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Abstract
This paper is motivated from the analysis of neuroscience data in a study of neural and muscular
mechanisms of muscle fatigue. Multidimensional outcomes of different natures were obtained
simultaneously from multiple modalities, including handgrip force, electromyography (EMG), and
functional magnetic resonance imaging (fMRI). We first study individual modeling of the
univariate response depending on its nature. A mixed-effects beta model and a mixed-effects
simplex model are compared for modeling the force/EMG percentages. A mixed-effects negative-
binomial model is proposed for modeling the fMRI counts. Then, I present a joint modeling
approach to model the multidimensional outcomes together, which allows us to not only estimate
the covariate effects but also to evaluate the strength of association among the multiple responses
from different modalities. A simulation study is conducted to quantify the possible benefits by the
new approaches in finite sample situations. Finally, the analysis of the fatigue data is illustrated
with the use of the proposed methods.
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1 Introduction
Recently, more and more studies in brain research obtain experimental data from multiple
modalities simultaneously, such as from electroencephalography (EEG), electromyography
(EMG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI),
or diffusion tensor imaging (DTI). The setting involves high-dimensional, multichannel and/
or time-dependent data of different natures. It is of interest to make statistical inference by
combining information from multiple data sources.

The analysis of high-dimensional biosignals in each modality often involves a statistical
ensemble built on several data mining steps. Typically, one calculates a set of statistical
features from raw signals of a single subject under each design factor and then builds up a
statistical regression model for the features over multisubjects across conditions. In the first
stage analysis of the studies, percentage outcomes are obtained from raw EMG, EEG, or
MEG signals; count outcomes in regions of interest (ROIs) are obtained from raw fMRIs;
continuous outcomes (such as mean diffusivity) in ROIs are obtained from raw DTIs. In the
second stage analysis, however, those types of nonnormal outcomes are frequently modeled
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with standard linear regression without any transformation in medical literature. See, for
example, Carlsen et al. (2007), Kofler et al. (2008), Ciccarelli et al. (2005), Kautz and
Brown (1998) for the analysis of EMG percentage outcomes and Carey et al. (2002), Luft et
al. (2002), Osaka et al. (2004), Benwell et al. (2005), Brodtmann et al. (2007) for the
analysis of fMRI voxel counts.

Percentage data from the neuroscience studies are continuous data between zero and one.
Count data from the neuroscience experiments are nonnegative integers and typically exhibit
right-skewed and long-tailed distributions. Overdispersion often occurs in these percentage
data and/or count data (Wang et al., 2007). Ignoring the nature of the percentage or count
outcomes could cause biased estimates and might further lead to erroneous conclusions in
these studies.

In this paper, I discuss a class of generalized regression models that result from the analysis
of multimodality data in a study for neural and muscular mechanisms of muscle fatigue. The
models can be viewed as a natural extension of conventional generalized linear mixed
models (GLMMs). We first study individual modeling of the outcomes depending on their
natures. A mixed-effects beta or simplex model is proposed for modeling longitudinal
proportional data from handgrip force or EMG. A mixed-effects negative-binomial model is
suggested for modeling longitudinal count data from fMRI. Then, I present a joint model for
the multiple outcomes, which allows us to not only assess the covariate effects
simultaneously, but also to evaluate the strength of association among the multiple responses
from different modalities. The rest of this paper is organized as follows: Section 2 illustrates
the experiment regarding the muscle fatigue study and discusses data preprocessing
procedures of the raw data from the multimodalities: force, EMG, and fMRI. Section 3
discusses the individual models of the univariate responses, and then presents the joint
model approach to model them together. Section 4 addresses a simulation study to explore
the proposed models. Section 5 describes analysis results of the fatigue data based on the
joint model and compare it with the results from univariate models. Section 6 is a discussion
of the methods and their implication. The software codes for the proposed methods in this
paper can be obtained on the journal's webpage.

