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Statistical Deconvolution for Superresolution Fluorescence Microscopy
Eran A. Mukamel,†* Hazen Babcock,‡ and Xiaowei Zhuang‡*
†Center for Brain Science and ‡Department of Chemistry and Chemical Biology, Department of Physics, and Howard HughesMedical Institute,
Harvard University, Cambridge, Massachusetts
ABSTRACT Superresolution microscopy techniques based on the sequential activation of fluorophores can achieve image
resolution of ~10 nm but require a sparse distribution of simultaneously activated fluorophores in the field of view. Image analysis
procedures for this approach typically discard data from crowded molecules with overlapping images, wasting valuable image
information that is only partly degraded by overlap. A data analysis method that exploits all available fluorescence data, regard-
less of overlap, could increase the number of molecules processed per frame and thereby accelerate superresolution imaging
speed, enabling the study of fast, dynamic biological processes. Here, we present a computational method, referred to as de-
convolution-STORM (deconSTORM), which uses iterative image deconvolution in place of single- or multiemitter localization to
estimate the sample. DeconSTORM approximates the maximum likelihood sample estimate under a realistic statistical model of
fluorescence microscopy movies comprising numerous frames. The model incorporates Poisson-distributed photon-detection
noise, the sparse spatial distribution of activated fluorophores, and temporal correlations between consecutive movie frames
arising from intermittent fluorophore activation. We first quantitatively validated this approach with simulated fluorescence
data and showed that deconSTORM accurately estimates superresolution images even at high densities of activated fluoro-
phores where analysis by single- or multiemitter localization methods fails. We then applied the method to experimental data
of cellular structures and demonstrated that deconSTORM enables an approximately fivefold or greater increase in imaging
speed by allowing a higher density of activated fluorophores/frame.
INTRODUCTION
Superresolution fluorescence microscopy techniques based
on single-molecule localization achieve subdiffraction-limit
resolution by stochastically activating individual fluoro-
phores and computationally determining the fluorophore
positions (1). For example, stochastic optical reconstruction
microscopy (STORM) and (fluorescence) photoactivated
localization microscopy ((F)PALM) take advantage of pho-
toswitchable probes to temporally separate the spatially over-
lapping images of individual molecules (2–4). At any instant
during the image acquisition, only a sparse subset of the fluo-
rescent probes in the field of view is activated, such that the
positions of the probes can be precisely determined from
their individual images. A superresolution image can then
be reconstructed by accumulating numerous fluorophore
positions over time. Computing the fluorophore coordinates
from their corresponding images is thus central to these
superresolution techniques. However, analysis methods that
accomplish this task typically rely on simplistic assumptions
about image acquisition that limit the speed and efficiency of
imaging. For example, most current methods assume that flu-
orophore localization requires isolated images of individual
fluorophores (2–6), since overlapping images carry reduced
information (7). These methods therefore discard data from
nearby fluorophores with overlapping images, limiting the
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density of fluorophores that can be localized per frame and
necessitating thousands to tens of thousands of frames to
build up enough points to estimate an image. Yet image over-
lap between molecules only partially degrades the localiza-
tion precision (8), suggesting the possibility of localizing
a higher density of fluorophores/frame and thus increasing
the overall imaging speed.

Indeed, several methods have been recently developed to
take advantage of information from such high-density
samples with overlapping single-molecule images, either
by comparing subsequent frames, by directly fitting the
overlapping images of multiple emitters, or by using high-
order correlations in the fluorescence data. For example,
super-resolution imaging can be accomplished by subtract-
ing subsequent movie frames to reveal the transient blinking
or bleaching of isolated individual fluorophores (9,10). This
elegant approach substantially extends the range of fluoro-
phores available for localization-based superresolution
imaging. The imaging speed is, however, not substantially
increased, because the subtracted images are still analyzed
by single-emitter fitting and thus the number of localizations
that can be detected per frame is similar to the other single-
emitter localization based approaches. Localization preci-
sion may also be reduced for emitters that remain activated
during a series of several frames, because only photons in
the first and last frames of the series are used for localization.
Simultaneously fitting overlapping images from multiple
activated fluorophores can substantially shorten the imaging
time (11–13), but this approach is computationally chal-
lenging due to the high-dimensional space of possible
doi: 10.1016/j.bpj.2012.03.070
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molecular configurations that could give rise to a given
sequence of images. The computational time thus increases
exponentially and the localization accuracy decreases with
increasing density of simultaneously activated fluorophores.
A Bayesian analysis has been developed to address this
problem by taking advantage of the temporal correlations
arising from fluorophore blinking and bleaching (13), though
simplifying assumptions, such as Gaussian-distributed
photon-detection noise, are invoked. Overall, localization
of molecules becomes increasingly more difficult and less
accurate as the density of simultaneously emitting fluoro-
phores increases. Higher-order correlation analysis of the
temporal fluctuations of individual pixels can also be used
to analyze high-density samples and yield subdiffraction-
limit images (14). This method, called superresolution
optical fluctuation imaging (SOFI), can potentially achieve
faster imaging speed than localization-based superresolution
methods, but with a lower spatial resolution.

