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Abstract
The extent to which histopathology pattern recognition image analysis (PRIA) agrees 
with microscopic assessment has not been established. Thus, a commercial PRIA 
platform was evaluated in two applications using whole-slide images. Substantial 
agreement, lacking significant constant or proportional errors, between PRIA and manual 
morphometric image segmentation was obtained for pulmonary metastatic cancer 
areas (Passing/Bablok regression). Bland-Altman analysis indicated heteroscedastic 
measurements and tendency toward increasing variance with increasing tumor burden, 
but no significant trend in mean bias. The average between-methods percent tumor 
content difference was -0.64. Analysis of between-methods measurement differences 
relative to the percent tumor magnitude revealed that method disagreement had an 
impact primarily in the smallest measurements (tumor burden <3%). Regression-based 
95% limits of agreement indicated substantial agreement for method interchangeability. 
Repeated measures revealed concordance correlation of >0.988, indicating high 
reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA 
= 7.4, manual = 17.1). Evaluation of PRIA on morphologically complex teratomas led 
to diagnostic agreement with pathologist assessments of pluripotency on subsets of 
teratomas. Accommodation of the diversity of teratoma histologic features frequently 
resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA 
error was nonrandom and influenced by variations in histomorphology. File-size 
limitations encountered while training algorithms and consequences of spectral image 
processing dominance contributed to diagnostic inaccuracies experienced for some 
teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. 
Technical improvements may enhance diagnostic agreement, and consistent pathologist 
input will benefit further development and application of PRIA.
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INTRODUCTION

Whole-slide digital imaging is transforming pathology 
diagnosis, consultation, education, and investigation.[1,2] 

This technology permits an entire histological slide to be 
optically scanned into a digitized image data file that can 
be evaluated on a computer monitor in a manner similar 
to microscopic examination.[2,3] In addition, morphometric 
image analysis tools, supported within digital slide imaging 
platforms, are accelerating the transition of pathology into 
a more quantitative science.[1,4] 

Pattern recognition image analysis (PRIA) software 
represents a further technological advancement that 
provides automated identification and quantification of 
regions of interest within digitized histological images.[5,6]  

Most histological PRIA software packages require users 
to define and provide representative examples of each 
tissue class of interest from a set of training slides. 
Subsequently, the software applies an iterative training 
process to identify unique spatial-spectral features that 
discriminate image pixels for each tissue class. The 
resulting algorithm can then be run on study sets, as 
unknowns, in order to segment relevant image pixels.[5,7-9] 
Although most PRIA software packages use conceptually 
similar workflows, they differ in their user interface, 
training speed, whole slide vs. focal region of interest 
analyses, and size of training sets.[3] Currently, Aperio 
Technologies, Cambridge Research and Instrumentation, 
Definiens, and Visiopharm all market histologic PRIA 
software. Features of some commercially available PRIA 
software packages were recently reviewed.[3]

A variety of image analysis tools useful for identification 
and quantification of histologic features,[1,3,7,9,10,] 

quantification of immunohistochemistry (IHC) 
labeling,[3,8,11] and tissue microarray construction[12,13] 

have been reported. Considerable interest in applying 
quantitative image analysis to IHC has been stimulated 
with the advent of US Food and Drug Administration 
approvals for quantifying HER2, estrogen receptor, and 
progesterone receptor expression in breast cancer patient 
biopsies.[11,14] [http://www.accessdata.fda.gov/cdrh_docs/
pdf7/K073677.pdf]. Many emerging automated image 
analysis solutions quantify target protein expression by 
measuring immunhistochemical labeling within the 
nucleus, cytoplasm, and/or the plasma membrane, as 
well as provide applications for scoring tissue microarray 
slides.[8,11,15] Such approaches can minimize subjectivity 
inherent in traditional visual assessments of IHC, which 
typically employ 0, 1+, 2+, 3+ subjective scoring 
of the percentage and intensity of immunolabeling. 
Histological PRIA automates the detection, localization, 
and quantification of IHC-identified molecular events 
by coupling PRIA with follow-on analyses for detecting 
colorimetric IHC reactions that indicate specific protein 
localization.[6,11]

PRIA software provides the potential to develop 
algorithms that improve throughput screening of large 
numbers of histological images, such as those used in 
investigative and toxicological pathology studies.[1,4] 

Furthermore, conducting PRIA using morphological 
parameters has the potential to minimize subjective 
biases introduced when evaluations are carried out 
by multiple pathologists.[6,9] Considerable technical 
advancement is anticipated in this discipline;[3] however, 
the capability for current PRIA applications to serve as 
surrogates for expert visual histopathological assessments 
is not universally accepted, based upon the few published 
evaluations of commercially available PRIA software 
programs.[1] Despite the plausible advantages projected, 
expert interpretation and analysis of PRIA data output 
remain necessary in order to assure accuracy in image 
segmentation and quantification.[9] Therefore, further 
appraisals of computer-assisted PRIA software to validate 
the benefits and to identify current challenges would be 
informative. Consequently, we undertook a systematic 
assessment of the workflow and image segmentation 
output using a leading, commercially available, 
automated PRIA platform to assess the applicability of 
PRIA, specifically keying upon morphological features in 
whole-slide digital images. Evaluations included direct 
comparisons of the automated PRIA software application 
to (1) pulmonary metastatic cancer area measurements 
derived by manual image segmentation using equivalence, 
repeated measures, and limits of agreement statistical 
analyses, and to (2) expert visual assessments of PRIA 
algorithm performance on a collection of exceedingly 
morphologically complex, stem cell-derived teratomas.