2 The fatigue study and data
Fatigue is a common experience that increases chances of injury and reduces quality of life.
It is a common psychophysiological symptom that interacts with the control mechanisms
regulating task behavior. Increased fatigability occurs in every patient with muscle
weakness, regardless of whether the weakness is due to a central or peripheral neurological
disorder (Gandevia, 2001). Mechanisms of brain activation during muscle fatigue have been
studied extensively in the last decades, including several recent studies (Liu et al., 2005a, b;
Roesler et al., 2009; Wang et al., 2009). The fatigue study presented in this paper
investigates (i) the time effects of the multiple responses of interest during the fatigue task
performances and (ii) the strength of association among the responses from multimodalities.

2.1 Subjects and motor task
Eight healthy right-handed subjects participated in the study. The experimental procedures
were approved by the Institutional Review Board at the Cleveland Clinic. All subjects gave
informed consent prior to the participation. During the experiment, each subject performed
about 100 intermittent handgrip contractions at 100% maximal voluntary contraction (MVC)
level of the right arm while his/her brain was imaged. The task lasted about 300 s. Figure 1
gives a graphical description of the experiment. The data of handgrip force, EMG and
fMRIs were collected simultaneously while the subjects performed the muscle contractions.
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2.2 Data recording and preprocessing
2.2.1 Force—Handgrip force was measured by a system that was connected to a pressure
transducer (EPX-N1 250 PSI, Entran Devices, Inc., Fairfield, NJ) by a nylon tube filled with
distilled water (Liu et al., 2005a). The force applied by the subject was converted to a
voltage signal by the pressure transducer and then directed to an amplifier. The final voltage
signal was input to the channel of a Spike 2 data acquisition system (version 3.05,
Cambridge Electronic Design, Ltd., Cambridge, UK) and was transferred to a computer.

The voltage signals were then processed using the Spike 2 analysis package. They were first
converted to force (N) using the calibration equation (Liu et al., 2005a) and then the mean of
the force was calculated over each 50-s period. So, in total, six repeated measurements were
obtained over the experimental time. Finally, the mean values were normalized to the initial
baseline MVC values, which were recorded at the beginning of the experiment and prior to
the task performances. The final normalized force values (used for further statistical
analysis) were fractional within the range (0, 1).

2.2.2 EMG—Surface EMG signals were collected using the Neurodata Amplifier System
(Grass-Telefactor, West Warwick, RI) from four muscles including: flexor digitorum
superficialis (FDS), flexor digitorum profundus (FDP), extensor digitorum (ED) in the right
arm and FDS in the left arm. The EMG signals were amplified and recorded at a sampling
rate of 1000 Hz to the computer by the Spike 2 data acquisition system.

At the beginning of each experiment, a brief MVC involving each muscle was performed
and the initial baseline EMG was recorded. The EMG data of each trial for each muscle
were processed in a similar manner as the force data after full-wave rectification. The mean
of the EMG was calculated over each 50-s period and then normalized to the initial baseline
EMG value. Therefore, the final normalized outcomes of EMG (those used for further
statistical analysis) were a fraction/percentage within the range (0, 1).

2.2.3 fMRI—fMRIs were obtained at a SIEMENS VISION 1.5-T system in the same
transverse planes. Each brain volume contained 20 slices that included the whole cerebrum
and cerebellum. The field of view was 256 mm × 256 mm and the matrix was 128 × 128 for
fMRI, hence the fMRIs were obtained with an in-plane resolution of 2 mm × 2 mm. In the
experiment, the fMRIs were collected during rest (baseline) condition (OFF) and task
performance (ON). Before collecting the baseline images, a “rest” audio command was
given to the subject. The baseline images included 10 continuous scans while the target
force was shown as a static line. With a “start” audio order, the subject began the handgrip
contractions. The capture of the ON images began 5 s later due to the delay of the imaging
system and included 120 scans during the task.

The analysis of fMRI images was performed using the MEDx 3.4 software package (Sensor
Systems, Inc., Sterling, VA). Image data preprocessing includes: motion correction using the
automated image registration algorithm programed in the MEDx software. Normalization of
image intensities was implemented in order to remove fMRI signal shifts. Spatial smoothing
with a Gaussian filter was also performed on the data. Then general linear models were
applied to detect fMRI signal changes. Each alternate 10 scans of the 120 ON scans (11–20,
31–40, …) were compared to the 10 OFF scans in each subject. Six z-score images were
then acquired. Activated voxels in each image were thresholded at p < 0.05, with Bonferroni
correction for the number of regions evaluated. Brain activation for each subject was
quantified by counts of the activated voxels for several cortical ROIs.