In this work, we developed an image-deconvolution-based
method that can analyzemultiframe fluorescencemovies and
obtain superresolution images without the need of localizing
molecules. A microscope forms a far-field image of the
sample that is blurred, or convolved, with the instrument’s
point spread function (PSF), the width of which is typically
limited to ~200 nm by the diffraction of light. Convolution
is a linear operation that can be reversed by convolving
with an appropriate sharpening filter, to recover the true
sample. In practice, however, noise in the fluorescence data,
such as Poisson-distributed photon shot noise, may be
severely amplified by linear deconvolution procedures. This
negates the benefit of image deconvolution and prevents the
use of linear deconvolution for reconstructing image features
substantially smaller than the diffraction limit. Here we
develop a nonlinear deconvolution procedure that avoids
noise amplification by using a realistic statistical model of
fluorescence data from intermittently activated molecules
and allows a superresolution image to be reconstructed
from movies with a relatively high density of activated
fluorophores/frame. This approach, referred to as deconvolu-
tion-STORM (deconSTORM), directly estimates a superre-
solution image (i.e., the intensity values at a discrete set of
pixels more finely spaced than the original camera pixels),
rather than a set of emitter locations. This method thus differs
fundamentally from superresolution methods based on local-
ization of individual molecules. Our validation studies using
simulations and cellular data show that deconSTORM
allows a substantial increase in the imaging speed compared
to single-molecule-localization-based techniques.
METHODS

Simulations and data analysis were carried out using custom code written in

MATLAB (TheMathWorks, Natick, MA). To allow other researchers to use

the deconSTORM method, a MATLAB toolbox for implementing the

method is available at http://zhuang.harvard.edu/software.html.
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deconSTORM: a statistical deconvolution
analysis method

Determining the best estimate of a sample’s structure based on noisy fluo-

rescence images is a statistical estimation problem. Our statistical model

assumes that the true sample at time frame k is a positive semidefinite func-

tion, ikðxÞ, representing the brightness of activated fluorophores at a discrete
grid of locations, x˛X. The number of fluorescence photons detected at

each camera pixel y, NkðyÞ, is a Poisson-distributed random variable related

to ikðxÞ by

P½fNkðyÞgjik� ¼
Y
y˛Y

e�lkðyÞlkðyÞ
NkðyÞ

NkðyÞ! : (1)

The grid of camera pixels, Y, is in general coarser than the superresolution
sample grid, X. The expected intensity, lkðyÞ, is the sum of the background

fluorescence intensity, b, and the convolution of the true image with the

PSF, h:

lkðyÞ ¼
X
x˛X

hðy� xÞikðxÞ þ b: (2)

The PSF is normalized so that
P

x˛Xhðy� xÞ ¼ 1 for all y. We sought

a method to approximate the maximum-likelihood image based on all avail-
able data, without explicitly estimating emitter locations. To do this, we

adapted the iterative image deconvolution algorithm of Richardson and

Lucy (RL), which converges to the maximum-likelihood estimate of

a true image given blurred, noisy data with Poisson statistics (15–17).

RL deconvolution begins, at iteration t ¼ 1, with a uniform estimate of

the image intensity at location x in frame k, bi t¼1

k ðxÞ ¼ 1 (we use a circum-

flex to denote estimated quantities). The expected number of fluorescence

photons at pixel y is bNt

kðyÞ ¼
P

x˛Xhðy� xÞbi tkðxÞ þ b. We assume that h

and b are known; these quantities can be calibrated, e.g., using data from

sparsely distributed fluorophores whose individual images do not overlap.

The discrepancy between the observed and expected number of photons

is captured by the error ratio at each camera pixel, etkðyÞhNkðyÞ=bNt

kðyÞ.
RL deconvolution updates the sample estimate by multiplying by the

convolution of this error ratio with the PSF,

bi tþ1

k ðxÞ ¼ bi tkðxÞX
y˛Y

hðx � yÞetkðyÞ=aðxÞ: (3)

Here, aðxÞhP
y˛Yhðx � yÞ is a normalizing constant. This algorithm is an

expectation-maximization (EM) procedure that is guaranteed to converge to
the maximum-likelihood sample estimate (15–17), but the speed of conver-

gence can be very slow.

It has been shown that the convergence of RL deconvolution may be

accelerated by modifying the algorithm to incorporate statistical prior infor-

mation about the distribution of pixel intensities (18,19). We therefore

adapted the classic RL algorithm in two ways to incorporate realistic statis-

tical features of the spatial and temporal distribution of stochastically acti-

vated fluorophores in a movie. First, each movie frame consists of images of

relatively sparsely distributed fluorophores, because only a dilute set of flu-

orophores is activated. Here, we note that the word sparse does not imply

that the images of activated fluorophores are all well isolated from each

other, but instead means that these images are not sufficiently crowded to

cover all areas in the field of view. Therefore, substantial overlap between

images is allowed. A sparse prior distribution for the pixel intensities in the

superresolution image is therefore appropriate and may improve the conver-

gence speed of the RL algorithm. An exponential prior distribution of the

form P½bi �fexp½�gbi � promotes sparseness (20) and can be implemented

by including a divisive factor in the RL update rule (18):

bi tþ1

k ðxÞ ¼ bi tkðxÞX
y

hðx � yÞetðyÞ=ðaðxÞ þ gÞ: (4)
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We refer to this procedure as RL with constant prior, since the parameter g

is the same at every location and time frame.