ASSESSMENT OF SOFTWARE APPLICABILITY 
AND DIAGNOSTIC AGREEMENT

Digital Scanning and Algorithm Development
A PRIA software evaluation was initiated using Genie 
histology pattern recognition software (Genie Pro 
version, Aperio Technologies, Inc., Vista, California), 
in combination with an integrated whole-slide imaging 
platform used world-wide (ScanScope XT and Spectrum 
database (Aperio)). Early versions of PRIA software 
were developed for automated analyses of multispectral 
satellite image data used in geospatial feature extraction 
(Genetic Imagery Exploitation (GENie)) (http://genie.
lanl.gov/).[5] In Genie, Los Alamos National Laboratories 
has developed a prototypic hybrid pattern recognition 
software incorporating evolutionary computational 
techniques with more traditional supervised classification 
methods.[5] This software technology was subsequently 
adapted to permit automated extraction of a range of 
features from color (RGB) images of histologic specimens. 
Genie has an interactive interface, through which users 
input histological features of interest for training analysis 
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algorithms. In the course of training, the algorithms 
become refined during evolutionary computational 
learning, which involves a process of parallel competitive 
selection and reproduction among multiple training 
examples. This optimization process, known as a genetic 
algorithm, produces a best fit “population” of selected 
histological features for output analyses. Genie algorithms 
predominantly extract multispectral information from 
images with additional image processing performed by 
spatial, logical, and thresholding operators. Pixel-by-pixel 
spatial (morphological) processing operators that are 
part of the PRIA software are restricted to a predefined 
set of programmed primitive shapes (e.g., square, circle, 
diamond, cross, and lines).[5] Genie permits quantitative 
image analysis of morphological tissue features in selected 
regions as well as an entire slide.

Strengths and limitations of this PRIA technology 
were assessed in specific applications. Histology tissue 
section image acquisition and Genie PRIA algorithm 
development were undertaken similar to previous 
studies.[8,9] Briefly, hematoxylin and eosin stained tissue 
sections mounted on glass slides were digitally scanned 
at 20× magnification using a ScanScope XT digital 
slide scanner (Aperio) to create whole-slide planar 
image data files at 0.5 µm/pixel resolution [Figure 1a]. 
Image files were stored in Spectrum Image Management 
System and viewed using ImageScope software (Aperio). 
Representative areas of each tissue class of interest were 

identified in training slides, based upon their histological 
features, and compiled in a digital montage at 5× 
magnification [Figure 1b]. The software then applied 
an iterative learning process, using a minimum of 500 
iterations, to identify unique spatial-spectral features to 
discriminate each tissue class [Table 1]. Montages were 
subsequently examined independently by the software to 
determine sensitivities and specificities for the detection 
of each tissue class [Table 1]. This training process was 
repeated for all algorithms, taking roughly between 2 
and 4 hours for the metastasis algorithm and requiring 
up to 8 hours to develop teratoma algorithms. PRIA 
of unknown testing slides averaged approximately 40 
minutes per slide, but this phase is automated and could 
be performed overnight or while other tasks were being 
accomplished. 

Comparison of PRIA to Manual Morphometric 
Analysis
Tumor burden area measurements derived using 
automated PRIA were compared to those obtained by 
manual segmentation of the same digitized histologic 
images of mouse lung containing metastatic mammary 
carcinoma. Lungs from 39 mice were fixed by airway 
insufflation with formalin at the time of collection. They 
were paraffin embedded, sectioned at approximately 
5 µm thickness, mounted on glass microscope slides, 
and stained with hematoxylin and eosin. Lung tissue 
sections included complete right and left lung sections 

Table 1: PRIA algorithms and their accuracy in analyses of pulmonary metastatic tumors and stem cell 
teratomas

Algorithm Tissue classes Montage 
colora 

Iterations Sensitivity (%) Specificity (%) Mean training 
accuracy (%)

Lung Metastases Lung Blue 500 98.45 99.03 98.63
Tumor Green 98.88 97.32
Glass White 98.55 98.82

Teratoma 1 Muscle Green 1,000 88.26 93.96 94.18
(more-differentiated) Nervous tissue Yellow 88.42 93.14

Epithelium Red 84.38 60.6
Cartilage Blue 99.85 98.42
Undifferentiated  
blastema/ cell debris

Orange 97.87 74.76

Glass White 97.87 61.23
Blood Purple 98.54 97.64
Keratin Turquoise 98.28 59.13

Teratoma 2 Muscle Yellow 500 99.95 99.95 95.49
(less-differentiated) Fibrous connective tissue Green 97.87 87.23

Mesenchyme Orange 94.25 92.88
Nervous tissue Pink 82.43 98.23
Cartilage Blue 94.63 84.11
Bone Brown 100 100
Epithelium Red 94.76 98.39

  Glass White 100 99.62

aMontage color key is reference to the specific tissue class examples used for algorithm training (see example montage Figure 1B for lung). The montage color key also applies for 
colors used in the pseudocolor mark-up analysis output files (examples: Figure 1 lung metastasis algorithm; Figure 4, Teratoma 1; Figure 5, Teratoma 2; Figure 6, Teratoma 1).
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of the algorithm was >98% [Table 1]. Following creation 
of the PRIA algorithm, the 39 lung section images were 
analyzed by Genie as unknowns (testing set) [Figure 1d]. 
Both manual and automated analyses were performed on 
the same digital images. Tumor area measurements were 
repeated manually by a second investigator and repeated 
for PRIA by developing a second metastasis algorithm to 
determine the reproducibility of each method.

