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Abstract
When analyzing high-throughput genomic data, the multiple comparison problem is most often
addressed through estimation of the false discovery rate (FDR), using methods such as the
Benjamini & Hochberg, Benjamini & Yekutieli, the q-value method, or in controlling the family-
wise error rate (FWER) using Holm’s step down method. To date, research studies that have
compared various FDR/FWER methodologies have made use of limited simulation studies and/or
have applied the methods to one or more microarray gene expression dataset(s). However, for
microarray datasets the veracity of each null hypothesis tested is unknown so that an objective
evaluation of performance cannot be rendered for application data. Due to the role of methylation
in X-chromosome inactivation, we postulate that high-throughput methylation datasets may
provide an appropriate forum for assessing the performance of commonly used FDR
methodologies. These datasets preserve the complex correlation structure between probes, offering
an advantage over simulated datasets. Using several methylation datasets, commonly used FDR
methods including the q-value, Benjamini & Hochberg, and Benjamini & Yekutieli procedures as
well as Holm’s step down method were applied to identify CpG sites that are differentially
methylated when comparing healthy males to healthy females. The methods were compared with
respect to their ability to identify CpG sites located on sex chromosomes as significant, by
reporting the sensitivity, specificity, and observed FDR. These datasets are useful for
characterizing the performance of multiple comparison procedures, and may find further utility in
other tasks such as comparing variable selection capabilities of classification methods and
evaluating the performance of meta-analytic methods for microarray data.
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1. Introduction
The p-value is the probability of obtaining a test statistic as or more extreme as the one
observed under the conditions of the null hypothesis. In most scientific endeavors, an α =
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0.05 threshold is customarily applied so that a p-value < 0.05 is considered as evidence for
the alternative hypothesis, that is, p < 0.05 typically indicates a significant finding.
However, application of an α = 0.05 threshold to univariable tests of significance in high-
throughput genomic settings will yield a large number of Type I errors simply by chance.
The statistical literature includes various methods for adjusting for multiple comparisons by
controlling the family wise error rate (FWER). The FWER is the probability of making one
or more false discoveries, or type I errors, among all null hypotheses being tested (Dudoit et
al., 2003). Controlling for multiple comparisons using the false discovery rate (FDR) was
later suggested by Benjamini and Hochberg (1995) and has received a great deal of attention
in the statistical analysis of DNA microarray experiments for detecting differential gene
expression. Briefly, the FDR can be used in place of the traditional α = 0.05 threshold to
control the expected proportion of incorrectly rejected null hypotheses. Because the FDR
method is less conservative than controlling the FWER, it has increased power.
Additionally, if all tested null hypotheses are true, controlling the FDR controls the family
wise error rate (Benjamini and Yekutieli, 2001). Various methods for controlling the FDR
have been developed, including the Benjamini & Hochberg method (Benjamini and
Hochberg, 1995), the Benjamini & Yekutieli method (Benjamini and Yekutieli, 2001), and
more recently the q-value method (Storey and Tibshirani, 2003).

To date, research studies that have been performed comparing FDR/FWER methodologies
have included limited simulation studies and/or application of the methods to one or more
microarray gene expression dataset(s) (Dudoit et al., 2002, 2003; Korn et al., 2004). A
limitation of simulation studies is that the simulated datasets usually include a limited
number of variables, so they do not properly mimic a high-throughput genomic dataset.
Moreover, often the simulated data are not generated to have the complex correlation
structure that is seen in high-throughput genomic datasets such as in gene expression
microarray data, so that the observed performance in a simulation study may not be
sustained in a high-throughput genomic setting. Another limitation is that for the application
datasets, no one really knows which genes on the microarray should be identified as
statistically significant so that performance cannot be objectively evaluated.

