allee

effect.

Upon arrival in a novel environment, individuals need

to overcome a series of challenges in order to reduce the

population’s risk of extinction. The time period in which

this occurs is generally considered the initial establish-

ment phase, and is thought to be a common feature and

general pattern of invasion and the process of growth and

expansion (Shigesada and Kawasaki 1997; Sakai et al.

2001). The occurrence of a lag phase that precedes a

noticeable increase in population growth and density can

result from ecological and/or evolutionary phenomena

(Sakai et al. 2001). Small populations that undergo logis-

tic growth slowly increase through the initial phase of the

exponential curve, leading to the perception of a time lag.

Where this time lag is more pronounced, populations

may be recovering from inverse density dependent effects

(i.e., Allee effects).

Individuals may suffer a reduction in fitness at low den-

sities for many reasons (reviewed by Courchamp et al.

2008). Even when the initial population is large, rapid

dispersal required for expansion could be suicidal as the

population density decreases, thereby enhancing inverse

density dependent effects (Lewis and Kareiva 1993; Drake
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Abstract

The mechanisms that facilitate success of an invasive species include both eco-

logical and evolutionary processes. Investigating the evolutionary dynamics of

founder populations can enhance our understanding of patterns of invasiveness

and provide insight into management strategies for controlling further estab-

lishment of introduced populations. Our aim is to analyze the evolutionary

consequences of ecological processes (i.e., propagule pressure and threshold

density effects) that impact successful colonization. We address our questions

using a spatially-explicit modeling approach that incorporates dispersal, density

dependent population growth, and selection. Our results show that adaptive

evolution may occur in small or sparse populations, providing a means of miti-

gating or avoiding inverse density dependent effects (i.e., Allee effects). The

rate at which this adaptation occurs is proportional to the amount of genetic

variance and is a crucial component in assessing whether natural selection can

rescue a population from extinction. We provide theoretical evidence for the

importance of recognizing evolution in predicting and explaining successful

biological invasions.
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et al. 2005; Drury et al. 2007). Commonly, a distinction is

made between a ‘demographic’ Allee effect and a ‘compo-

nent’ Allee effect where the population size and density

affects the mean overall fitness or some component of

individual fitness, respectively (Stephens et al. 1999;

Gascoigne et al. 2009). It is often difficult to decipher the

exact mechanism that manifests Allee effects (and it is not

always the case that component Allee effects lead to demo-

graphic Allee effects). Nevertheless, we focus our attention

on population level demographic Allee effects with the

underlying assumption that a component Allee effect led

to the demographic Allee effect. Essentially, it is the case

that introduced individuals may be maladapted to small

population sizes where their survival and reproductive

ability are significantly impacted, and these impacts on

individual fitness combine to produce an overall decrease

in abundance (i.e., demographic Allee effects). As Allee

effects impact individual fitness, the underlying traits that

influence these effects (i.e., component Allee effects) may

be subject to natural selection (Courchamp et al. 2008).

Whereas propagule pressure is an emerging explanation

for the establishment of invasive species (Lockwood et al.

2005), it relies on an obvious relationship between the

number and size of introduction events and the probabil-

ity of success, as safety in numbers helps combat Allee

effects and stochastic extinction. In the event that propa-

gule size is not large enough to overcome inverse density

dependent effects, a population may still become estab-

lished if individuals can adapt to mitigate or avoid Allee

effects. Traits that may be responsible for reproductive

success and survival at small population densities and

sizes include mate finding cues (pheromones and vocal/

visual signals), dispersal/aggregation behavior, habitat

preferences, mating synchronicity, and gamete morphol-

ogy and performance (see Courchamp et al. 2008 for

detailed studies). Direct evidence for the evolution of

these traits as functional adaptations to Allee effects is

limited, but we can infer an adaptive evolutionary

origin of these traits from studies of sexual selection

(Courchamp et al. 2008; Gascoigne et al. 2009).

An evolutionary response to intensive selection pressure

imposed by density dependent survival and reproduction

relies on genetic variants for adaptive evolution. Accord-

ing to neutral quantitative genetic theory, a loss of genetic

variation is expected from population bottlenecks and

founder effects (Nei et al. 1975). However it is not neu-

tral variation that matters, but rather evolvability depends

on the variation relevant to selection. Maintenance or

even increases of this (additive) genetic variation has been

theoretically and empirically observed following a bottle-

neck or in small founder populations (Bryant et al. 1986;

Goodnight 1988; Willis and Orr 1993; Cheverud and

Routman 1996; Briggs and Goldman 2006; Turelli and

Barton 2006). Additionally, many recent studies suggest

that there is actually no significant reduction in genetic

diversity in most successful invaders (Lee 2002; Allendorf

and Lundquist 2003; Roman and Darling 2007 and refer-

ences therein), and that evolution can occur on contem-

porary timescales (Reznick and Ghalambor 2001; Carroll

et al. 2007; Kinnison and Hairston 2007). Our purpose

here is to explore the feasibility of small populations that

may adaptively respond to overcome Allee effects in order

to establish, given any amount of genetic variation.