The PRIA algorithm was able to differentiate metastatic 
carcinoma and lung in all tissue sections. Automated 
PRIA software outputs included total analysis areas 
(mm2) and percentages of each tissue class in analysis 
areas. Pseudo-color mark-up images were provided for all 
specimens within the testing set as part of the software 
workflow [Figure 1d]. These allowed for assessment 
of the degree to which the PRIA algorithm correctly 
recognized and segmented histologic features in each 

(dorsal (coronal) plane orientation sections) [Figure 1a] 
(provided by Dr. Lalage Wakefield, National Cancer 
Institute, Bethesda, MD). In order to focus on the 
pulmonary parenchymal tumor burden, mediastinal 
tissues including thymus, lymph nodes, trachea, bronchi, 
esophagus, adipose tissue, and mediastinal metastases 
were excluded from both manual and automated 
analyses. To obtain manual morphometric measurements 
of tumor burden area, total pulmonary tissue areas and 
tumor areas were manually outlined using drawing tools 
in ImageScope software [Figure 1c]. Manual image 
segmentation for lung metastasis required approximately 
30-90 minutes of continuous effort per slide, in contrast 
to the less labor-intensive measurements obtained using 
PRIA. Tissue classes used to create a PRIA algorithm for 
quantifying lung metastases included multiple examples 
of normal lung, tumor, and background (glass) from five 
training slides [Figure 1b]. The mean training accuracy 

Figure 1: Quantifying metastatic mammary cancer in mouse lungs. (a) Representative metastatic mammary tumors. (b) Features used 
to train PRIA algorithm [Table 1]. (c) Manual segmentation performed using the image in (a). Area outlines in green (lung) and yellow 
(tumor). (d) Image mark-up of (a) following PRIA illustrates lung segmented as blue and metastatic tumor as green. (e) Detail of poorly 
differentiated tumor (*) and areas of pulmonary atelectasis (arrows). (f) Note, PRIA incorrectly segmented (e). Pulmonary atelectasis 
(arrows) segmented as false positive for tumor, green. Bar=50 µm
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slide. A pathologist visually evaluated the mark-up images 
to ensure acceptable image segmentation as a quality 
assurance step. This served as an opportunity to accept 
the accuracy of the algorithm or judge the necessity for 
algorithm refinement. If necessary, refinements typically 
entailed providing alternative examples of each training 
class followed by further computational iterations, thereby 
creating a new algorithm. In our experience, development 
of PRIA algorithms must balance the sensitivities and 
specificities for segmenting each tissue class in order to 
provide suitable degrees of accuracy while minimizing 
major discrepancies in image segmentation. In this 
study, less accurate image segmentation occurred due 
to the presence of tangentially oblique sections of some 
bronchioles and focal areas of pulmonary atelectasis, 
which were falsely identified as tumor. These minor errors 
were present in the analyses of all 39 images of histologic 
sections and were consistent with similar studies 
employing well-defined algorithms.[9,16] We accepted 
these minor segmentation errors as background context. 
Occasionally, despite having a broadly valid algorithm, 
PRIA segmentation of a few individual specimens 
warranted further scrutiny (outliers discussed below).

Comparing new assay methods to a standard approach 
is frequently used to determine if the new method is 
advantageous and can replace the older test.[17] PRIA-
derived measurements were compared to manually 
acquired measurements of lung and tumor areas. 
Method comparison was performed with Passing and 
Bablok nonparametric regression analysis[18] and Bland 
and Altman bias plots followed by calculation of 
uniform and regression-based 95% limits of agreement 
of the measurement difference.[17,19] Passing and Bablok 
regression is a nonparametric model, which allows 
measurement error (imprecision) in both methods, 
does not require the measurement error to be normally 
distributed, and is insensitive to outliers. The Bland-
Altman analysis estimates how much two methods differ 
in the quantitative measurement and therefore aids in 
making the decision if one method can be substituted 
for another. In addition, the association between the 
difference and the magnitude of the measurements was 
examined by standard regression analysis of the difference 
between the two methods on their average (constant bias 
test), and the regression of absolute residuals from the 

difference against average regression (constant variance 
test). Reproducibility of measurements was analyzed with 
the concordance correlation coefficient (CCC)[20] and the 
coefficient of variation[21] using duplicate measurements 
obtained from each method. Analyses were done with 
MedCalc (MedCalc Software, Mariakerke, Belgium, 
version 11.5.1.0) and R programming language (version 
2.13.0).

During the comparison of automated PRIA to manual 
image segmentation, manual measurements were 
considered the accepted values, since this approach has 
been an established morphometric data acquisition 
technique prior to introduction of PRIA. The range and 
mean percent tumor in lungs, calculated as areatumor / 
(areatumor + areatumor-free lungs), acquired by both methods 
are illustrated in Table 2. The PRIA and manual 
measurements were graphed in a scatter plot with 
the 45° line of identity and the Passing and Bablok 
regression line added to investigate possible systematic 
errors (constant and/or proportional) between the two 
methods [Figure 2a].[19] The regression analysis showed 
substantial agreement of both slope and intercept 
with the target values of 1 and 0 within the 95% 
confidence intervals (C.I.) (slope  =  0.9744  [C.I. = 
0.9154, 1.0256], intercept  =  -0.1508  [C.I. = -0.3920, 
0.0600]). Moreover, the cumulative sum test for linearity 
showed no significant deviation from linearity (P>0.10), 
validating the linear regression approach for comparison 
of these two methods. Based on the scatter plot, three 
outlier values, which had been previously noted to have 
substantial PRIA segmentation errors during the quality 
assurance pathology review, were also revealed [Figure 2a].  
In one specimen, areas of pulmonary atelectasis were 
incorrectly segmented as a tumor (false positive) [Figures 
1e and f]. In the second specimen, the metastatic tumor 
exhibited varying degrees of cellular degeneration, which 
resulted in lesions being incorrectly segmented as lung 
(false negative, data not shown). Because the third 
specimen identified as an outlier had minimal metastatic 
tumor burden, the segmentation inaccuracies resulting 
from tangentially oblique-sectioned bronchioles and areas 
of pulmonary atelectasis were proportionally greater in 
this specimen. These circumstances are commonplace in 
tissues and inherent in tissue collection/processing and/
or pathologic processes. Algorithms need to be capable 