In mammals, normal females have two X chromosomes while males have one X
chromosome. Through observations of mouse coat color and the knowledge that only one
active X is required for normal development, it was suggested that in females, one X
chromosome is inactivated (Lyon, 1961). Shortly thereafter, an expanded hypothesis
advocated that X-chromosome inactivation was the method of gene dosage compensation
for X-linked genes in all mammals (Lyon, 1962). Later, a cytogenetic study identified a
single center responsible for X-chromosome inactivation (Rastan and Robertson, 1985). The
X-inactive specific transcript (XIST) is a gene in the X-inactivation center (XIC) that is
expressed exclusively from the inactive X chromosome. The process of X-inactivation
begins at the XIC and spreads to result in chromosome-wide transcriptional silencing (Li,
2002). It was found that XIST is completely methylated in males and partially methylated in
females (McDonald et al., 1998). These researchers concluded that the partial methylation of
XIST observed in females was likely due to the presence of methylated XIST on the
unexpressed allele, and unmethylated XIST on the expressed allele within a given cell
(McDonald et al., 1998). On the active X chromosome, most genes are unmethylated with
the exception of XIST, whereas on the inactive X chromosome most genes are methylated
with the exception of XIST (Gartler and Goldman, 2005). Although it is not known whether
DNA methylation of XIST is the initiating factor in determining which X chromosome is
active or inactive, certainly DNA methylation maintains the X-inactivation pattern (Gartler
and Goldman, 2005).
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DNA methylation in mammals mainly occurs at the 5′ carbon of CpG dinucleotides.
Although DNA methylation does not alter the DNA sequence, it can be inherited by
propagation during cell division. Dense methylation of CpG islands in the promoter regions
of genes can affect gene transcription, and is often termed epigenetic silencing (Laird,
2003). Therefore methylated genes on the inactive X chromosome are not expressed (Li,
2002). Due to the role of methylation in X-chromosome inactivation, differential
methylation patterns between males and females have been observed for CpG sites of genes
located on the X chromosome (McDonald et al., 1998; Bell et al., 2011). In fact, 19 CpG
sites for six X-linked genes (EFNB1, ELK1, FMR1, G6PD, GPC3, GLA) serve as controls
on Illumina’s GoldenGate Methylation BeadArray. For these six genes, the percent
methylation should demonstrate little to no methylation for males and methylation of half
the alleles for females (Bibikova et al., 2006). In addition, the Illumina technology has been
described as being capable of detecting a difference in the proportion of methylated alleles
of 0.17 or greater (Bibikova et al., 2006), based on a dilution study performed using ratios of
100:0, 50:50, 20:80, 10:90, 5:95, and 0:100 female to male genomic DNA.

Due to the role of methylation in X-chromosome inactivation and observed DNA
methylation difference in males and females, we postulate that high-throughput methylation
datasets that include normal healthy subjects and having gender annotated may provide an
appropriate forum for evaluating FDR/FWER methodologies. Illumina’s Golden Gate
Methylation Cancer Panel I and Infinium HumanMethylation27 assays enable high-
throughput profiling of DNA methylation. We identified several DNA methylation datasets
through Gene Expression Omnibus and PubMed that included normal healthy subjects and
had gender annotated as a phenotypic variable. In this study, these datasets were used to
compare FDR/FWER methods with respect to their ability to identify CpG sites that are
significantly different when comparing normal subjects by gender.

2. Review of Methods for Controlling False Discoveries
A test of statistical hypothesis is a rule or procedure for deciding whether to reject the null
hypothesis, H0. We typically seek to control the probability of committing a Type I error,
that is, rejecting H0 when in fact H0 is true, by fixing a threshold α. A hypothesis test
resulting in a p-value that falls below the pre-specified α level is rejected. However, when
many hypotheses are tested, each test with a specified Type I error probability, the
probability that at least some Type I errors are committed increases sharply with the number
of hypotheses tested. For example, when testing 10,000 H0’s simultaneously, the family-
wise error rate (FWER) is the probability of at least one Type I error in the family. At the α
= 0.05 level, 500 genes are expected to be called significant by chance. Various methods for
controlling the FWER have been described including Bonferroni, Šidák single step, Šidák
step down, Holm step-down, and Hochberg step-up procedures. A thorough review of these
procedures has been published previously (Dudoit et al., 2003). Because the Holm step-
down FWER is less conservative than single step procedures such as the Bonferroni and
Šidák single step and results using Holm’s step down do not differ materially from the Šidák
step down and Hochberg step-up procedures, we describe it here and compare its
performance to the FDR procedures.

Holm step-down FWER procedure
When testing g null hypotheses

1. Order the p-values and hypotheses P(1) ≥ … ≥ P(g) corresponding to H(1), …, H(g)

2. Let i = 1.

3. If P(g−i+1) > α/(g − i + 1) then accept all remaining hypotheses H(g−i+1) and STOP.
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4. If P(g−i+1) ≤ α/(g − i + 1) then reject H(g−i+1) and increment i, then return to step 3.