Both of the above deconvolution procedures, RL (Eq. 3) and RL with

constant prior (Eq. 4), treat each movie frame independently, ignoring

temporal correlations between frames due to intermittent fluorophore acti-

vation and deactivation. Considering this temporal correlation could

increase the accuracy in the estimated image. We next designed a decon-

STORM deconvolution procedure to take into account the stochastic

dynamics of emitter activation and deactivation to further improve the

speed and accuracy of image estimation. We assume that each emitter

switches between an activated (fluorescent) state and an off (dark) state ac-

cording to a Markov process, with transition probabilities b (activation) and

a (inactivation) in each frame; this is illustrated in Fig. 1, a and b. Each

emitter’s transitions are statistically independent of the other emitters’

states. As with the PSF, h, and background intensity, b, we assume that

b and a are known; these parameters are determined by the photophysics

of the fluorophore, as well as the intensity of the activation laser, and

they may be easily calibrated. The switching dynamics of individual fluo-

rophores generate correlations that can be used to improve the sample esti-

mate in a given frame by using information from other frames.

To do this, we reasoned that information from temporal correlations

could be used to optimize the sparseness parameter, g, at each location

and time frame. We therefore assigned each location in each movie frame

its own exponential prior distribution with parameter gt
kðxÞ, whose value is

updated iteratively in parallel with the superresolution sample estimate,bi tkðxÞ (Fig. 1 c). gt
kðxÞ acts as a compression factor that biases the corre-

sponding location’s estimated intensity toward zero (Fig. 1 d). The

compression factor at location x in frame k is based on a weighted average

of the sample estimate at x in the full set of K movie frames, with higher

weight given to the frames immediately before or after the current frame:

gt
kðxÞ ¼ max

(
� g ln

"XK
k0 ¼ 1

�
ajk�k0 j

2ð1� aÞ þ
b

K

�bi tk0 ðxÞ
#
; 0

)
:

(5)

g is a gain parameter that controls the overall amount of compression; in

practice, we found that a value of g ¼ 1/256 provided an appropriate
balance of compression and accuracy. The first term inside the logarithm

in the update rule (Eq. 5) ensures that observation of intense fluorescence

at a particular location in one movie frame reduces the compression factor
a

b

c

d

Frame

k = 1

2σ

Inactive

2

Active

3 4 5 6
at the same location in subsequent and preceding frames. Since an activated

emitter remains active for 1/a frames on average, the influence of each

frame on the compression parameter in other frames decays exponentially

as a function of the time lag between them. The second term in Eq. 5 is

motivated by the fact that an emitter detected in any time frame may be

reactivated in any earlier or later frame with probability b. Both terms cause

the compression factor to decay toward zero (i.e., no extra compression) in

regions where the prior expectation of an activated emitter is high. In

regions of the field of view with near-background fluorescence intensity

throughout the data set, the value of the compression factor increases and

the estimated image in these regions will be biased toward zero.

Table 1 summarizes the deconSTORM algorithm, as well as the classic

RL deconvolution procedure and RL with constant prior.
Simulated localization microscopy data sets

To validate our analysis method, we simulated multiframe fluorescence

microscopy data sets in which only a subset of fluorophores was activated

in each frame. All distances were expressed in units of s, the width param-

eter of the optical PSF (defined below). Here, we choose s ~ 150 nm. The

field of view was divided into an 8 � 8 grid of camera pixels, and the side

length of each pixel was 1s. The resulting field-of-view area was 64 s2, cor-

responding to several diffraction-limited regions. For each simulation, we

created a sample consisting of M ¼ 30 pointlike emitters whose x- and

y-coordinates were randomly drawn from a uniform distribution on the

interval, [0,8s). These samples therefore have a uniform average fluorophore

density. Each emitter had two states, an off state and an activated state, with

transitions occurring independently with probability b and a for activation

and inactivation, respectively. We set a ¼ 1/2 for all simulations. b varied

from ~10�4, corresponding to a low average density of activated emitters,

up to ~0.1, producing extensive overlap between neighboring images of

emitters. In the first movie frame of a simulated data set, each emitter

was chosen to be in the activated state with probability P ¼ b/(1 � a þ b),

the steady-state activation probability for an individual emitter. The density

of simultaneously fluorescent emitters is thus r ¼ PM/(8s)2, and the

mean separation between activated emitters is d ¼ ffiffiffiffiffiffiffiffi
1=r

p
.

To create a fair comparison among simulations with different activation

rates, we reduced the number of movie frames, N, as the activated emitter

density increased so that the total number of fluorescence photons collected

from activated emitters is roughly the same: N z 13/b.
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FIGURE 1 Schematic illustration of the deconSTORM

algorithm for analyzing multiframe fluorescence movie

data of intermittently activated fluorophores. (a) Simula-

tion of a small field of view containing two nearby fluoro-

phores. In this sequence of six frames, open and solid

circles denote the off (dark) and activated (fluorescent)

states, respectively. (b) Simulated fluorescence data for

each frame; s is the width parameter of the microscope’s

PSF, which is equal to the pixel spacing of the simulated

fluorescence data. (c) The deconSTORM compression

parameter, gt
kðxÞ, at pixel x and time frame k at iteration

t ¼ 500. (d) Estimated image for each movie frame after

500 iterations of deconSTORM deconvolution.
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TABLE 1 Three deconvolution-based algorithms and glossary of notation