Table 2:  Percent tumor area quantified within 39 mouse lungs using PRIA and manual image 
segmentation

  PRIA PRIA (correcteda) Manual Segmentation

Median Percent Tumor 5.18 5.18 5.61
Mean Percent Tumor (± SEM) 12.84 (± 2.49) 12.56 (±2.35) 13.19 (±2.41)
Standard Deviation (S.D.) 15.56 14.65 15.06
Range 0.47 - 61.54 0.27 - 46.64 0.37 - 45.63

PRIA: Pattern recognition image analysis, SEM: Standard error of the mean. aCorrected = PRIA percentage tumor area data after three specimens with false positive or false 
negative outlier values (Fig. 2a) were adjusted by having inaccurately segmented foci corrected using manual segmentation image analysis



J Pathol Inform 2012, 3:18	 http://www.jpathinformatics.org/content/3/1/18

of being optimized to compensate for such inherent 
features, if PRIA is to be widely suitable for tissue 
screening and automated decision making support.

The potential effect of these three outlier values 
was evaluated further by using the manual image 
segmentation tool to separately quantify histological 
features erroneously mapped by PRIA. Area 
measurements corresponding to these inaccuracies 
identified on PRIA mark-up image file outputs were 
then used in calculating corrected automated PRIA 
area measurements [Table 2]. The Passing and Bablok 
regression analysis similarly demonstrated no significant 
constant (intercept =  -0.1553 [C.I. = -0.3869, 0.03793]) 
or proportional (slope = 0.9757 [C.I. = 0.9216, 1.0233]) 
error between the methods, following corrections of 
outliers [Figure 2b]. In addition, the linear relationship 
between manual and PRIA measurements was similarly 
confirmed by the cumulative sum of linearity test 
(P>0.10). Therefore PRIA segmentation errors identified 
in this testing set appeared to have relatively little effect 
on the overall study population’s association between 
manual and automated methodologies, or between the 
original and corrected PRIA [Table 2]. Finally, the plots 
suggested the degree of agreement may be slightly less 
in specimens with larger percentage tumor burden area, 
as these data points deviated from the line of identity 
to a greater extent than did specimens with relatively 
less tumor burden [Figure 2]. Planned analyses using 
the difference plot approach of Bland and Altman,[17] 
informative for comparing the extent of agreement 
between two methods, provided a subsequent means to 
examine this issue further.

Based upon the fact that different methods are unlikely to 
agree exactly regardless of the assays being compared,[17] 

and measurements remain imperfect despite the 
morphometric method used, true values for percentage 
tumor burden, calculated as areas of lung occupied by 
tumor for this study, remain unknown. Therefore, we 
chose to undertake further data analysis using the mean 
percent tumor areas of both the corrected PRIA and 
manual image analyses as the best estimate of the true 
value for each specimen.[17] Consequently, the difference 
between PRIA and manually acquired tumor burden 
areas was plotted against the mean of the two methods to 
assess the bias and limits of agreement [Figure 3a]. In the 
Bland-Altman method, the mean difference is an estimate 
of the bias, and the limits of agreement are the interval 
within which the difference between two measurements 
will lie with a probability of 95%. The average difference 
between the PRIA and manual methods was -0.64 and 
the limits of agreement (bias +/-1.96 standard deviation) 
included zero (-4.59, 3.31) as well as the majority of 
the measurement differences (36 out of 39 or 92%). 
Regardless, based upon the distribution of the differences 
[Figure 3a], the uniform 95% limits of agreement are 
not adequate estimates of the limits of agreement since 
heteroscedasticity appears to be present in the data. The 
limits of agreement ranges are clearly too wide for the 
measurements of smaller magnitude and possibly too 
narrow for the larger ones. Therefore, the assumption 
of constant mean and variance of the differences 
between the PRIA and manual method was formally 
tested. A zero slope of the regression of the absolute 
difference against the average of the two measurements 

Figure 2: Method comparisons of the percent metastatic tumor area in mouse lungs. Passing/Bablok regression depicting manual image 
segmentation (X-axis) and PRIA (Y-axis). (a) Data are plotted along a line of identity (solid blue line). Dotted lines indicate 95% C.I. Data 
points identified as outliers due to PRIA segmentation inaccuracies are highlighted in red. (b) All data were replotted after correction 
of outliers [Table 2 and text]. In both analyses, a regression line of best fit for PRIA vs. manual segmentation (solid black line) was not 
significantly different from the line of identity (P>0.1)

a b
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confirmed no proportional bias between the two 
methods (slope  =  -0.03  ± 0.02, P  =  0.21) [Figure 3a].  
However, significant deviation from the zero slope of 
the regression of the absolute residuals, on average, 
evidenced dependence of the measurement variance 
on the measurement magnitude (slope  = 0.07  ± 0.01, 
P  <  0.001). We used the relationship of the absolute 
residuals to construct the 95% proportional limits of 
agreement,[19] where the lower limit  =  -0.85-0.2*Average 
and the upper limit  =  0.29+0.14*Average. As shown in 
Figure 3a, improved method comparability was revealed, 
with 95% (37 out of 39) of differences included within 
the estimated proportional limits of agreement. 