In total, six repeated measurements in each ROI from fMRIs were obtained to match the
percentage outcomes from Force and EMG during the same time periods. The individual

Wang Page 3

Biom J. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cortical regions being calculated included: primary motor cortex (PMC), primary sensory
cortex (PSC), prefrontal cortex (PFC), cerebellum (CB), cingulate gyrus (CG), and
supplementary motor area (SMA). The new outcomes after data preprocessing from fMRIs
were count data for each subject, which were discrete and not normally distributed.

It should be remarked that quantifying brain activation by the number of activated voxels in
each ROI for each subject is common in neurophysiological studies, although there are still
disputes in the neuroscience literature (Poldrack, 2007). A common reason to perform ROI
analysis for fMRI in medical studies is that it can be difficult to detect the pattern of activity
across conditions from an overall map in a complex factorial design. Activated voxel counts
give appropriate measurements/indices to measure the degree of brain activation (Luft et al.,
2002; Wang et al., 2012), but one should use caution on the determination of ROIs and
threshold levels. Some neuroscientists prefer to use the average intensity values instead of
activated voxel counts within ROIs. Nevertheless, the proposed joint model that is presented
in the next section is also applicable to the intensity outcomes.

3 Statistical models
After data preprocessing, I acquired multidimensional longitudinal outcomes from the
multimodalities. Table 1 describes the 11 responses that were obtained from the experiment.
There are one from force, four from EMGs, and six from fMRIs. The force and EMG
percentage data are in the range (0, 1), and the fMRI count data are discrete nonnegative
integers. These responses are nonnormally distributed.

Typical transformations for percentage data include logistic transformation or arcsine
transformation, while common transformations for count data include logarithm
transformation or Box-Cox transformation. In my initial exploratory data analysis, I
considered logistic transformation (log(y/(1 − y))) for percentage outcomes and logarithm
transformation (log(y 0.5)) for count outcomes. Figure 2 displays the longitudinal data plots
with transformations. Each+panel of Fig. 2 shows a plot of the mean with the standard
deviation (SD) over the normalized time for a transformed response. The average
longitudinal profile and data variation can be virtually identified through the plots. I notice
the obvious downward trend for the force and the EMG percentages of FDSR, FDPR, and
EDR. In contrasts, there is no strong downward trend in the fMRI counts and the EMG
percentage of FDPL. The graphical method gave us intuitive and visual results, however,
formal statistical models are needed to discover the relationship among the outcomes.

Generalized linear models (GLMs; McCullagh and Nelder, 1989) are an extension of the
conventional linear regression models, which allow a model to fit data that follow
probability distributions other than the normal distribution. GLMs can be further extended to
fit mixed-effect models and are referred to as GLMMs. Random effects, random
coefficients, temporal, or spatial covariance patterns can be included in a GLMM in much
the same way as in normal mixed-effect models (Molenberghs and Verbeke, 2005). GLMMs
have received a lot of attention and have become frequently used random-effects models in
the context of “nonnormal” repeated measurements. In the fatigue study, the responses from
force, EMG and fMRI exhibited nonnormal feature and overdispersed behavior. Repeated
measurements were obtained over time from different subjects in the study and thus random
effects should be taken into account in modeling procedure. Here, I consider a class of
generalized models, which can be viewed as extended models of the conventional GLMMs.

Let K be the total number of outcomes that need to be modeled. Yki j denotes the
measurement taken on the i-th subject at the j-th time point, for the k-th outcome, where i =
1, …, n, j = 1, …, m, and k = 1, …, K. I further write the K sequences for the i-th subject as
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Y1i = (Y1i1, Y1i2, …, Y1im)T, Y2i = (Y2i1, Y2i2, …, Y2im)T, …, YKi = (YKi1, YKi2, …,
YKim)T. In my study, the sequence Yki (k = 1, …, K) can be either percentages or counts,
which is the vector of m measurement taken on subject i, for outcome k. I shall first discuss
individual modeling for the two types of responses and then address a joint model for the
multiple responses, which allows for the estimation of the covariance matrix of the random
effects and thus results in the evaluation of the association among the multiple outcomes.