Variable name Symbol Variable name Symbol

Detected fluorescence photons in frame k in pixel y NkðyÞ Compression factor gt
kðyÞ

Background brightness b deconSTORM gain factor g

PSF hðyÞ Total number of frames K

Fluorophore inactivation probability/frame a Estimated image intensity after t iterations

of deconvolution at location x for frame k

bi tkðxÞ
Fluorophore activation probability/frame b Normalization of the PSF aðxÞhP

yhðx � yÞ
Algorithm

1. Initialize the sample estimate bi1kðxÞ ¼ 1

2. For t ¼ 1 to n:

2.1 Compute ratio of data to prediction etðyÞ ¼ NkðyÞP
x
hðy� xÞbi tkðxÞ þ b

2.2 Compute sparseness parameter

i. RL gt
kðxÞ ¼ 0

ii. RL with constant prior gt
kðxÞ ¼ g

iii. deconSTORM gt
kðxÞ ¼ max

�
� g log

� PK
k0¼1

�
ajk�k0 j

2ð1� aÞ þ
b

K

�bi tk0 ðxÞ
#
; 0

)
2.3 Update sample estimate bi tþ1

k ðxÞ ¼ bi tkðxÞP
y
hðx � yÞetðyÞ=ðaðxÞ þ gt

kðxÞÞ
Three deconvolution-based algorithms are RL, RL with constant prior, and deconSTORM.
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The expected number of fluorescence photons at pixel j in time frame k

was

ik
�
rj
� ¼

XM
l¼ 1

sl;kh
�
rj � rl

�þ b; (6)

where sl;k˛f0; 1g defines the state (off or activated) of emitter l in frame k;

the vector rj is the position of the jth pixel; rl is the position of the lth

emitter; and the PSF is a periodic Gaussian function:

hðr1� r2Þ ¼ B
XN

mx ;my ¼�N

exp

"
� ðx1 � x2 þ mx8sÞ2

2s2

�
�
y1 � y2 þ my8s

�2
2s2

#
:

(7)

The sum over mx and my effectively creates periodic boundary conditions,

eliminating effects due to the edges of the simulated field of view. The

brightness parameter, B, was chosen so that
P64

k¼1hðrkÞ ¼ 250 photons/

frame, whereas the mean background fluorescence intensity was b ¼ 1

photon/pixel/frame. These parameter choices correspond to a relatively

high signal/noise ratio, which should provide a best-case scenario for

comparing both localization-based and deconvolution-based analysis

methods. The simulated fluorescence data at each pixel were drawn from

a Poisson distribution with mean ikðrjÞ. We did not include noise introduced

by readout of the camera pixels, which is typically small compared with the

fundamental fluctuations due to photon shot noise.
Deconvolution analysis

For analysis of both simulated and experimental fluorescence movie data

sets, we implemented three image-deconvolution algorithms: RL, RL

with constant prior, and deconSTORM. The size of simulated images was

8s � 8s, and experimental data were 16s � 16s. The three deconvolution

algorithms are summarized in Table 1. We estimated images with resolution
Biophysical Journal 102(10) 2391–2400
eightfold finer than that of the original camera pixels, so that the width of

each superresolution pixel is s=8.
Comparison with single- and multiemitter
localization procedures

We compared the performance of the three deconvolution methods (RL, RL

with constant prior, and deconSTORM) with two localization-based proce-

dures that fit the images to determine the positions of individual emitters.

For single-emitter fitting, we used nonlinear optimization to find the

maximum-likelihood estimate of each emitter’s location (6). We sought

to give this procedure the best possible chance of success and thus establish

an upper bound on its performance in practice. For this purpose, in our

studies of simulated data, we initialized the fit using each emitter’s true

location parameters, even though these would be unavailable in analyzing

experimental data. For isolated emitters, this procedure should achieve

the minimum localization-error variance as defined by the Cramér-Rao

lower bound (6). However, when images of nearby emitters overlap, the

localization accuracy may be substantially worse. We implemented

maximum-likelihood fitting using a constrained nonlinear multivariable

optimization interior point algorithm (MATLAB routine fmincon). For

each emitter, the algorithm estimated four parameters (x,y coordinates,

amplitude, and background intensity). The fitted x,y coordinates were con-

strained to lie within 54s of the true location.

For multiemitter fitting we used DAOSTORM, a previously reported

software package (12). Parameters for this analysis were set according to

instructions in the reference manual provided with the software.
Quantitative analysis of image reconstruction
quality

Quantitative measures that have been used in previous studies to evaluate

the performance of single- and multiemitter fitting algorithms pertain to

the detection and localization of molecules (7,8,11,21–23). These measures

do not directly assess the quality of the final reconstructed image, which is

built up from multiple frames. Since deconSTORMmakes use of data from

a sequence of time frames to estimate the final image, we sought to measure
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the quality of image reconstruction rather than emitter localization. Recon-

struction quality should be high for coarse image features and lower for

very fine-scale features. Thus, it is natural to quantify image quality as

a function of spatial frequency. To do this, for each simulated sample,

we defined reconstruction error as the difference between the Fourier

transform of the true image, Iðkx; kyÞ, and the reconstructed image,bIðkx; kyÞ. We normalized both the true image and the estimates so that