In this paper, we present evidence for the enhanced

potential for growth and spread of a small introduced

population of organisms faced with Allee effects when

adaptation occurs. We model the growth and spread of

this population according to a reaction-diffusion equa-

tion, and allow evolution to influence inverse density

dependent effects through a genetic subsystem that

provides the opportunity for successful invasion when

otherwise (under the current, ecological paradigm) the

population would go extinct.

Model description

The deterministic model that we explore in this paper

broadly describes population dynamics with density-

mediated growth (i.e., an Allee effect) and diffusive

dispersal. This type of demographic model has been used

as a compact and tractable representation of invasion

(e.g., Skellam 1951; Lewis and Kareiva 1993). Specifically,

it has been applied to systems such as introductions of

nonindigenous freshwater and marine species through

ballast water discharge (Drake et al. 2005; Drury et al.

2007). Using this approach, Drake et al. (2005) report

acceptable volumes of discharge for various organisms

(with differing reproductive rates) for a range of invasion

risk tolerances. Here, we consider populations that are

introduced below the invasion risk threshold, but none-

theless succeed if evolutionary dynamics are considered in

conjunction with the ecological system.

The ecological system

The growth and spread of an introduced population of

organisms is represented by a reaction-diffusion equation

described by (Lewis and Kareiva 1993):

@u

@t
¼ ru 1� uð Þ u� a2

� �
þ D

@2u

@x2
ð1Þ

which determines the rate of change in the local population

density relative to the carrying capacity [u which denotes

u(x,t)] over time, at a point in space. This equation models

the growth of the population (the first term on the right

hand side of Eqn. 1) at a spatial location that is subject to
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an Allee effect in addition to migration (which depends on

the second term on the rhs of Eqn. 1). The diffusion coeffi-

cient (D) scales the rate of population spread, in this case

across a one-dimensional habitat x. The reproductive rate

is regulated by r, and a2 (which is a function of space and

time, derived below) is the local critical density or Allee

threshold that determines if population growth is positive

or negative (Fig. 1A).

There are many variations of single-species models of

population dynamics that exhibit Allee effects (see table 1

of Boukal and Berec 2002), however the growth function of

Eqn. (1) is widely used and flexible (Boukal and Berec

2002). The behavior of this Verhulst (1838) logistic model

modified to include a nonlinear cubic term (based on the

Fitzhugh-Nagumo equations; Fitzhugh 1960; Nagumo

et al. 1962), is bistable, with equilibria at u = 0 (extinc-

tion), u = a2 (unstable threshold), and u = 1 (carrying

capacity). Figure 1A shows this behavior in terms of the

growth of the population (change in population density

with respect to time) versus the population density. At den-

sities below the critical threshold (a2) there is negative pop-

ulation growth declining to extinction (from here on the

population is considered extinct below a cutoff density of

0.0001, as a declining population trajectory will only

asymptotically approach zero in a deterministic model;

Gomulkiewicz and Holt 1995); otherwise the population

will reach carrying capacity. This is clearly shown in Fig. 1B

with the graph of the solution of the growth function (pop-

ulation size versus time) at various initial densities.

When diffusion is added to this model of population

growth, there are two critical elements that emerge based

on the solution to the partial differential equation (PDE).

The first is the wave speed, which is determined by the

Allee threshold (a2). As we are considering a strong Allee

effect in this model (i.e., 0 < a2 < 1, where the popula-

tion below this threshold exhibits negative growth versus

reduced positive growth from a weak Allee effect), there

exists a unique wave speed of the invasion front that is a

result of being ‘pushed’ from the inside out, as opposed

to being ‘pulled’ by the leading edge (Lewis and Kareiva

1993). This velocity can be derived through the solution

of the PDE (1): v ¼
ffiffiffiffiffiffiffiffi
2rD
p

ð12� a2Þ(Lewis and Kareiva

1993; Murray 1993). This result suggests that in order for

a wave to maintain a positive velocity of advance, the

magnitude of the Allee threshold (a2) must be less than

half of the maximum value of the population density rel-

ative to the carrying capacity. In addition to the velocity

of the wave front, the region occupied by the invading

population must exceed a certain critical size for positive

growth to occur (Skellam 1951; Kierstead and Slobodkin

1953). This phenomenon is clearly explained by Okubo

(1980) by noting that whereas reproduction takes place

within a region or patch, diffusion takes place at the

boundaries resulting in a loss of organisms, thus reducing

the density within the patch. This tradeoff in the ratio of

inner region volume to outer surface area will either allow

a population to grow or decline with an inverse relation-

ship of diffusivity to rate of growth. This relationship

gives a minimum region within which reproduction can-

not compensate for loss due to diffusion, especially when

Allee effects influence population growth. Thus, Lewis

and Kareiva (1993) derive a minimum size condition

(i.e., the radius of the initial beachhead) based on the

wave speed that is required for the population to establish

and radially expand. We address this critical size thresh-

old qualitatively, as the analytical solution (i.e.,

Rmin> D
2r

� �1
2 1

1=2�a2

� �
; Lewis and Kareiva 1993) is for two-

dimensional spread, while we work with a simpler
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Figure 1 Growth dynamics of the model population (A), and the

solution of Eqn. (1) without diffusion (B) with reproductive rate,

r = 0.6, and Allee threshold, a2 = 0.3. Trajectories for population size

(B) are given for initial densities from 0 to 1 in increments of 0.05.
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one-dimensional model. The minimum critical radius is

proportional to the ratio of diffusivity (i.e., diffusion

coefficient, D) to the reproductive rate (controlled by r).