3.1 Modeling of univariate percentage response from force or EMG
The responses from force and EMG were percentages/fractions, where the data represented
the percentages of MVC force and EMG at the initial baseline condition. Percentages are
common outcomes from raw EMGs in medical studies (Kautz and Brown, 1998; Ciccarelli
et al., 2005). Because little is known about the distribution of the percentages, modeling the
data with a common distribution from the exponential family is difficult. I only know that
the distribution should be continuous within the range (0, 1). The data were far from normal
based on my exploratory data analysis. They were not binomial proportions, because they
did not represent the ratio of a count over a total number of Bernoulli trials. Indeed, two
types of probability distributions can be used to model the percentage-dependent variable, in
which either of them is very flexible and covers a variety of shapes restricted in (0, 1).

The first parametric distribution is the reparameterized beta distribution. The probability
density function (PDF) of the conventional beta distribution is given by f (y; p, q) = yp−1(1 −
y)q−1/B(p, q), where p, q > 0, and B(p, q) is the beta function. If I let μ = p/(p + q) and τ = p
+ q, the density function can be reparameterized as

(1)

where μ ∈ (0, 1), τ > 0. I denote a random variable Y that follows a beta distribution with
the density form (1) by Y ~ Beta(μ, τ). It can be shown that E(Y) = μ, and Var(Y) = μ(1 −
μ)/(1 + τ). The parameter τ can be interpreted as a dispersion parameter, since the
dispersion of the distribution increases as τ decreases (Ferrari and Cribari-Neto, 2004).

The second parametric distribution is the simplex distribution, which was discovered by
Barndorff-Nielsen and Jørgensen (1991) and extensively studied by Jørgensen (1997). Let
us denote a random variable Y that follows a standard simplex distribution with parameters
μ ∈ (0, 1) and τ > 0 by Y ~ S−(μ, τ). Its PDF is defined by

(2)

where the parameter μ and τ have very clear interpretations as position and dispersion
parameters. It has been shown by Jørgensen (1997) that E(Y) = μ and

where Γ(α, z) =  is the incomplete gamma function.

Both the beta distribution and the simplex distribution cover a large class of distributions
confined in (0, 1), which include probability density shapes from right skewed, left skewed
to very flat. A key difference of two distributions is that the beta distribution does not belong
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to the proper dispersion family defined by Jørgensen (1997), while the simplex distribution
does. Accordingly, the technique of the analysis of deviance in conventional GLMs can be
applied to regression models based on the simplex distribution, but not to regression models
based on the beta distribution. I will see that using the beta model and the simplex model for
percentage data results in compatible estimates in simulations from Section 4. The two
models are often exchangeable for practical use.

In the fatigue study, either a mixed-effect beta regression model or a mixed-effect simplex
regression model can be applied to fit the force or EMG data. For the simplicity of notation,
I let k = 1 be the percentage response and k = 2 be the count response in the discussion of
individual modeling. I consider the following model for the univariate percentage response:

(3)

where the normal random variables u1i are a mechanism to account for the random cluster
effects of the i-th subject. They are shared among observations with the same cluster and
thus those observations are being modeled as correlated. Following Ferrari and Cribari-Neto
(2004), Jørgensen (1997), the logit link function is used for either the beta model or the
simplex model.

To estimate the parameters (β10, β11, τ, ), I need to maximize the likelihood of the model
(3). Conditional on the random effect u1i, Y1i1, …, Y1im are independent. So, the conditional

PDF of Y1i = (Y1i1, …, Y1im)T given u1i is . Let ϕ(·; σ2) denote
the normal density with mean zero and variance σ2. The joint log-likelihood based on the
unconditional PDF is

The above log-likelihood is the sum of independent contributions from each subject and
each subject involves a single-dimensional integral. It cannot be evaluated in closed form
and thus maximizing values cannot be expressed in closed form either. Nevertheless,
numerical integration for calculating the log-likelihood can be evaluated accurately using
adaptive Gauss–Hermite quadrature techniques. The usual large-sample tools are available
for statistical inferences based on the model (Molenberghs and Verbeke, 2005). For
instance,Wald tests can be formed by utilizing the large-sample normality of estimators.