In order to remove dependence on the extent of tumor 
burden, the Bland-Altman method was subsequently 
performed by transforming the difference between 
PRIA and manual segmentation measurements to a 
percent difference scale ([PRIA-Manual]/Average*100), 
based on their tumor burden [Figure 3b]. On average, 
PRIA was approximately 10% smaller than manual 
measurements and the uniform 95% confidence limits 
of the bias contained 92% of the differences (36 out 
of 39). This analysis revealed that despite the effect of 
removing the measurement magnitude, the uniform 
limits of agreement seemed to be too wide for the largest 
measurements, and the measurement error appears 
relatively large in the smallest range of the measurements 
(mostly in the range of the tumor content below 3%). 
Therefore, we again tested the constant bias assumption 
and generated 95% proportional limits of agreement 
based on the absolute residual regression on the average. 
The slope of the regression fit of the percent difference 
versus average was not significant (slope  =  0.28 ± 0.17, 
P  =  0.12) and thus no proportional bias was identified 
between the PRIA and manual method. The regression-
based 95% limits of agreement define the interval at 
the lower limit  =  -49+0.77*Average and at the upper 
limit = 23-0.22*Average, which contains 95% of the 
measurement differences (37 out of 39) [Figure 3b]. 
Overall, the Bland-Altman agreement analyses showed 
that individual measurements fall within the range of 
inherent variability of the tumor content measurement 
and thus indicate sufficient agreement for the methods 
to be used interchangeably. 

Investigators versed in manually outlining histological 
features during morphometric analyses will recognize 
that the precision of this approach is less than perfect 
and the operator can introduce inaccuracies. Distinct 
advantages of PRIA are presumed to be its precision 
and the minimization of intra- and interoperator biases 
potentially influencing quantification of histological 
features.[6,9] In order to assess the reproducibility of 
automated PRIA compared to manual morphometrics, 
replicate metastatic tumor areas were acquired from 
the mouse lungs manually by a second operator, and 

by employing a second Genie algorithm created from 
the same slides used to train the original pulmonary 
metastatic tumor algorithm. Substantially concordant 
correlation coefficients were obtained for PRIA replicate 
measurement analysis (0.998, 95% C.I. = 0.9964-0.9989) 
and for manual replicate measurements (0.9889, 95% 
C.I. = 0.9806-0.9937). However, the manually acquired 
repeated measures were less reproducible (coefficient 
of variation = 17.10), compared to the measurements 
obtained with the two pulmonary PRIA algorithms 
(coefficient of variation = 7.40). This demonstrated the 
superior reproducibility of PRIA compared to manual 
morphometric acquisition.

Comparison of PRIA to Expert Diagnostic 
Assessment of Morphologically Complex Tissue 
Specimens
In order to evaluate PRIA software further, algorithms 
suitable for assessing more morphologically complex sets 
of tissues were developed in a second application using 
tissue sections from teratomas. Stem cell teratomas 
represent neoplasms derived from pluripotent cells capable 
of recapitulating the spectrum of embryonic development, 
phenotypically manifesting varying degrees of dysplastic 
cell differentiation and stratification.[22] Tissue sections 
from six sources of teratomas grown from mouse or 
human stem cells, grafted in immunodeficient mice, 
provided a highly complex morphological array for further 
PRIA assessment [Table 3]. Specimens were originally 
derived for the purposes of determining the potential 
for stem cell pluripotency. In vivo teratoma development 
with evidence of tissues/cells derived from all three 
ontogenic germ layers is considered the most stringent 
gauge of stem cell potential and pluripotency.[22,23]  
Teratomas developed from different sources of stem 
cells provided a spectrum of tissues including those 
recapitulating advanced degrees of differentiation (more-
differentiated), as well as other teratomas that were 
predominantly composed of less-developed, primitive 
tissues (less-differentiated) [Table 3].

Supplied teratomas had been formalin-fixed, paraffin 
embedded, sectioned at approximately 5 µm thickness, 
and stained with hematoxylin and eosin. Whole-slide 
images were acquired as described above. Following a 
series of refinements to optimize tissue class sensitivities 
and specificities during the training process, an original 
PRIA algorithm was developed for teratomas using 
four training slides, including two more-differentiated 
and two less-differentiated teratomas, representing the 
histomorphologic spectrum within the collection [Table 
1, Teratoma 1]. Specimens derived from both human and 
mouse stem cells were included in the training. Tissue 
classes selected for training included muscle, nervous 
tissue, epithelium, cartilage, undifferentiated cells/cell 
debris, glass/fat, blood, and keratin. 
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PRIA was compared to histopathologic assessments 
performed by a pathologist [Figure 4]. The Teratoma 
1 PRIA algorithm [Table 1] provided an automated 
means to detect morphological evidence of pluripotency 
in those teratomas with more-differentiated features, 
which had previously been determined to include tissue 
components representing all three ontogenic germ cell 
layers [Table 3]. However, the Teratoma 1 algorithm 

performed relatively poorly on less-differentiated 
teratomas, conclusively identifying evidence of 
pluripotency in only 1 of 16 such teratomas in which all 
three germ layers were present [Table 3]. We concluded 
that the histomorphologic spectrum present in more- 
and less-differentiated teratomas was extremely broad 
and difficult to encompass in a single algorithm, even 
when the algorithm was developed using representative 