Benjamini & Hochberg method
Rather than controlling the FWER which is conservative, in high-throughput genomic
settings it may be more appropriate to control the proportion of false positives among the
differentially expressed genes. Given the cross-tabulation of results from m tests of
significance by veracity of H0 (Table 1), the FDR is defined as the expected proportion of
false discoveries, or FDR = E (F/(S ∨ 1)), where S ∨ 1 = max(S, 1) to avoid division by 0
(Benjamini and Hochberg, 1995). Controlling for the False Discovery Rate (FDR) allows
one to identify as many genes with significant differences as possible, while incurring a
relatively low proportion of false positives. Assuming the p-values from the null distribution
are independent and uniformly distributed, the Benjamini & Hochberg method for
controlling the FDR is as follows:

1. Let p(1) ≤ … ≤ p(g) be the ordered p-values from the g tests.

2.
Calculate 

3. If k̂ exists, the reject the null hypotheses corresponding to p(1) ≤ … ≤ p(k̂);
otherwise, reject nothing.

Benjamini & Yekutieli method
The Benjamini & Yekutieli method controls the false discovery rate under dependence
assumptions and is similar to the Benjamini & Hochberg method with exception that step 2

is replaced by finding the largest k such that , where c(g) = 1 if the

tests are independent and  if the tests are correlated (Benjamini and Yekutieli,
2001).

q-value method
The q-value of a particular feature is the expected proportion of false positives among all
features as or more extreme than the one observed (Storey and Tibshirani, 2003). For a
given p-value threshold t where 0 ≤ t ≤ 1, we want to estimate FDR(t) = E (F(t)/S (t)) ≈
E(F(t))/E(S (t)). Following the notation from Table 1, here F(t) represents the number of
false discoveries at threshold t while S (t) represents the number of null hypotheses
considered significant at threshold t. Formally, FDR(t) is estimated as

(1)

where π0 represents the proportion of hypotheses for which the null is true. For application
datasets, π0 is typically unknown and so is estimated using the distribution of raw p-values
using either a smoothing or bootstrap method.

3. Methods
3.1. Data

Three datasets produced using the Illumina Golden Gate Methylation assay and three
datasets produced using the Illumina Infinium HumanMethylation27 assay were analyzed in
this study. Each dataset is briefly described in sections 3.1.1 and 3.1.2. The Golden Gate
assay assesses methylation of 1,505 CpG sites including 84 CpG sites from the X
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chromosome. The Infinium assay assesses 27,578 CpG sites including 1,085 CpG sites from
the X chromosome and seven from the Y chromosome.

3.1.1. Illumina Golden Gate Methylation assay—Boks et al. (2009). The heritability
of DNA methylation as well as the effects of age and gender were studied using DNA
extracted from peripheral blood samples taken from 23 monozygotic and 23 dizygotic
healthy twin-pairs as well as in 96 healthy singletons (Boks et al., 2009). Using the Illumina
Golden Gate Methylation assay, DNA methylation for 1505 CpG sites representing 807
unique genes in the human genome were interrogated. Upon request the authors supplied the
methylation and phenotypic data for 95 healthy singletons, which included 47 males and 48
females.

Javierre et al. (2010). To identify aberrant DNA methylation associated with autoimmune
disorders, monozygous twins discordant for systemic lupus erythrmatosus (N=5),
rheumatoid arthritis (N=5), and dermatomyositis (N=5) and healthy controls where studied
using the Illumina Golden Gate Methylation Cancer Panel I (Javierre et al., 2010), which
interrogates 1505 CpG sites representing 807 unique genes. The data were downloaded from
Gene Expression Omnibus accession number GSE19033. For this study, two separate
analyses comparing gender were performed: one in which the 29 control subjects were
included (Javierre Controls: 8 males, 21 females) and another in which the 15 healthy twins
were included (Javierre Healthy Twins: 4 males, 11 females).

Stein et al. (2010). Silencing of transgene expression due to methylation in X-linked chronic
granulomatous disease was studied in 2 cases and 25 control subjects using the Illumina
Golden Gate Methylation Cancer Panel I (Stein et al., 2010). The data were downloaded
from Gene Expression Omnibus accession number GSE19515. For this study, we restricted
attention to the 25 controls which included 12 males and 13 females.