Iðkx ¼ 0; ky ¼ 0Þ ¼ bIðkx ¼ 0; ky ¼ 0Þ ¼ 1. By averaging over all simulated

samples, we derived the mean-squared error as a function of spatial

frequency:

ε

�
kx; ky

� ¼ M
	

I�kx; ky�� bI�kx; ky�

2�; (8)

where the angular brackets denote averaging over 16 randomly generated

samples. The factor M in Eq. 8 ensures that the error approaches 1 in the

limit k[1=s. Because the ensemble of samples used for our simulations

is isotropically distributed, the error should be a function of the magnitude

of the spatial frequency, kh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. We therefore expressed the error as

a function of k by resampling in bins of width dk ¼ 0.8/s:

εðkÞ ¼ 	
ε

�
kx; ky

��
k%

ffiffiffiffiffiffiffiffiffiffi
k2xþky2

p
<kþdk

: (9)
FIGURE 2 Comparison of the performance of the three deconvolution

methods (RL, RL with constant prior, and deconSTORM) and two emitter

localization methods (single-emitter localization with maximum likelihood

fitting and multiemitter localization with DAOSTORM) for simulated fluo-
Analysis of STORM images of cellular samples

To test the image analysis methods on cellular samples, we recorded

STORM images of microtubules in immunohistochemically labeled cells.

Experimental methods for analysis of cellular imaging data are available

in the Supporting Material.
rescence data. (a) The true locations of the simulated emitters, arranged in

the shape of an arrow. (b) Sum of fluorescence data from all movie frames

representing the diffraction-limited image. (c and d) Results of localization-

based analysis using single-emitter maximum-likelihood fitting (c) and

DAOSTORM multiemitter fitting (d). (e–g) Deconvolution-based sample

estimates using the classic RL algorithm (e), RL with a constant prior (f),

and deconSTORM (g). We divided the simulated movie into 16 subsets

of 400 frames each and ran 2000 iterations of deconvolution for each subset.

The final reconstructed image is the sum of the estimated images for each

movie frame. s is the width of the Gaussian PSF. Simulated data sets

included 6400 frames, and the activation parameters, a ¼ 0.5 and b ¼
0.0083, were set such that the average density of activated emitters was

r ¼ 1=32s2 (average emitter separation d ~ 5.7 s, or 2.4 times the PSF

full width at half-maximum).
RESULTS

Performance of deconSTORM compared with
single- and multiemitter localization procedures

Despite the success of single-molecule-localization-based
microscopy techniques in estimating superresolution
images, the commonly used analysis procedures based on
fitting individual molecule locations do not efficiently use
data from nearby emitters whose images overlap. To illus-
trate the problem, Fig. 2 compares the results of several
analysis procedures applied to a simulated movie data set
containing fluorophores arranged in an arrowhead and
turning on and off over the course of 6400 frames. The
arrowhead arrangement creates a spatially varying fluoro-
phore density, with the highest density occurring near the
tip of the arrow where all three lines intersect. In this
simulation, the mean separation between simultaneously
activated emitters, d, was only ~2.4 times the full width at
half-maximum of the optical PSF (that is, d ~ 5.7s), so
that images of neighboring emitters frequently overlapped.
Single-emitter localization using a maximum-likelihood
procedure (5,6) results in a blurred sample estimate due to
erroneous localizations occurring when nearby fluorophores
are simultaneously active (Fig. 2 c). A multiemitter fitting
procedure, DAOSTORM (12), using techniques originally
developed for astronomical data analysis, estimates the
locations of nearby point sources with overlapping
images. The resulting sample estimate is sharper than that
achieved by single-emitter fitting. Yet this technique also
results in a blurry region of erroneous localizations
(Fig. 2 d). DAOSTORM does not make use of frame-to-
frame temporal correlations resulting from the sequential
activation and deactivation of fluorophores, thereby
limiting the accuracy with which each fluorophore can be
localized.

Here, we report a computational analysis procedure that
uses iterative image deconvolution, rather than single- or
multiemitter localization, to estimate a superresolution
image from fluorescence microscopy data sets. Our tech-
nique, deconSTORM, is based on the classic image decon-
volution algorithm first proposed by Richardson and Lucy
(15,16). RL deconvolution is a nonlinear iteration procedure
that updates an estimate of the true image until it converges
to the maximum of a statistical likelihood function (see
Methods and Table 1). When applied to a conventional
image in which all fluorophores are simultaneously on,
Biophysical Journal 102(10) 2391–2400
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deconvolution can only provide a moderate resolution
enhancement because noise is amplified by the image-
sharpening procedure. We reasoned that if deconvolution
is applied to a sequence of many frames of fluorescence
data from intermittently activated molecules, substantial
resolution improvement could be achieved by taking advan-
tage of the relative sparseness of activated fluorophores in
each frame and the correlations between frames due to the
intermittent activation of emitters. We compared three vari-
ants of image deconvolution: classic RL deconvolution; RL
deconvolution with a prior to account for the fluorophore
sparseness; and deconSTORM, a novel deconvolution
procedure, to our knowledge, that takes into account both
fluorophore sparseness and frame-to-frame correlation to
analyze the simulated movie of the arrow (Table 1).