The inclusion of diffusion in the model provides a spa-

tially explicit understanding of how all of the components

interact to affect invasion/establishment success. The dif-

fusion process has been extensively analyzed in invasion

processes (e.g., Fisher 1937; Skellam 1951; Okubo 1980).

The evolutionary subsystem

In order to incorporate evolutionary factors that may

influence invasion success, we develop a quantitative

genetic subsystem. This genetic subsystem is coupled to

the ecological model to explore the effects of selection

and genetic variance on traits that may increase a popula-

tion’s likelihood of survival. Specifically, we allow the

Allee threshold to become a dynamic parameter that is

considered to be a fitness related trait (e.g., a trait

impacting the component Allee effect). From here on,

except in the absence of evolution, referring to the Allee

threshold implies that that value is the initial value, as it

changes over time. This quantitative trait influences an

organism’s ability to survive and reproduce in a small

population. The results reveal the possibility that an

introduced population that would fail to persist in the

ecological context of this model has the potential to suc-

ceed through evolutionary means. Including evolution

within the context of ecological invasions can serve to

provide more robust predictions for management strate-

gies. Therefore, it is important to investigate the possibil-

ity of evolution in the analysis of invasions.

The framework that is used to link evolutionary change

with ecological processes involves developing a relation-

ship between the fast, ecological and slow, evolutionary

timescales in order to make these rates comparable

(Kondrashov and Khibnik 1996). In the coupled evolu-

tionary ecology model, the reaction-diffusion Eqn. (1)

describes the change in the population density over time

and is tied into a genetic subsystem that allows the organ-

ismal response to population density to evolve in terms

of the selection gradient and genetic variance. As the pop-

ulation dynamics vary across space, the genetic subsystem

describes the rate of change of the trait mean (i.e., the

Allee parameter) at each location x by:

@a

@t
¼ e

@f u; að Þ
@a

þ 2D
@a

@x

@ ln uð Þ
@x

þ D
@2a

@x2
ð2Þ

(Pease et al. 1989; Garcı́a-Ramos and Kirkpatrick 1997;

Kirkpatrick and Barton 1997; Hare et al. 2005). The first

term on the right hand side reflects the force of local

directional selection, where the selection gradient for fre-

quency-independent selection is the rate of change of the

mean Malthusian fitness function (i.e., per-capita growth

rate:f u; að Þ ¼ r 1� uð Þ u� a2ð Þ)with respect to the trait, a

(Lande 1976; Falconer 1989). Thus,@f u;að Þ
@a ¼ 2ra u� 1ð Þ,

where we assume that individual fitness approaches the

population mean fitness, as most individuals are close to

the average phenotype (Webb 2003). This suggests that

the genetic variance (e) is small (and constant in this

model). This small parameter for the genetic variance can

be used to couple the fast ecological timescale, t, with the

slow evolutionary timescale, s = et (Kondrashov and

Khibnik 1996; Webb 2003). Combing these two compo-

nents of genetic variance and selection, quantifies the

effect of natural selection on the local mean value of the

quantitative trait (the Allee parameter; Lande 1976;

Falconer 1989).

In order to account for the influence of migration on

the trait’s local mean, the latter two terms in Eqn. (2)

incorporate space. The middle term takes into account

asymmetrical gene flow caused by the variation of density

across space (Pease et al. 1989; Garcı́a-Ramos and Kirkpa-

trick 1997; Kirkpatrick and Barton 1997; Hare et al. 2005).

This captures the influence of the mean trait value (i.e.,

genetic contribution) from more abundant populations to

less abundant neighboring locations due to the spatial gra-

dient, as more individuals migrate from areas with rela-

tively high population densities. The last term mirrors the

diffusion term from the ecological model, and describes

the homogenizing effect of random dispersal.

We solved the spatially explicit system numerically

using Matlab 7.0 (2004, The MathWorks, Natick, MA,

USA) using a finite difference method to incorporate

diffusion and gene flow (adapted from Garvie 2007). By

iterating Eqns (1) and (2) forward in time, the popula-

tion density and Allee threshold at each location are

updated with diffusion following growth and selection,

respectively, while incorporating the spatial gradient. The

simulated populations, with and without evolution,

behaved as we expected from the model Eqns (1) and (2),

and adequately approximate/represent the critical condi-

tions that govern this dynamical system.

