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DNA Base-Calling from a Nanopore Using a Viterbi Algorithm
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ABSTRACT Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior
read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-
calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured
signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA
sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor
signal/noise ratio.
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The field of genomic science has advanced in leaps and
bounds since the development of second-generation se-
quencing technologies, but it still suffers fromsignificant limi-
tations. One such limitation is the read length; for example,
Illumina HiSeq2000 is currently limited to <150 basepairs
(bp) per read. Increasing error with read length is a functional
limitation of processive sequencingmethods (1). This dramat-
ically increases back-end bioinformatics processing (i.e.,
alignment and assembly), a factor that is often overlooked
in determining the cost and time required for sequencing (2).

Nanopore-based sequencing provides a potential alter-
native to current next-generation sequencing methods.
Sequencing with the use of a nanopore relies on the electro-
lytic current that develops when a DNA molecule immersed
in electrolyte is forced by an electric field to translocate
through a pore (3). This technology has multiple advan-
tages—primarily speed, small sample quantities and long
reads (>1 kbp). Although it is difficult to identify the bases
from the current signature, investigators have recently made
significant progress in this respect (4–6).

One difficulty highlighted by recent work is the resolution
of the nanopore. The location and number of bases, which
influence the current signature at any given time, are depen-
dent on the dimensions and architecture of the pore. The
electrolytic current resolution of the nanopore also presents
problems because the sequence-specific modulations of
the ionic current are typically not large enough to resolve
individual nucleotides above noise (7).

Here we show that although nanopores may not be able to
realize single-base resolution, this is not a limitation that
precludes DNA sequencing. Using atomic-resolution Brow-
nian dynamics (BD), we simulate the ionic current levels
produced by DNA fragments in a nanopore accounting for
the 3-bp resolution of the technique (8) (for details of the
simulation, see the Supporting Material). We then demon-
strate that using a Hidden Markov model (HMM), we can
decode the DNA sequence with 98.3% 5 0.1% accuracy.
Fig. 1 A plots the simulated ionic current through a nano-
pore for all 64 combinations of 3 bp. There are many triplets
that are functionally indistinguishable using only the current
signature. We can see this clearly by examining GTG and
TCG. Typical current values are highlighted in Fig. 1 A
for GTG (horizontal green dashed line) and TCG (hori-
zontal red dashed line), and probability density functions
are plotted in Fig. S1, A and B. We assume Gaussian distri-
butions for the probability density functions of the different
triplet states, with parameters given by the BD simulation.
For GTG the triplet state can easily be assigned based solely
on the current value; however, for TCG this would be error-
prone and impractical. The signal/noise ratio (SNR) given
by the BD simulation (17.8 dB) is comparable to that found
experimentally for nucleotide discrimination (14.1 dB) (6).

Consider, however, that the current signature at any mo-
ment in time is part of a series of observations, and the first
two bases of a triplet are defined by the last two of the
previous state. If we take a de novo base-calling approach,
we would then assume that the third base has equal likeli-
hood of any of the four nucleosides, e.g., TCG must become
CGA, CGC, CGG, or CGT, eliminating the majority of
possible triplets. Extending this methodology, we can
employ an HMM, a statistical model that allows a system
to be treated as a chain of indirectly observable states.
HMMs have previously been used to classify events from
nanopores, but have not been applied to the effect of
multiple basepairs on a translocating DNA molecule (9).
In our case, we define the state to be the triplet currently
in the central constriction of the nanopore. The emission,
or observation from the HMM, is the electrolytic current.
Due to the ambiguity involved in identifying the exact triplet
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FIGURE 2 Comparison of the Viterbi method and single current

measurement for different SNR levels. Individual simulations

base-calling l DNA using either the Viterbi base-calling method

(red) or single current values (black) are plotted as a bivariate

histogram (binned hexagonally).
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FIGURE 1 Viterbi algorithm as applied to nanopore base-calling. (A) Current values for all possible DNA triplets (43 ¼ 64) simulated

using atomic-resolution BD; error bars indicate the expected standard deviation in ionic current sampled at 1.6 ms. The green dashed

line represents a typical current value for the GTG triplet (green point), and the red dashed line represents a typical current value for

the TCG triplet (red point). Pictured in the inset is a simulated system for GCC. (B) The Viterbi algorithm operates on a state machine

assumption. The operation of Viterbi’s algorithm can be visualized by means of a trellis diagram; the Viterbi path is the path that

maximizes the joint probabilities through the trellis, colored in orange.
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from the current alone, we calculate the most likely triplet
based on possible transitions from the previous state. This
is a heretofore unappreciated approach to nanopore signal
recovery, and at its core is the idea that each measurement
has a dependence on the measurements made before it.
This methodology could be applied to either solid-state or
biological nanopores (e.g., a-hemolysin has shown multiple
base-recognition sites (5)).