The classic RL deconvolution procedure resulted in
a sample estimate that is sharper than the diffraction-limited
fluorescence data (Fig. 2 e). However, the RL algorithm is
known to converge very slowly, and in practice it is difficult
to continue the iterations until convergence (19). The
progressive sharpening of the sample estimate by RL decon-
volution is shown in Fig. S1 in the Supporting Material
(upper row). When we terminated the procedure after
2000 iterations, the sample estimate remained blurrier
than the single- and multiemitter fitting results.

To optimize the deconvolution procedure for fast conver-
gence, we first modified RL deconvolution by including in
our statistical model a prior expectation of spatial sparseness
in the true image (18,19). This procedure is called RL with
a constant prior, since the statistical prior information was
equivalent at all spatial locations and in every time frame
(see Methods and Table 1). The use of statistical prior infor-
mation accelerates the convergence of this deconvolution
algorithm, which thus achieves a sharper image using the
same number of iterations (Fig. 2 f and Fig. S1, middle row).

Finally, we developed a deconvolution procedure (decon-
STORM) to further improve the resolution and convergence
speed by considering the temporal correlations that
result from the stochastic activation and inactivation of indi-
vidual molecules. Because each molecule may remain acti-
vated during multiple frames, detection of an activated
molecule in one frame increases the prior expectation of
an activated molecule at the same location in subsequent
and preceding frames. Similar information has been used
to improve the precision of molecule localization (13).
Here, we designed deconSTORM to combine the statistical
model underlying RL deconvolution with a prior distribu-
tion over sample brightness that is adjusted at each pixel
and time frame based on information from earlier and later
frames (see Methods and Table 1). The resulting algorithm
is thus an iterative, multiframe image deconvolution tech-
nique derived from a realistic statistical model of fluores-
cence movie data comprised of intermittently activated
fluorophores. When applied to the simulated movie data,
deconSTORM produced a sharper sample estimate than
Biophysical Journal 102(10) 2391–2400
the other two deconvolution procedures and the single-
and multiemitter localization methods (Fig. 2 g). For
example, the erroneous localizations near the intersection
of the three lines of the arrow in the other estimated image
are largely absent in the deconSTORM image. Compared
with the classic RL algorithm and RL with constant prior,
deconSTORM converges in fewer iterations to a sharp,
superresolution sample estimate (Fig. S1).
Quantitative comparison of the two localization
methods and the three deconvolution methods

The examples described above indicate the potential of de-
conSTORM to analyze fluorescence microscopy data more
efficiently than do existing techniques, but the performance
in practice depends on parameters such as the density of
activated fluorophores and the size of image features. We
therefore simulated many randomly generated samples
and the resulting fluorescence data with different rates of
fluorophore activation, b, and thus different average densi-
ties of activated emitters/frame. For these simulations, we
used samples with a uniform average emitter density; the
results therefore calibrate the expected performance for
specific local fluorophore density. For complex samples
with spatially varying fluorophore density, the effective
resolution within the image could vary with the fluorophore
density. To quantify the performance of deconSTORM
in comparison to the other methods, we calculated the
mean-squared reconstruction error as a function of image
spatial frequency (see Methods). This objective measure is
analogous to the modulation transfer function used to char-
acterize the spatial-frequency-dependent transmission of
image information by an optical microscope. However, the
mean-squared error captures image blurring due to both
the optical instrument’s PSF and the noise sources, and it
is a direct measure of the practical performance of each
data analysis procedure.

We found that the mean squared error, ε(k), is near zero
for coarse image features corresponding to spatial frequen-
cies below the scale set by diffraction, k<1=s (Fig. 3 a).
When the density of simultaneously fluorescent emitters
was low (e.g., r ¼ 0:005=s2, Fig. 3 a1), corresponding to
large mean emitter separation ðd ¼ 14sÞ, the performance
of single- and multiemitter localization procedures (black,
cyan curves) matched that of deconSTORM and RL decon-
volution with a constant prior (red, green). Classic RL
deconvolution performed less well, because it failed to
converge before the limit of 2000 iterations we had imposed
(Fig. 3 b1).

Next, we challenged the analysis methods by simulating
fluorescence data with a higher density of activated emitters
ðr ¼ 0:05=s2Þ, corresponding to a mean separation of only
d ¼ 4:3s (Fig. 3, a2 and b2). For a fair comparison, we
reduced the total number of movie time frames as we
increased the density of activated emitters/frame, keeping
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FIGURE 3 Quantitative comparison of the five analysis

algorithms using simulated fluorescence movie data. (a1

and a2) Relative mean-squared error of the 2D Fourier

transform of the estimated image as a function of spatial

frequency, k. The activation parameter, b, was varied to

produce a large average separation between simulta-

neously activated emitters (a1, d ¼ 14s) or a relatively

small separation (a2, d ¼ 4.3s). For deconvolution results,

n ¼ 2000 iterations were used. (b1 and b2) Mean-squared

error at a representative spatial frequency (k ¼ 10/s) as

a function of the number of deconvolution iterations

applied. The errors for localization-based sample estimates

at this spatial frequency are shown as horizontal lines for

comparison. (c) Phase diagram showing the range over

which each algorithm achieves relative error, ε % 0.5.