3.1.2. Illumina Infinium HumanMethylation27 assay—Rakyan et al. (2010). To
identify aging-associated differentially methylated regions (aDMRs), samples from female
twin pairs, singletons, and an independent cohort were profiled using Illumina’s
HumanMethylation27 array, which interrogates 27,578 CpG sites (Rakyan et al., 2010). The
independent cohort was downloaded from Gene Expression Omnibus accession number
GSE20242. This cohort consisted of healthy singletons for which CD14+ monocytes and
CD4+ T-cells were both examined. Therefore, in this study two different comparisons were
performed, one for CD14+ monocytes (7 males, 19 females) and another for CD4+ T-cells (6
males, 18 females).

Bell et al. (2011). Methylation levels for 27,578 CpG sites were measured using Illumina’s
Infinium HumanMethylation27 assay in 77 Yoruba individuals (34 males, 43 females) from
the HapMap project (Bell et al., 2011). For each subject, the bisulphite converted DNA was
hybridized to at least two arrays. The data were downloaded from Gene Expression
Omnibus accession number GSE26133. In this study we performed two independent
analyses: the first for the 77 replicate 1 samples (Yoruba 1); and the second for the 77
replicate 2 samples (Yoruba 2).

Liu et al. (2010). To identify epigenetic modulation associated with Cornelia de Lange
syndrome, lymphoblastoid cells lines from Cornelia de Lange syndrome and Roberts
syndrome probands along with 22 healthy controls were assayed using Illumina’s Infinium
HumanMethylation27 assay, which interrogates 27,578 CpG sites (Liu et al., 2010). These
data were downloaded from Gene Expression Omnibus accession number GSE18458. In
this study we restricted attention to the 22 healthy controls (12 males, 10 females).

Asomaning and Archer Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2. Statistical Methods
For each dataset, we downloaded the phenotypic and gene expression data using the
GEOquery package in the R programming environment (R Development Core Team, 2011).
Each dataset was restricted to include samples from only normal healthy subjects as
described in section 3.1. For datasets that included CpG sites having missing values, k-
nearest neighbors averaging was used for imputation using the impute R package (Hastie et
al., 2011). Because the expression value, β, reported for each CpG site represents
“proportion methylated” which is in the [0, 1] interval, we transformed the expression values
using the log2(β/(1 − β)) transformation. There-after, for each CpG site a moderated t-test
was applied to test for differential methylation between males and females using the limma
package in R (Smyth, 2004). We used the raw p-value, Benjamini & Hochberg (BH),
Benjamini & Yekutieli (BY), Holm’s step down, the default q-value method which
estimates π0 using a smoothing method, and the q-value method where π0 is estimated
using the bootstrap to identify significant CpG sites using a 0.05 threshold. For each FDR/
FWER method we reported the sensitivity, specificity, and observed false discovery rate.
Sensitivity was defined as the percent of CpG sites located on either the X or Y chromosome
declared significant (a/(a + b) × 100 from Table 2). Specificity was defined as the percent of
CpG sites on autosomes that were not significant (d/(c + d) × 100 from Table 2). Finally the
observed false discovery rate was defined as the proportion of CpG sites on autosomes
identified as significant among the total number of CpG sites declared significant (c/(a + c)
from Table 2)

4. Results
The two platforms differ with respect to the number of CpG sites interrogated, therefore,
results are summarized by platform. For the Golden Gate Methylation Cancer Panel I
platform, although the raw p-value method always yielded the highest sensitivity (Table 3),
the specificity was much lower (Table 4) leading to an observed FDR that was quite high
(Figure 1, Table 5). Holm’s step down procedure consistently yielded the lowest sensitivity,
but because its specificity was the highest, Holm’s step down procedure yielded the lowest
observed FDR. The Benjamini & Yeuketili method performed similarly to Holm’s step
down procedure (Table 3, 4, 5). There was no discernible difference between the q-value
method when using either the default smoothing method or the bootstrap method to estimate
π0. The Benjamini & Hochberg and both q-value methods had variable performance, as the
observed FDRs were close to the nominal 0.05 level for the Javierre Healthy Twins and
Stein datasets but far from the nominal level for the Javierre Controls and Boks datasets
(Table 5). The variable performance of the q-value method with respect to the observed
FDR may be attributed to difficulties introduced by estimating the proportion of truly null
hypotheses, π0, using the small number of CpG sites interrogated by the Golden Gate
Methylation Cancer Panel I, only 1,505.