Results

The dynamics of the evolutionary ecology model can be

interpreted using the idea of fast and slow timescales

(Kondrashov and Khibnik 1996; Webb 2003). Earlier, we

assumed that the genetic variation (e) was small (to use

mean fitness as a proxy for individual fitness), which can

subsequently be taken advantage of for our analysis of the

coupled evolutionary ecological dynamics. When e = 0,

the situation without evolution, the genetic subsystem is

frozen and the population moves towards a stable equilib-

rium of the ecological subsystem (carrying capacity or
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extinction) depending on its initial density (greater than

or less than the Allee threshold respectively; Fig. 1B) and

initial radius (spatial extent) in the spatially explicit

model. When e > 0 but small, the Allee threshold evolves

relatively slowly and influences the ecological system.

Whenever the population is below its carrying capacity

(u = 1 for each spatial coordinate x when space is expli-

cit), Eqn. (2) is negative, and decreases the mean Allee

threshold (a2), as the intensity of selection is density

dependent. Thus, fitness increases as Allee effects are sup-

pressed, and selection drives the Allee threshold towards

zero. If the population density is greater than the Allee

threshold, but still below the carrying capacity, it will

progress towards carrying capacity more rapidly than it

would without evolution as a2 decreases; as the rate at

which the population density changes (Eqn. 1) is propor-

tional to the difference between u and a2. The ecological

dynamics are reversed when the population density is

below the Allee threshold as the population declines

towards extinction, but more slowly than it does without

evolution. When u < a2, Eqn. (1) is negative, and the

population density approaches extinction more rapidly

with a2 constant (as the difference between u and a2

increases), than it does with evolution as a2 decreases

(revealing a more pronounced time lag to extinction).

During this time lag, as the population slowly declines,

the opportunity for evolution to overcome inverse density

dependent effects occurs. If the rate of evolution is fast

enough, the Allee threshold can fall below the population

density, causing the rate of change of population density

to become positive (where u > a2) and the population

grows and can successfully invade. The chance that evolu-

tion can rescue the population from extinction depends

on the relative rates of genetic change in the quantitative

trait (i.e., Allee threshold) and of population decline

(Gomulkiewicz and Holt 1995); hence the amount of

genetic variance greatly impacts the ability to adapt and

survive.

A nonspatial example of this process, referred to as

evolutionary rescue (Gomulkiewicz and Holt 1995), is

shown in Fig. 2, where a population is introduced below

the Allee threshold. Without evolution, the population

declines to extinction (Fig. 2A, solid line) as the Allee

threshold remains constant (Fig. 2B, solid line). When the

population can evolve (Fig. 2, dotted line), it declines at

first until it can overcome the magnitude of inverse den-

sity dependence, and is then able to successfully establish.

As it is difficult to measure the Allee effect empirically

(Tobin et al. 2007), we use an extreme value that exagger-

ates density dependent effects in order to investigate the

‘worst case scenario’ (a2 = 0.3, where the population

exhibits deterministic decline when its density is less than

30% of its carrying capacity). When evolution is included,

we used a small value for the genetic variance, e = 0.02,

in order to remain consistent with fast-slow dynamics,

unless otherwise indicated.

In general, there is a range of parameter space that per-

mits persistence for a population below the Allee thresh-

old in the nonspatial model with evolution (instead of

simple decline to extinction). We explored this behavior

while varying the genetic variance from zero to 0.1. As

genetic variance increases, we are essentially relaxing the

assumption of fast-slow timescales and allow evolution to

occur more rapidly. These dynamics are shown in Fig. 3

where initial population densities below the Allee
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Figure 2 Comparison of an invading population introduced at a den-

sity below the Allee threshold, a2 = 0.3 (u = 0.25, r = 0.6). The solid

line represents the nonspatial system (D = 0) described by Eqns (1)

and (2) without evolution (e = 0) which results in extinction (A) and a

constant Allee threshold (B). The dotted line indicates population

growth (A) when evolution (e = 0.02) acts to reduce the Allee

threshold (B).
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threshold require a minimum amount of genetic variance

in order to avoid extinction. In this case, the rate of

reproduction, r, also influences the potential for evolu-

tionary rescue, as it impacts both population growth and

rate of evolution (Eqns 1 and 2, respectively). As we relax

the assumption of fast-slow timescales, the behavior

remains qualitatively the same as that described analyti-

cally under a strict fast-slow timescale assumption.

Including more realistic population dynamics through

spatial structure provides further invasion criteria. None-

theless, the additional complexities result in qualitatively

similar behavior to the nonspatial model. In this case, not

only will evolution influence population growth, it affects

the wave speed and the critical size threshold, Rmin. As

the population overcomes Allee effects with a decreasing

Allee threshold, the wave speed accelerates and the critical

patch size becomes smaller. Thus, in addition to the ini-

tial density of the introduced population and the genetic

variance, the initial radius or patch size of the initial inva-

sion area, the ratio of diffusion to reproduction, and gene

flow will factor into successful establishment and give rise

to a wider range of interactions between the ecology and

evolution of this system.