(d) Expected increase in the image acquisition speed

(speedup) relative to single-emitter fitting for each spatial

frequency. Here, the relative acquisition speed of a superre-

solution image is defined as the maximum emitter density

that can be used with error ε % 0.5 for each method rela-

tive to that for the single-emitter localization method based

on maximum-likelihood fitting. Since the time required for

image acquisition is inversely proportional to the density

of activated emitters/frame, the maximum density provides

a measure of the gain in imaging speed.
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the total number of frames in which each emitter was active
roughly constant (see Methods). At this higher emitter
density, single-emitter fitting resulted in high mean-squared
error for all spatial frequencies above the conventional
diffraction limit. DAOSTORM multiemitter fitting still
achieved superresolution sharpening of the estimated image
to some extent. Classic RL deconvolution and RL with
constant prior also successfully sharpened the estimated
image, achieving error profiles similar to those seen with
DAOSTORM. Notably, deconSTORM substantially im-
proved the estimated images, achieving lower error than
the other analysis procedures for all spatial frequencies.
For example, at k ¼ 10/s the mean-squared error of the
deconSTORM estimate was half as large as that of the
alternative deconvolution procedures and of DAOSTORM,
and it was only 35% of the error of the single-emitter
maximum-likelihood fitting procedure. The maximum
spatial frequency that could be resolved at this density
with error ε < 0.5 was kmax ¼ 12.1/s for deconSTORM,
6.5/s for RL with constant prior, 6.2/s for RL, 5.6/s for
DAOSTORM, and only 0.85/s for single-emitter fitting.

Each method’s performance as a function of spatial fre-
quency and mean emitter separation is shown in Fig. 3 c.
The red region on the left-hand side of this phase plane
shows the range of image spatial frequencies that are
correctly estimated by deconSTORM in moderately
crowded conditions, but which are not correctly estimated
by the alternative procedures. On the righthand side of the
diagram, corresponding to ultrasparse conditions in which
simultaneously activated fluorophores do not overlap, the
single-emitter maximum-likelihood fitting procedure
(black) achieves the optimal performance. In these condi-
tions, deconvolution with a finite number of iterations
does not converge to the optimal, pointlike sample estimate
for each isolated emitter. DeconSTORM is thus an advanta-
geous analysis procedure in moderately crowded conditions
with mean emitter separation, d, up to ~15s.

Finally, we determined the potential increase in image
acquisition speed that could be achieved by using decon-
STORM analysis (Fig. 3 d). The data acquisition time
required to reconstruct an image containing a given total
density of emitters is inversely proportional to the density
of activated emitters in each frame. Thus, the speedup is
defined as the maximum density of activated emitters that
could be imaged with low error, relative to the density
required for single-emitter localization. We chose an error
Biophysical Journal 102(10) 2391–2400
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threshold of ε% 0.5. The corresponding speedup relative to
single-emitter localization is approximately fivefold or more
for deconSTORM over a range of spatial frequencies up to
15/s. Relative to multiemitter fitting with DAOSTORM, de-
conSTORM achieves a speedup of 2.2-fold at k ¼ 10/s.
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FIGURE 4 Examples of individual fluorescence data frames and corre-

sponding sample estimates from immunohistochemically labeled micro-

tubules. (a) STORM analysis (red circles) localizes one emitter;

DAOSTORM (cyan crosses) and deconSTORM (brown pattern) identify

two. RL and RL with constant prior (brown pattern) provide blurred esti-

mates of emitter location. (b) DeconSTORM estimates a sample with three

bright spots; the other methods localize one or two. (c) Three nearby peaks

identified by deconvolution are not captured by either of the localization

approaches alone. (d) A crowded sample containing several putative emit-

ters. Whereas analysis by localization identifies two or three emitters, the

deconvolution methods provide a more complex sample estimate.
Computational cost

The efficient use of all available image information by a
sophisticated data analysis procedure inevitably comes at the
cost of increased computational complexity. Single-emitter
maximum-likelihood fitting can be performed using a fast
Newton-Raphson algorithm that achieves the theoretical
minimum error for localizing isolated emitters (6). Deconvo-
lution procedures estimate an entire image, i.e., a grayscale
value at each superresolution pixel, rather than a set of
locations for each data frame. Because there are typically
more pixels than activated emitters, deconvolution requires
a greater number of computations at each iteration compared
to single-emitter localization. Furthermore, convergence of
the deconvolution techniques may require ~103 iterations,
even with the use of spatial and temporal statistical informa-
tion for acceleration, as in deconSTORM (Fig. 2 and Fig. S1).