For the Infinium HumanMethylation27 assay, although the raw p-value method always
yielded the highest sensitivity (Table 6), the specificity was much lower (Table 7) leading to
an observed FDR that was quite high (Figure 2, Table 8). Holm’s step down procedure
consistently yielded the lowest sensitivity, but because its specificity is highest, Holm’s step
down procedure yielded the lowest observed FDR (Table 6, 7, 8). However, the observed
FDR for Holm’s step down procedure was well below the nominal 0.05 threshold (Table 8).
The Benjamini & Yeuketili method performed similarly to Holm’s step down procedure
(Table 6, 7, 8). The Benjamini & Hochberg and both q-value methods yielded observed
FDRs closest to the nominal 0.05 level while maintaining relatively high sensitivities. Again
there was no discernible difference between the q-value method when using either the
default smoothing method or the bootstrap method to estimate π0.
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The sensitivities and specificities from the two different DNA methylation platforms were
then combined and the receiver operating characteristic curves were plotted for each FDR
method (Figure 3). From the ROC curve we observed that Holm’s procedure followed
closely by the Benjamini & Yeuketili method and subsequently the Benjamini & Hochberg
method yield the best performance.

5. Discussion & Conclusion
The raw p-value method had the highest sensitivity, regardless of the platform analyzed.
However, the drawback in using raw p-values is that its lower specificity results in a very
high observed FDR. In fact, the observed FDR for the raw p-value method is typically ≥
0.50, much higher than the desired nominal level of 0.05. Therefore because researchers
typically have limited resources for following up significant results, raw p-values are not
recommended for use in high-throughput genomic experiments. As expected, the Holm step
down method, which adjusts for the FWER, is the most conservative and therefore has the
lowest sensitivity and an observed FDR much lower than the nominal level. Therefore, when
researchers have limited resources for following up on significant findings, controlling the
FWER may be a better option than controlling the FDR in high-throughput genomic studies.
For both platforms, there was no discernible difference between the q-value method when
using either the default smoothing method or the bootstrap method to estimate π0. However,
the q-value method suffered from variable performance with respect to the observed FDR
for the Golden Gate Methylation Cancer Panel I platform. The Golden Gate Methylation
Cancer Panel I platform only interrogates 1,505 CpG sites. This may cause difficulties in
estimating the proportion of truly null hypotheses, π0, as the distribution of p-values may
not be very refined, implying the q-value method may not be the most appropriate choice
when small boutique arrays are being analyzed. Nevertheless, for the larger Infinium
HumanMethylation27 array, the Benjamini & Hochberg and q-value method have the higher
sensitivities, higher specificities, and observed FDRs closer to the nominal 0.05 level
compared to the other methods compared. Although the nominal FDR level differed among
the studies, the methods consistently ranked in the same order of performance. This is in
spite of the datasets differing by platform (Golden Gate versus Infinium) and biological
source from which the genomic DNA was extracted (peripheral blood (Boks et al., 2009;
Stein et al., 2010), white blood cells (Javierre et al., 2010), CD14+ monocytes and CD4+ T-
cells (Rakyan et al., 2010), and lymphoblastoid cell lines (Liu et al., 2010; Bell et al.,
2011)), and different numbers of normal healthy males and normal healthy females analyzed
in each study.

We have posited that high-throughput DNA methylation datasets are useful for assessing the
performance of FDR and FWER methodologies. This is due to the role that DNA
methylation plays in maintaining the inactive state on one X-chromosome in females
(Gartler and Goldman, 2005). To formalize this argument, the Illumina technology is a two
channel array that measures the proportion methylated for each CpG site, defined as β = M/
(M + U) where M represents the signal intensity from the methylated allele and U represents
the signal intensity from the unmethylated allele. Therefore β takes on values in the [0, 1]
interval with 0 representing an unmethylated CpG site and 1 representing a methylated CpG
site. Next consider DNA methylation in normal females expressed as a mixture distribution,
with π = 0.5 representing the proportion of X chromosomes inactivated and 1 −π
representing the proportion of X chromosomes that are active. Therefore in females the
proportion methylated can be expressed as βfemale = π × 1 + (1 − π) * 0 = 0.5. Because this
proportion is 0.5, the X chromosome in normal females is said to be hemi-methylated
(Bibikova et al., 2006). As previously mentioned, males should have little to no X
chromosome methylation (except for XIST) because normal males have only one X
chromosome, so for normal males π = 0 such that in males the proportion methylated can be

Asomaning and Archer Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



expressed βmale = π × 1 + (1 − π) * 0 = 0. For CpG sites on the X chromosome, the
expected difference in proportion methylated between females and males is 0.5. Therefore
DNA methylation datasets can serve as a biological gold standard for assessing the
performance of FDR and FWER methodologies. However, because X chromosome
inactivation serves as a dosage compensator of X chromosome genes in females (Avner and
Heard, 2001), gene expression datasets cannot necessarily be used for the same purpose.