An example state diagram for the sequence GTCGT is
shown in Fig. 1 B. We assume that DNA is advancing
through the pore one base at a time, so the next triplet
must be one of four possible triplets (as shown in Fig. S1 C).
To determine the sequence, we determine the best path
through the state diagram, given by the path that maximizes
the total joint probability. We calculate the joint probability
using P(I(t)jk) � Tik, where P(I(t)jk) is the probability of
a given current measurement for state k, and Tik is the transi-
tion probability between previous state j to new state k. The
total joint probability is given by dk Pt P(I(t)jkt) � T(t � 1)(t)

where dk is the marginal probability distribution of the k
hidden states at the initial point (initially, we assign equal
probability to each possible state). The Viterbi algorithm
determines for each state the best possible combinations
of states to reach that point, as follows: Vk(t) ¼ P(I(t)jk)
maxi(Vi(t � 1) � Tik). To implement the Viterbi algorithm,
we use the HiddenMarkov package in R (10,11) (see Sup-
porting Material for details). We set the transition matrix
assuming single base steps, i.e., 0.25 for each of the four
possibilities described earlier. The probability densities for
the emission of the states are given by Gaussian distributions
with parameters set by the BD simulations.
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As a test of this method, we generated several simulated
signal waveforms for the sequence of l DNA using different
Gaussian random noise levels. We base-called these current
signatures (results are shown in Fig. 2). Using the SNR from
the BD simulations (17.8 dB) gives a base-calling accuracy
of 98.3% 5 0.1%, as compared with 47.1% 5 0.2% using
only a single current measurement. A typical experimental
SNR, 14.1 dB, gives 88.5% 5 0.2% accuracy using the
Viterbi algorithm, but only 38.2% 5 0.2% using a single
current measurement. The accuracy level saturates at
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25.5 dB at 99.995% 5 0.002%, as compared with 32.5 dB
at 83.64% 5 0.07% with a single current measurement.

We found similar accuracy for our method using the
human genome. Known contig sequences of the human
genomewere split into 50-kbp fragments. We then generated
a noisy current signature (18 dB) using these fragments, and
base-called with our method. The median base-calling accu-
racy for the entire human genome was 98.2% 5 3.9%,
compared with 47.4% 5 1.9% using a single current
measurement. The distribution of the log error rate of
the fragments is plotted in Fig. S2 A, which shows that
48,785 of the 57,368 fragments have accuracy > 98%.
We found an error rate dependence on the complexity of
the sequence, as measured by the Shannon entropy and
plotted in Fig. S2 B (12). A low-complexity sequence tends
to have lower accuracy; for entropy < 5, the accuracy is
45.8%5 24.8%. A high-complexity sequence (entropy> 5)
has a higher accuracy rate of 98.4% 5 1.4%. The vast
majority of human genome fragments (57,150 of 57,368)
had entropy > 5.

To determine whether there was a length dependence for
the error rate, we selected randomly sized fragments from
a large human genome contig (74 Mb; chr1: 30028083-
103863906; hg19). As shown in Fig. S2 C, the accuracy
increases with increasing fragment length, as more informa-
tion is obtained from longer fragments. This stands in stark
contrast to most modern sequencing methods, where longer
reads tend to have increasing error rates due to dephasing
and other issues. Moreover, the time for base-calling scales
directly as the length of the read using our current code
(Fig. S2 D), meaning that longer reads incur no penalty.
Long reads are also favorable for subsequent sequence
alignment (2).

We have demonstrated a proposed method for base-
calling nanopore data, which leverages multibase resolution
and the dependence of each measurement on the previous
measurement. Although the results are based on simulated
current levels, experimental calibration would allow for
direct application. The best calibration method would be
to use a period of supervised learning for each pore, during
which a control sequence of DNAwould be run through the
pore and the current signature recorded. The emission
matrix of the HMM would be trained on these values,
because the underlying state is known. The training set
would have multiple instances of each triplet, giving suffi-
cient measurements to estimate the probability density.
The distributions need not be normal; the HMM depends
only on well-defined distributions, not on their shape.
Furthermore, if the translocation rate of the DNA is not
constant, the transition matrix can be adapted accordingly.
The training set allows us to assign probabilities to each
state that remains unchanged. This allows for different
triplets to have different translocation rates, which is a
distinct possibility.
SUPPORTING MATERIAL

Brownian dynamics, simulated base-calling, signal/noise ratio calculation,

two figures, and references (13,14) are available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(12)00451-1.
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