The numerical solution of Eqn. (1) (without the evolu-

tionary subsystem) in one-dimensional space, with an ini-

tial population density below the Allee threshold, declines

to extinction (Fig. 4A). This is contrasted by the results

when the evolutionary subsystem is included. With the

initial population density below the Allee threshold,

Fig. 4B shows that the population rebounds from decline.

The same type of rescue occurs for a population that

starts near carrying capacity, but occupies an initial spa-

tial size below that which is necessary for a population to

successfully establish. Figure 5A shows a rapidly declining

population that goes extinct. Under the same circum-

stance, but where evolution of the Allee threshold occurs,

Fig. 5B shows the population density at first beginning to

shrink and then growing and expanding. In addition to

the time evolution of population density across space in

Figs 4 and 5, the evolution of the mean trait value across

space illustrates how gene flow and the density dependent

selection gradient influences its rate of change and distri-

bution (Figs 4C and 5C). As the intensity of selection is

density dependent (and we assume constant genetic vari-

ance), locations with smaller populations can evolve the

trait value more rapidly compared to other areas where

Allee effects may not be as strong and experience weaker

selection. The trait distribution over time, Figs 4C and

5C, therefore reflect the population density distribution,

but are also influenced by the trait values of the migrants.

As individuals disperse out to new locations and push the

boundaries of the species range, their trait values are

averaged to determine the demographic Allee threshold

for that spatial coordinate. This demographic Allee

threshold combines with their local population density to

influence individual fitness and population growth (where

the distance between the density and mean trait value is

the initial degree of maladaptation).

We explored when evolutionary rescue occurred across

a range of parameter values for the spatially explicit

Figure 3 Parameter combinations of reproductive rate: r; genetic variance: e, and initial population density: u, that result in extinction or evolu-

tionary rescue. In this nonspatial scenario, initial population densities greater than the Allee threshold (a2 = 0.3) always succeed, thus the focus is

on the parameter space that allows for evolutionary rescue (i.e., where the population growth changes from negative to positive). As the repro-

ductive rate increases from 0.1 to 1, there is less genetic variance needed for a population to evolve to overcome inverse density dependence as

increased reproduction will contribute to suppressing Allee effects.
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model. According to Drake et al. (2005), variability

among locations and over time makes it unreasonable to

determine precise estimates for the diffusion coefficient,

D. We therefore explored a range of values, and present

those that best illustrate breadth of behavior. The param-

eter that controls the reproductive rate, r, was also varied

substantially, but as the spatial dynamics depend on the

ratio of diffusion to rate of reproduction (resulting in

a measure of length); we fixed r and varied D, unless

otherwise noted. This was justified as the results of the

spatial simulations are qualitatively identical for equiva-

lent ratios. The effects of the critical patch size, initial

population density, ratio of diffusion to growth and

genetic variation on evolutionary rescue and population

dynamics are shown in Fig. 6.

When the size of the initial population is too small

(i.e., a radius of 1), a population at carrying capacity (i.e.,

u = 1) will go extinct without evolution due to the rela-

tive effect of diffusion to reproduction (Fig. 6A). If evolu-

tion occurs rapidly enough (i.e., e > 0.02), the population

can overcome inverse density dependent effects and com-

pensate for the loss due to diffusion and rebound from

low densities. When the initial radius of the population is

increased (Fig. 6B,C), the chance of survival and estab-

lishment (growth and expansion) of populations above or

below the Allee threshold increases with initial density

and genetic variance. Therefore, the initial radius of the

population can significantly impact the likelihood of

evolutionary rescue for populations with the same

amount of genetic variance.
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Figure 4 Diffusive dispersal of an introduced population at an initial density (bold dashed line) below the initial Allee threshold, a2 = 0.3

(u = 0.25, r = 1, D = 0.1) across a linear, one dimensional habitat. The population collapses over time to extinction (A) where there is no evolu-

tion (e = 0), and succeeds (B) after an initial decline with evolution (e = 0.02). (C) The evolution of the mean value of the Allee threshold across

space (where the initial distribution is given by the bold dashed line). The population density distribution and corresponding trait values (i.e., Allee

threshold) are plotted at equal time increments (every 20 of 1200 model iterations).
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This is demonstrated further in Fig. 7A, where the rate

of recovery (i.e., the inverse of the time lag before growth

becomes positive and the population reaches carrying

capacity) for a population near carrying capacity depends

on its initial size/radius and genetic variance. Where size

and variance are small, rescue never occurs. As these

parameters increase, the rate of recovery gradually becomes

faster until it essentially plateaus (although with greater

variance and initial radius, the rate of recovery may slow

slightly if the initial spatial extent is large enough for the

population to experience early growth before diffusion

causes decline prior to recovery). If the population occu-

pies a large enough spatial extent, it will succeed without

evolution (where the genetic variance is zero), however the

lag time may be more pronounced depending on the ratio

of diffusion to reproduction through the tradeoff

between growth and spread (e.g., if spread is relatively fast

compared to reproduction, D/r = 1). The population

density may thus initially decline across space until

reproduction can sufficiently overcome the loss due to dif-

fusion, and the population can grow to carrying capacity.