Figure 4: Automated PRIA-based diagnosis of pluripotency in teratomas. (a) Pathologist assessment for evidence of mesoderm, ectoderm, 
and endoderm morphogenesis: muscle (+), nervous tissue (*), and epithelium (←) are labeled in a teratoma. (b) Represents the same 
image in (a) after PRIA [Teratoma 1, Table 1]. Pseudo-color mark-up illustrates muscle (green), nervous tissue (yellow), cartilage (blue), 
and epithelium (red), evidence of pluripotency. PRIA diagnostic agreement was accepted if all of the tissue classes representing all germ 
layers (as in this example), were identified with >50% sensitivities. Bars=500um

Figure 3: Percent pulmonary tumor burden limits of agreement (LoA). (a) Majority of the measurement differences (92%) fell within 
uniform 95% LoA (dashed lines). Regression of the absolute difference vs. average of the two methods confirmed no proportional bias (solid 
blue line, P=0.21). (b) Between-methods percent differences normalized to average tumor burden per sample was plotted to remove the 
effect of tumor burden extent. Mean PRIA was ≤10% than manual (dashed line). Constant variance test (yellow area =95% proportional 
LoA) revealed no proportional bias (solid brown line, P=0.12)

a b

a b
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Table 3: Characterization of stem-cell derived teratomas and diagnostic agreement of pluripotency 
obtained using PRIA

Teratoma 
stem cell 
source

Pluripotency 
(#/total 

teratoma 
specimens)a

Germ 
layer

Tissue classes present Phenotypic 
differentiation

PRIA diagnosis of 
pluripotency (#/total 

pluripotent teratomas)b

Contributor

Teratoma 1 
algorithm

Teratoma 2 
algorithm

Mouse ES  6/6 Mesoderm Muscle More 
differentiated

6/6 0/6 Jeff Green,  
NCI  Cartilage

  Bone
Endoderm Respiratory epithelium
  Glandular epithelium
  Squamous epithelium
Ectoderm Nervous tissue

Mouse ES  2/2 Mesoderm Muscle Less 
differentiated

1/2 2/2 Minoru Ko, 
NIA  Cartilage

  Bone
  Loose mesenchyme
Endoderm Respiratory epithelium
  Glandular epithelium
  Squamous epithelium
Ectoderm Nervous tissue

Mouse ES  2/2 Mesoderm Muscle More 
differentiated

2/2 1/2 Jing Huang, 
NCI  Cartilage

Endoderm Respiratory epithelium
  Glandular epithelium
  Squamous epithelium
Ectoderm Nervous tissue

Mouse iPS  2/2 Mesoderm Muscle More 
differentiated

2/2 1/2 Jing Huang, 
NCI  Adipose tissue

Endoderm Glandular epithelium
  Respiratory epithelium
  Squamous epithelium
Ectoderm Nervous tissue

Human iPS  6/9 Mesoderm Muscle Less 
differentiated

0/6 5/6 Hongjun Song, 
JHU  Cartilage

  Bone
  Loose mesenchyme
  Fibrous connective tissue
Endoderm Glandular epithelium
Ectoderm Nervous tissue
  Pigmented epithelium

Human ES  8/11 Mesoderm Muscle Less 
differentiated

0/8 6/8 Hongjun Song, 
JHU  Cartilage

  Bone
  Loose mesenchyme
  Fibrous connective tissue
Endoderm Glandular epithelium
Ectoderm Nervous tissue
  Pigmented epithelium

ES: Embryonic stem cells, iPS: Induced pluripotent stem cells, NCI: National Cancer Institute, NIA: National Institute of Aging, JHU: Johns Hopkins University. a. Presence of tissues 
representing three germ layers confirmed by pathologist using light microscopic observation. b. Diagnostic agreement was accepted if all of the relevant tissue classes representing 
evidence of mesoderm, endoderm, and ectoderm morphogenesis were each identified with > 50% sensitivities. Teratoma 1 and 2 algorithms are defined in Table 1.
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teratomas from multiple sources. For example, the 
ability to accommodate appropriate segmentation of 
nervous tissue characterized by neuroparenchyma with 
scattered perikarya and glial cells reminiscent of cerebral 
cortex, as well as encompass nervous tissue primarily 
consisting of primitive neuroectodermal cells arranged 
as multiple, densely cellular rosettes, proved problematic 
to achieve. The overlap of multiple histologic features 
among the various teratomas similarly contributed to 
this difficulty. Broadening training montage features in 
an attempt to accommodate the diversity of histological 
features frequently resulted in a detrimental trade-off, 
increasing PRIA error elsewhere in images at the expense 
of improving segmentation of features targeted for 
refinement.

The broad histomorphologic spectrum of tissue features 
occurring in the array of teratomas was addressed further 
by developing a second algorithm using only features of 
less-differentiated teratomas during training [Table 1,  
Teratoma 2]. This new algorithm led to detection of 
all three ontogenic germ cell layers for 13 of 16 less-
differentiated teratomas that exhibited pluripotency 
[Figure 5 and Table 3]. However, when Teratoma 2 
algorithm was applied to more-differentiated teratomas, 

only 2 of 10 had evidence of pluripotency detected 
appropriately, due to diminished segmentation accuracy 
within large areas of tissue, compared to the original 
algorithm [Figure 5].