We compared the time required to analyze simulated fluo-
rescence microscopy data using a custom MATLAB routine
for single-emitter fitting, as well as classic RL, RL with
constant prior, and deconSTORM (Fig. S2). As expected,
deconSTORM was the most computationally costly algo-
rithm, requiring ~10 times more computation time/frame
than the other deconvolution methods and single-emitter
fitting. Comparison with DAOSTORM is more difficult,
because the published DAOSTORM software is based on
compiled software rather than MATLAB code (12). When
we compared the analysis speed of DAOSTORM with the
single-emitter localization STORM analysis written in
a similar program, we found that DAOSTORM required
from 5- to 10-fold more computation time than did the
single-emitter localization routine. We have not explored
possible strategies for reducing the computational cost of
deconSTORM, such as detecting and ignoring any regions
of the field of view that are clearly devoid of activated emit-
ters or analyzing multiple movie frames in parallel. The
latter strategy, in particular, could lead to a significant
speedup when using highly parallel computing architectures
such as a cluster of graphical processing units (6,11).
Performance for experimental data from cellular
imaging

To test the method’s applicability to real experimental data,
we used deconSTORM to analyze data from a well charac-
terized model system for superresolution fluorescence
microscopy, microtubules immunolabeled with the photo-
switchable dye pair Alexa 405 and Alexa 647 (24) (see
Figs. 4 and 5). Alexa 647 is photoswitchable, and pairing
Biophysical Journal 102(10) 2391–2400
with Alexa 405 increases the activation rate of Alexa 647
when using a 405-nm activation laser. The fluorescence
data included individual frames in which pairs (Fig. 4 a
and b) or larger groups (Fig. 4, c and d) of fluorophores
were simultaneously activated and produced overlapping
images. Conventional STORM analysis based on single-
emitter localization often identified a subset of the putative
activated emitters (Fig. 4, red circles). When the emitters
were sufficiently separated, DAOSTORM recovered addi-
tional localizations (Fig. 4, a and c). However, when the
separation between neighboring emitters was close to s,
or when the images of three or more emitters overlapped,
deconSTORM analysis extracted a greater fraction of the
putative activated emitters than did either localization
method (Fig. 4, c and d).

When we summed all the estimates of individual frames
to obtain an estimate of the full sample (Fig. 5), decon-
STORM extracted superresolution information from both
isolated and overlapping images of individual fluorophores.
Using only 625 frames (Fig. 5 b, upper), conventional
STORM analysis based on localizing individual molecules
(24) produced a grainy sample estimate with gaps in loca-
tions where no sufficiently isolated emitters could be local-
ized. Multiemitter fitting by DAOSTORM fills in some of
these gaps by detecting and localizing a greater fraction of
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the emitters (Fig. 5, c and i). RL deconvolution and RL with
constant prior (Fig. 5, d and e) produce sample estimates
which, though sharper than the conventional diffraction
limit, are nevertheless not as sharp as the images estimated
by localization. DeconSTORM produced a more continuous
and sharper sample estimate than did the other deconvolu-
tion methods (Fig. 5 f). Even when using only 625 frames,
the deconSTORM estimate was quite similar to the more
refined estimate derived from 5000 frames (Fig. 5 f, lower).
In addition, deconSTORM analysis detected a microtubule
that is not clearly discernible in the sample estimates
produced by the other analysis methods (Fig. 5 h).
DISCUSSION

Motivated by the need to substantially improve the imaging
speed of superresolution fluorescence microscopy for
analyzing dynamic processes, we have developed
deconSTORM, a method for analyzing data from fluores-
cence microscopy to estimate superresolution images of
biological structures. DeconSTORM differs fundamentally
from previous procedures based on single- and multiemitter
localization (2–6,9–13). Rather than analyze data by esti-
mating emitter locations and then combining the locations
to form an estimated image, the deconSTORM approach
directly estimates a superresolution image without explicitly
localizing any emitters. Instead, an iterative deconvolution
algorithm is used to maximize the statistical likelihood of
a sample estimate based on the fluorescence movie data
comprising multiple frames of intermittently activated fluo-
rophores. Because existing deconvolution algorithms have
not been specifically tailored to key statistical features of
such data (15,16,18,19), we introduced a deconvolution algo-
rithm that is derived from a realistic model of this imaging
modality.

DeconSTORM is based on statistical principles that
have been successfully applied in compressive sensing
algorithms, which combine measurements from a limited
number of sensors with statistical prior knowledge to recon-
struct a signal with far more degrees of freedom than
themeasured data (20,25,26). DeconSTORM relies on statis-
tical prior knowledge to guide image estimation, but it differs
from compressive sensing in two important aspects. First,
deconSTORM accounts for the Poisson distribution of fluo-
rescence photons rather than using a Gaussian approxima-
tion, which can have suboptimal consequences (6). Second,
the prior distribution of signals incorporates both the sparse
structure expected of fluorescence images of the subset of
activated molecules and correlations among sequences of
subsequent frames expected from the stochastic dynamics
of fluorophore activation and deactivation.

Although we have demonstrated deconSTORM for 2D
imaging, the underlying statistical model based on linear
convolution and Poisson-distributed photon statistics should
also be applicable to 3D superresolution techniques based
on an axial position-dependent PSF (27–29). Deconvolu-
tion-based analysis using deconSTORM should therefore
be useful for 3D data sets, although the computational
requirements would be increased.

Because deconSTORManalyzes the full fluorescence data
set rather than a subset of well-isolated emitters, and thus
allows a higher density of activated fluorophores/imaging
Biophysical Journal 102(10) 2391–2400
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frame, it offers a substantial increase in the image acquisition
speed, critical for studying dynamic biological processes.
Our validation studies using simulated and experimental
data show that deconSTORM can allow an approximately
fivefold or greater speedup in the collection of superresolu-
tion data for the same final image quality as single-emitter
fitting techniques. We expect that image-deconvolution-
based analysis will be a valuable tool for fast superresolution
microscopy at high density.
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