Similar to the nonspatial case, a population (greater than

the Allee threshold) above the spatial threshold will grow

to carrying capacity more rapidly with evolution than

without.

As shown in Fig. 7B, when evolutionary rescue is possi-

ble, the initial level of maladaptation (a0
2 ) u0) and the

genetic variance (e) also determine the rate at which evo-

lutionary rescue proceeds. Figure 7B uses parameters (i.e.,

radius and ratio of D to r) for a population that would
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Figure 5 Population density of a diffusion dispersed population across one dimensional space. The initial population density (bold dashed line) is near

carrying capacity (u = 0.95, a2 = 0.3, r = 1, D = 0.5), but introduced below the minimum radius of area determined to be critical for invasion success.

(A) is collapsing to extinction without evolution (e = 0), whereas (B) shows success of an invader with evolution (e = 0.02) after initial decline. (C) The

evolution of the mean value of the Allee threshold across space (where the initial distribution is given by the bold dashed line). The population density

distribution and corresponding trait values (i.e., Allee threshold) are plotted at equal time increments (every 20 of 1200 model iterations).
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decline and go extinct without evolution regardless of the

initial density. Hence, it is clear that the amount of time

required for a population to begin growing depends on

its initial level of maladaptation (to both the critical

density and spatial thresholds) and/or genetic variance.

As the rate at which this rescue occurs depends on

the amount of genetic variance (Eqn. 2), it may take an

extremely long time (as e fi 0, the rate of recovery fi
0) for the Allee threshold to fall below the population

density. In this circumstance, as the population density

becomes very close to zero, the rate of change of the Allee

threshold is greater than that of the population density

(as u fi 0, ¶u/¶t fi 0 and ¶a/¶t fi -2era). Thus, the-

oretically, rescue would always occur (Gomulkiewicz and

Holt 1995). However, to maintain biological realism,

when solving this system numerically, we always consid-

ered the population extinct when the maximum density

(across space, when diffusion is included) becomes

reasonably close to zero (i.e., u = 0.0001; we chose this

protocol instead of the total population across space due

to the diffusion dynamics based on the Gaussian dispersal

kernel and the ‘pushed’ wave front behavior).

Overall, the numerical results qualitatively hold for a

wide range of dimensional parameter values and initial

conditions with and without diffusion and in one- and

two-dimensional space. Results for two-dimensional space

are not shown as they are qualitatively similar to the sim-

pler, one dimensional model.

(A) (B) 

(C) 

Figure 6 The sensitivity of population growth and expansion based on the combination of parameter values. The ratio of the diffusion coefficient (D)

to the reproductive rate (r) determines whether the population will expand or collapse according to the initial radius of the introduced population. The

areas under the curves denote combinations of genetic variance and initial population density that result in extinction. Areas above the curves are

combinations of genetic and/or demographic conditions that produce inevitable persistence. The parameter space between the vertical dashed lines

refers to the different ways population survival is influenced. To the left of the initial Allee threshold, the initial population density will either go extinct

due to density dependent effects (below the D/r curve), or given enough genetic variation, will be evolutionarily rescued (above the D/r curve). The

area to the right of the initial Allee threshold [and between the dashed lines in (B) and (C)] is the case where the initial population density is greater

than the Allee threshold but due to the initial spatial size and the ratio of diffusion to reproduction, the population may go extinct without sufficient

genetic variance (below the D/r curve), otherwise it will evolve to overcome the critical patch size effect. For initial population densities greater than

the rightmost dotted line, populations persist solely because of ecological effects. Thus, the area between the dashed lines in (B) and (C) truly delin-

eates evolutionary rescue when D/r = 1. The rightmost vertical line moves slightly to the left to the point of intersection of the D/r curve and the x-axis

for other values of D/r. Graphs (A), (B), and (C) represent different radii of the linear habitat that the introduced population initially occupies.
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Discussion

From these results, it is apparent that adaptations that

enable organisms to overcome the negative effects of low

densities can allow the population to rebound from a tra-

jectory toward extinction to grow to reach carrying capac-

ity. Current management strategies (e.g., reducing

population density or size) are based on ecological theory

(e.g. Drake et al. 2005), but this evolutionary ecology

model suggests that adaptive evolution can enable suc-

cessful establishment and that ecological considerations

alone may not be sufficient.

Under the assumptions of an Allee effect and diffu-

sive dispersal, the idea of ecological size thresholds fits

well with the ecological evidence that a large founding

population is a primary cause of successful establish-

ment (Lockwood et al. 2005; Colautti et al. 2006).