The PRIA software is programmed to assign each image 
pixel in the set of testing images to a predesignated 
tissue class defined within the analysis montage during 
training. This can result in some false-positive (and 
false-negative) tissue feature classifications during image 
segmentation. Despite this, PRIA algorithms developed 
for teratomas in this evaluation yielded computer-assisted 
diagnosis of stem cell pluripotency for many specimens, 
through the confirmation of the presence of tissue 
layers representing ectoderm, mesoderm and endoderm 
morphogenesis [Table 3]. However, areas of less accurate 
image segmentation were similarly evident, as judged 
by pathologist histopathologic assessment. Regardless 
of the teratoma algorithm applied or a specimen’s 
phenotypic differentiation, certain image segmentation 
inaccuracies were observed fairly consistently. Examples 
of these inaccuracies involved muscular-walled blood 
vessels, epithelia bordering a tissue cavity, and areas of 
cellular degeneration or necrosis. Cell death, in particular, 
resulted in such image segmentation inaccuracies due to 

Figure 5: Teratoma phenotypic diversity highlighted challenges developing PRIA algorithms. (a, b, same field of view). Agreement with 
pathologist assessment of pluripotency by PRIA using Teratoma 2 algorithm for less-differentiated teratomas was documented in (b) by 
evidence of mesoderm (bone, brown; connective tissue, green), endoderm (epithelia, red), and ectoderm (nervous tissue, pink). However, 
more-differentiated teratomas (c, d, same field of view) were less accurately segmented. For example, large areas of muscle (†) and nervous 
tissue (*) were misidentified as connective tissue (green). 200 µm 

a

c

b

d
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its varied morphological manifestations and the fact that 
characteristics of necrosis can overlap with certain other 
histological features [Figure 6].

Out of these evaluations, it became apparent that the 
PRIA software’s training montage size limit of 1.6 × 
107 pixels restricted the number and characteristics of 
tissue class examples that could be incorporated into 
the teratoma training montage. This fact, coupled with 
the broad range of histomorphologies present within 
the teratoma specimens, necessitated the application of 
multiple algorithms in order to analyze the broad range 
of tissue features. Similar circumstances, dictating the 
development of multiple PRIA algorithms to address 
within tumor-type phenotypic heterogeneity, were 
encountered previously.[9] 

SUMMARY AND CONCLUSION

Insight into how well PRIA agrees with histopathologic 
assessment was sought through comparisons to an 
accepted morphometric technique employing objectively 
obtained metrics, and by comparing PRIA with tissue 
evaluations familiar to many pathologists. Quantitative 
histopathologic assessment is a needed adjunct to both 
diagnostic and investigative pathology and the potential 
for PRIA to influence future histopathologic assessment 
was key in our rationale to undertake this software 
evaluation. The out-of-the-box application evaluation 
approach was made from a perspective similar to what 
many prospective users would employ. 

The ability to apply automated image analysis represents 
both technical and logistical advances for quantifying 
phenotypic manifestations of diseases in tissues.[1] 

PRIA software provided the ability to obtain automated 
quantification of user-defined histological features 
from optically scanned, digitized tissue sections, and 
in particular performed well segmenting dichotomous 
lung features. As alluded to in previous reports,[6,9] 
the findings obtained in this study through repeated 
measures analyses demonstrated the ability to objectively 
achieve more reproducible image segmentation with 
PRIA, compared to interoperator manual segmentation. 
Significant agreement between PRIA and manual image 
segmentation of metastatic tumors in the lung was 
obtained across the sample population, with analytical 
tests revealing differences or ambiguities between 
methods to be largely inconsequential. There were 
sources of both false-positive and false-negative PRIA 
errors observed however, similar to a previous report.[6]  
Variations in tissue orientation, handling, processing, 
and staining among specimens can be sources of 
segmentation inaccuracies. Such variations are routinely 
encountered and interpretatively accommodated for in 
histologic sections by pathologists. Such circumstances 
influence the application of algorithms across entire 
studies or algorithm application to multiple different 
study sets, and minimizing the presence of preanalytical 
variables is advantageous for application of image 
analysis.[24] For example, in the present study, spatial-
spectral features useful for discriminating aerated, 
expanded lung from tumor proved inadequate for 
segmenting collapsed, atelectic lung, for which the 
nuclear and tissue density features were more similar 
to metastatic tumor than to aerated lung tissue. Such 
factors led to the application of methods for computing 
corrected PRIA measurements, in order to evaluate the 
potential influence of segmentation inaccuracy on outlier 

a b
Figure 6: Inaccurate automated PRIA segmentation of necrotic tissue within teratomas. (a) Necrosis within a teratoma, characterized 
by amorphous, eosinophilic cellular debris mixed with nuclear debris, characteristic of dying cells. (b) Pseudo-color mark-up of image 
depicted in (a) following PRIA [Teratoma 1, Table 1]. Despite a training class encompassing cell debris (orange), the region of necrosis 
was inaccurately segmented as nervous tissue (yellow) and muscle (green), with flecks of cartilage (blue). The algorithm more accurately 
mapped the congested vasculature present (purple). Bars = 50 µm
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data values more thoroughly. Although the necessity to 
manually correct the image segmentation inaccuracy did 
not appear to be a requirement in this study in retrospect, 
if such was a matter of routine it would be limiting 
for PRIA in general. Nonetheless, implementation of 
pathologist quality assurance review of image data mark-
up files further substantiated the value of the review in 
enhancing the ability to distinguish tolerable from more 
substantial segmentation errors. Therefore pathologist 
quality assurance review should be a part of the image 
analysis workflow. 