High-throughput methylation data may additionally be useful for comparing classification
methods. Similar to the FDR literature, performance of classifiers for microarray data has
often been assessed using limited simulation studies and/or by application of the classifiers
to applied microarray datasets. When using applied microarray datasets, the assessment of
the method’s variable selection performance can only be made by subjectively interpreting
the biological function of the genes selected by each model in relation to the modeled
disease process. For example, in a study comparing various penalized classification models,
the investigators generated p variables and n samples using three simulation scenarios
(Garcia-Magariños et al., 2010). For simulation scenario 1, p = 9 and n = 200 or 400; for
simulation scenario 2, p = 12 and n = 200; and for simulation scenario 3, p = 1, 000 and n =
100, 200, or 400. The number of variables which had nonzero coefficients (s), i.e. true
predictors, was s = 3 for scenarios 1 and 2 and s = 10 for scenario 3. These simulation
scenarios are unlike data that result from high-throughput genomic experiments, where
typically p > 20, 000 and n < 100. The authors also compared the performance of the
classifiers by applying the methods to two well-known gene expression datasets, namely the
leukemia (Golub et al., 1999) and colon datasets (Alon et al., 1999). A limitation is that for
these application datasets, the veracity of each null hypothesis tested is unknown so that an
objective evaluation of performance of variable selection capabilities cannot be rendered for
application data. Therefore, in addition to assessing the performance of FDR and FWER
methodologies, high-throughput methylation datasets that include normal healthy subjects
with gender annotated presents useful data for comparing classifier performance and
appropriateness of classifiers’ variable selection capabilities because CpG sites on sex
chromosomes are known to be truly differentially methylated between males and females.

Because identifying differentially expressed genes is a common goal among high-
throughput genomic studies, methylation datasets in which the CpG sites that are
differentially expressed are known presents a useful means to assess FDR/FWER
techniques. Moreover, these datasets may prove useful for characterizing the performance of
multiple comparison procedures, and may find further utility in other tasks such as
comparing classifiers and evaluating the performance of meta-analytic methods for
microarray data.
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Figure 1.
Sensitivity, specificity, and observed FDR for the Golden Gate Methylation Cancer Panel I
platform (1,505 CpG sites) when using the raw p-value (Raw), Benjamini & Hochberg
(BH), Benjamini & Yekutieli (BY), Holm step down (Holm), the default q-value method
which estimates π0 using a smoothing method (q-smooth), and the q-value method where π0
is estimated using the bootstrap (q-boot).
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Figure 2.
Sensitivity, specificity, and observed FDR for the Infinium HumanMethylation27 platform
(27,568 CpG sites) when using the raw p-value (Raw), Benjamini & Hochberg (BH),
Benjamini & Yekutieli (BY), Holm step down (Holm), the default q-value method which
estimates π0 using a smoothing method (q-smooth), and the q-value method where π0 is
estimated using the bootstrap (q-boot).
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Figure 3.
Receiver operating characteristic curve when using the raw p-value (Raw), Benjamini &
Hochberg (BH), Benjamini & Yekutieli (BY), Holm step down (Holm), the default q-value
method which estimates π0 using a smoothing method (q-smooth), and the q-value method
where π0 is estimated using the bootstrap (q-boot).
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Table 1

Cross-tabulation m tests of significance by true underlying condition of the null hypotheses.

Reject H0 Fail to reject H0 Total

H0 True F m0 − F m0

H0 False T m1 − T m1

Total S = F + T m − S m
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Table 2

Cross-tabulation of the results of g tests of significance comparing gender by chromosomal location of CpG
site for methylation array data.

X or Y CpG site
(Truly significant)

Autosomal CpG site
(Truly Not significant)

Total

Rejected a c a + c

Not rejected b d b + d

Total a + b c + d g = a + b + c + d
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