However, by incorporating evolution, we see that the

situation is not quite this simple because ecological size

thresholds and genetic variance can interact to deter-

mine successful establishment. As the ratio of diffusion

to reproduction decreases, the spatial constraint on

population growth becomes weaker, and less genetic

variance is needed to rescue populations with densities

below the Allee threshold. As the initial spatial radius

of introduction increases, population persistence is

more likely with less genetic variance for selection to

act on. Furthermore, the rate of this rescue depends on

the initial genetic load or maladaptation (i.e., how far

the population density is from the Allee threshold), as

well as the amount of genetic variance. Because bottle-

necks during founding events do not always result in

highly reduced genetic variability, even small founding

populations may have sufficient genetic variation to

evolve to overcome Allee effects and establish, contrary

to solely ecologically based predictions.

Additionally, we can draw several general insights about

how dispersal impacts selection and evolution of Allee

effects in an invasion context. As species are transported

from their native environment into novel habitats or sim-

ply disperse on their own, it is clear that the genetic com-

position of the local population can influence the rate of

evolution and adaptation to the new local conditions.

Given enough genetic diversity, local populations can

adapt to their local environment, but dispersal may hin-

der survival across ecological clines as dispersers tend to

be maladapted to the new local environment. Essentially,

local population persistence depends on the race between

the rate of evolution and the degree of maladaptation

(Gomulkiewicz and Holt 1995). In this case, gene flow

will play a major role in determining the outcome. As

Kirkpatrick and Barton (1997) and Garcı́a-Ramos and

Kirkpatrick (1997) demonstrate, individuals moving from

one selection regime from the center of their species’

range to the periphery can introduce enough maladapta-

tion that the new area becomes a sink environment. On

the other hand, Holt et al. (2003, 2004) show that immi-

gration can have a positive influence on adaptation to

sink environments, in some circumstances. Resolving the

disparity between these perspectives requires understand-

ing what is contributing to the severity of maladaptation

and the population’s ability to overcome it.

In our model, dispersal impacts survival ecologically

through the critical patch size, and genetically, as individ-

uals may move from areas where they are well adapted

(i.e., the population density is greater than the Allee

threshold or mean trait value) to sink regions, where they

are maladapted. As individuals disperse across space, they

may be contributing positively in an ecological sense to

the quality of their new local environment (by increasing

the local population density). However, dispersers

are more likely to come from higher density areas where

Allee effects, and hence selection, are locally weak. These

dispersers potentially introduce more maladaptation to

their new location, because they increase the average

phenotype (Allee threshold) in the new location where

density is likely to be lower.

Interestingly, the evolutionary impacts of migration in

this model do not dramatically influence the dynamics.

Changes to the local mean phenotype through local selec-

tion and simple mixing (i.e., diffusion) actually slightly

hastens the evolutionary rescue effect over a model that

considers only the impact of local selection. As the selec-

tion intensity is density dependent and proportional to

u ) 1 for each point in space, the peripheral individuals

faced with stronger selection with lower trait values have

a small positive influence on the more dense neighboring

populations. The gradient term accounts for asymmetric

gene flow due to differential migration from areas of rela-

tively high population densities. However, this term does

not alter the overall evolutionary dynamics based on local

selection any more than adding the diffusion term, as the

negative effects of gene flow and the local rate of evolu-

tion (which is relatively fast, based on the selection inten-

sity) essentially cancel each other out. In this context,

similar to that of Holt et al. (2003, 2004), the immigrants

simply contribute to the local population density, which

helps prevent extinction long enough for evolutionary

rescue to occur locally (i.e., positive population growth;

note that whereas Holt et al. (2003) attribute the main

effect of immigration to the contribution of variation, this

is not the case in our model, as we assume constant

genetic variance). Overall, our results are similar to that

of Holt et al. (2004) where immigration has a demo-

graphic effect on increasing fitness that can essentially

outweigh the ‘swamping’ effect of gene flow.
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In general, the primary determinant of invasion success

depends on positive population growth at the center of

the introduced range. This result comes from the Allee

effect [and the solution to the PDE (1)] by forcing a

‘pushed’ travelling wave front (Lewis and Kareiva 1993),

where the wave speed causes population expansion, con-

traction, or propagation failure (i.e., pinning; Keitt et al.

2001). Intuitively, aggregation-like behavior emerges

based on the strength of the Allee effects. Individuals that

disperse too far from the whole are likely to die before

they can ‘pull’ others in their vicinity. In this regard,

growth occurs from the inside out, where the population

seemingly spills out and overflows to expand its range.

Consequently, in this study, and for biological invasions

that exhibit similar dynamics, it is more important to

focus on the center of the invader’s range and whether

the initial beachhead can survive (through evolutionary

rescue), than the fate of peripheral populations at the

wave front when determining the importance of evolution

on invasion success. This is also understood by compar-

ing the nonspatial (Fig. 3) with the spatial (Fig. 5) sensi-

tivity analysis. The overall dynamics are qualitatively

similar in the parameter space that allows for evolution-

ary rescue to occur.