Despite confirming a significant degree of identity and a 
lack of proportional bias between PRIA and manual image 
segmentation, there was clear indication that the variance 
of measurement error detected between the two methods 
depended in part on measurement magnitude. The Bland-
Altman analysis conducted to isolate the effect of the 
measurement magnitude and the amount of differences 
between PRIA and manual measurements highlighted 
the greatest disparities in the smallest range of the 
measurements (mostly in tumor content below 3%). The 
smallest tumor burdens appeared to disproportionately 
influence this. Retrospective examination of both manual 
and PRIA mark-up images from the seven specimens 
with limited tumor burdens deviating furthermost from 
equality [Figure 3b], yielded evidence that PRIA had 
greater specificity for tumor identification, but was less 
sensitive due to failure to detect limited tumor foci 
admixed with pulmonary hemorrhage or congestion. 
In contrast, manual image segmentation appeared 
to be more sensitive for delineating areas of limited 
neoplastic foci. However, nonneoplastic tissue changes 
(inflammation) were occasionally included at the margins 
of these foci, which diminished analytic specificity to a 
degree. Collectively, such identifications appeared to 
be near the threshold limits of technical and practical 
abilities to accurately distinguish measurable differences 
within tissues regardless which of these two methods 
was applied. Conceivably the expert can segment 
such features with greater accuracy, particularly when 
employing higher resolution images during segmentation, 
but this may be negated by the practical limits of doing 
so. Therefore, this should be considered when applying 
PRIA for detecting early lesions, treatment group 
differences, or minimal residual disease, for example. 

Application of automated PRIA requires cross-validation. 
Algorithms demand varying degrees of customization 
that cannot always be predicted, a priori. In order for 
algorithms to be suitable, appropriate detection and 
identification of relevant features in unknown images 
in a testing set must be validated.[5,6] Transferring an 
algorithm from study to study in order to analyze tissue 
features with related histogenesis, works in some cases 
but not in other cases,[9] a circumstance encountered 
in the teratoma evaluations. Overall, the PRIA software 

performed reasonably well in detecting teratoma 
pluripotency. The complex phenotypic diversity of the 
teratomas presented a key challenge to achieving optimal 
diagnostic agreement, and led us to ultimately produce 
two algorithms incorporating more restricted training 
features for each. Prior to creating multiple algorithms 
however, the use of higher resolution images coupled with 
algorithms trained at higher resolution was considered 
during attempts to improve diagnostic agreement. We 
concluded that the enhanced file sizes, processing time 
requirements, and computational limitations inherent in 
doing so, constrained a systematic evaluation of these 
parameters at this time.[5,6]

Analyses of the series of morphologically complex 
teratomas provided evidence of limitations in PRIA 
diagnostic ability, compared to expert assessment. 
Histopathologic PRIA appeared to be best suited for 
analysis of a limited phenotypic range and few numbers 
of tissue features. Both tissue applications tested and the 
inability to optimize pulmonary and teratoma algorithms 
to commensurate levels of specificity and sensitivity 
supported this conclusion. In addition, this deduction 
is also consistent with the initial development of PRIA 
for geospatial image feature extraction.[5] Through 
this analysis, it became apparent that enhancement to 
the histopathologic PRIA process is in order. Certain 
foundational limitations we, and others, have encountered 
that appear to impact the ability to attain better diagnostic 
agreement must be addressed, either through additional 
improvements in technology and/or garnering additional 
user experience.[5,9,16] Examples of technical limitations 
encountered include presumptive restrictions in features 
that could be incorporated for algorithm training and 
computational reliance on multispectral features at the 
expense of sufficiently robust spatial image processing. 
File size limitations and spectral processing dominance 
are inherent software limitations that can be an issue in 
any analysis; however, they become exaggerated when 
analyzing highly heterogeneous tissues. Making multiple, 
more simplified, algorithms to apply to a series of the 
same lesions appeared to be the best means to deal with 
these issues currently, although this is a less than optimal 
work-around. Further software refinements to these 
limitations may improve discrimination of difficult to 
differentiate histological features, such as distinguishing 
cell death from several other tissue features, a repetitive 
diagnostic shortcoming in this and a previous study.[9] It is 
important to point out that these suppositions regarding 
the state of PRIA technology must be considered in the 
context of the limited, although representative, types 
of applications analyzed in this evaluation. In the same 
regard, this evaluation included only a single, although 
highly representative, PRIA software platform. Additional 
evaluations are therefore warranted.

The evolution of artificial intelligence applications, 
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like PRIA, will be monitored by entities wishing to 
take maximum advantage of emerging knowledge-work 
automation technologies.[25] Such technology is apt to 
improve the throughput for screening large numbers 
of study slides, while permitting diagnostic criteria to 
be consistently applied across all specimens. Future 
developments in this technology, including improvements 
in automation and management of these systems, 
may shape the redefinition of the pathologist’s role. 
However, organizations implementing this technology 
will likely discover that gains achieved through their 
“virtual pathologists” will be imperfect due to the need 
for contextual, integrative medical decision making in 
pathology interpretations. How this emerging technology 
is deployed and utilized will help to determine if 
anticipated competitive advantages can be achieved.[25] 

Attaining the greatest benefits from automated PRIA will 
entail an ongoing collaboration of experts in computer 
technology, image processing, and pathological diagnosis.
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