Even though gene flow and spatial structure do not

dramatically influence the establishment of an introduced

population, additional invasion criteria need to be consid-

ered. When analyzing the model behavior in a spatially

explicit context, there is an ecological tradeoff between

growth and spread that affects establishment and the rate

of recovery. As previously mentioned, reproduction needs

to compensate for the loss due to diffusion. Including

evolution and suppressing Allee effects, actually contrib-

utes to the acceleration of the wave front (i.e., enhancing

dispersal speed). A population then can more rapidly dis-

perse as it evolves, and may become more of an invasion

threat as long as this range expansion does not reduce

their density too quickly. Whereas this increasing wave

speed can lead to a slightly longer lag phase prior to

positive population growth, the population will likely be

inevitably rescued because this effect primarily influences

the dynamics at the periphery and is offset by the reduc-

tion in the critical invasion area (Rmin). Although there is

no range contraction (as there is always a positive wave

velocity with unbounded expansion due to the parameter

values and absence of environmental heterogeneity or

range limitations; Filin et al. 2008), as the critical patch

size (Rmin) becomes smaller with the decreasing Allee

threshold, rescue occurs more readily at the range center

as the critical patch size threshold criteria weakens and

the behavior approaches that of the nonspatial model.

This may seem like an oversimplification of the global

dynamics; however these conclusions are valid in the

context of this investigation which focuses on the

establishment phase rather than subsequent range expan-

sion and spread.
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Figure 7 Rate of recovery in terms of the inverse of the time lag

before population growth becomes positive, where one ‘timestep’

equals 24 iterations of the model. In (A), the initial population density

is near carrying capacity (u = 0.95, a2 = 0.3, D/r = 1), and the initial

radius and genetic variance, e, varies. Where the rate of recovery is

zero, the population goes extinct as it initially occupies an area smaller

than the critical patch size (in this case, a radius of 1.4) or does not

have sufficient genetic variance to evolve quickly enough to be res-

cued prior to extinction. Increasing the genetic variance and initial

radius will decrease this time lag until the population no longer expe-

riences any negative growth (in this case, for initial radii ‡ 3.8 and

e ‡ 0.036; for initial radii > 2.7, the rate of recovery slows slightly due

to early growth followed by a transient decline that precedes ultimate

recovery). When the initial population density varies (indicating the ini-

tial degree of maladaptation where a2 = 0.3), (B) shows the rate of

recovery with the initial radius fixed (as in Fig. 5A where the radius =

1 and D/r = 1). In this case, extinction will occur without evolution

not only for an initial density below the initial Allee threshold, but for

any density as the initial radius is below the critical patch size. Hence,

a nonzero rate implies evolutionary rescue and a zero rate means

extinction.
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Recognizing that evolution can significantly affect the

establishment success of invasive species is becoming

more widely accepted, influencing the ways in which

invasion biologists conduct their research (see the other

articles in this issue). Specifically, adaptations that dimin-

ish Allee effects and evolutionary responses to density

dependence are beginning to emerge as viable explana-

tions for sustaining vulnerable populations at low density

and size (Gascoigne et al. 2009). As it is difficult to con-

clusively support this claim empirically (as the origin of

the adaptation or the associated cost may be unknown;

Courchamp et al. 2008; Gascoigne et al. 2009), mathemat-

ical models that incorporate evolution and compare the

effects of various strategies (e.g., mitigating component

Allee effects) can help decipher the mechanisms that both

limit and facilitate population growth. Two such models

that incorporate adaptations to component mate-finding

Allee effects compare the efficiency and survival of popu-

lations at various densities that attract mates with or

without a sexual pheromone (Jonsson et al. 2003) or by

increasing mate detection distance (Berec et al. 2001).

Another study suggests that broadcast spawners that

evolve their gamete morphology and performance under

sperm limitation (at low density) bear a cost of decreased

fitness at high density due to hybridization and competi-

tion (Levitan 2002). In these cases, particular strategies

are shown to influence population viability in addition to

an associated tradeoff, whereas our investigation provides

broad, albeit simplistic, results dealing with generalized

demographic Allee effects and evolution.

In order to understand how the results of this simplistic

model extend to more realistic and complex evolutionary

scenarios, spatially explicit, individually-based stochastic

simulation of the introduced populations should be

developed to investigate more closely the mechanisms that

allow these population level dynamics to emerge. In partic-

ular, tracking the mean value of a component Allee effect is

sufficient to illustrate how evolution can overcome inverse

density dependence and result in invasion. However, this

approach may not be sufficient to make the specific quanti-

tative predictions necessary for management of invasive

species. This is due to the simplifying assumption of

constant genetic variance based on mutation-selection

balance (Lande 1976). Complex simulations could relax

this assumption and permit genetic variation to change via

mutation, selection, and drift, in tandem with the demo-

graphic processes in a heterogeneous environment, and

explicitly investigate the costs associated with avoiding

Allee effects. Hence, future models should incorporate how

propagule pressure (size and frequency of introduction

events) impacts genetic variation and how more realistic

genetic architectures contribute to the evolutionary

trajectory of invasive species.

Although there is still much more work to be done to

elucidate the factors that determine establishment success

of founder populations, this theoretical approach has the

promise to provide evidence in support of our working

hypothesis that adaptive evolution can mitigate Allee

effects and be an important driver of biological invasions.
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