3.2 Modeling of univariate count response from fMRI
In the fMRI count data, the observed variances were greater than the observed means. This
situation is known as overdispersion, which is often due to the unobserved heterogeneity of
count data. The Poisson distribution is commonly used in represent the distribution of count
data. However, a characteristics of the Poisson distribution is that its mean is equal to its
variance. The extra-Poisson variation can be modeled naturally by integrating the Poisson
distribution with respect to its conjugate distribution, the Gamma distribution. The resulting
marginal distribution becomes the negative-binomial distribution, where its probability mass
function is given by
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Let us denote a random variable Y that follows a negative-binomial distribution with
parameters ν and μ by Y ~ NB(μ, ν). It can be shown that E(Y) = μ and Var(Y) = μ + νμ2.
The dispersion parameter ν quantifies the amount of overdispersion. The distribution
becomes the Poisson distribution as ν = 0.

In the fatigue study, I consider a mixed-effect negative-binomial model for the fMRI count
data,

(4)

Similarly as in model (3), u2i are the cluster specific random effects that accounts for the
random variation over subjects.

The joint log-likelihood of the model (4) is

Estimating the unknown parameters based on the above marginal maximum log-likelihood
method can be also achieved by numerical computations using adaptive Gauss–Hermite
quadrature techniques. For example, SAS procedure NLMIXED can be used to maximize
the likelihood function with the numerical approaches.

3.3 Joint modeling of multiple responses from multimodalities
I now consider extending the univariate models to a joint model for multiple responses. A
key motivation for the joint model is that the association structure among the different
responses is of interest. I am also interested in comparing average time trends for different
responses with the correlations taken into account. My joint model assumes a GLMM for
each response variable depending on its nature, and these univariate GLMMs are combined
through specification of a multivariate normal distribution for all random effects.

For the K-variate response vector , I write the joint GLMM as a
general hierarchical model

(5)

where Xi and Zi are the fixed- and random-effects design matrices and βi and ui are the
vectors of fixed- and random-effects parameters as in the normal mixed model. g(·) denotes
a function whose components are suitable link functions. For the fatigue study, the mean
structure of each response in the model (5) is specified as
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where hk is the k-th inverse link function. Xi and Zi are (mK × 2K) and (mK × K)-
dimensional matrices of known covariate values corresponding to subject i, and βi is a 2K-
dimensional vector of unknown fixed regression coefficients to be estimated. Moreover, the
K-dimensional random effects, ui = (u1i, u2i, …, uki)T are assumed to follow a K-
dimensional multivariate normal distribution, ui ~ N(0, Σ) and Σ is defind as

The model (5) is written in a conventional linear model way, following the notation in
Molenberghs and Verbeke (2005). From this “artificial-looking” model, outcomes are
decomposed in terms of the mean and an appropriate error term. The components of the
error structure have the appropriate distribution with the variance depending on the mean-
variance relationship of the responses. The mean μi and Xiβi + Ziui are related by a “link”
function, g, where the components of g(·) depend on the nature of the outcomes and take a
form suitable for the distribution of the data. Following the discussion of individual
modeling, I consider “log” link for the count outcomes and “logit” link for the percentage
outcomes.

The joint log-likelihood for the model (5) is

(6)

where pi j denotes the conditional density of (Yi1j, Yi2j, …, YiKj) given ui, ψ denotes the K-
variate normal density with mean zero and covariance matrix Σ, η is the K-dimensional
vector of dispersion parameters, where the element of η depends on its one-dimensional
response distribution.

Maximizing the log-likelihood (6) involves K-dimensional integrals that do not have a
closed form. Numerical integration is very difficult here since K = 11 is very large and the
responses are different types. To avoid the computational complexity in maximizing (6), I
follow the idea of the pairwise modeling approach discussed by Fieuws and Verbeke (2006),
Faes et al. (2008). The key is to consider maximizing the following joint log
pseudolikelihood instead.

(7)

where  denotes a bivariate random effect for the k-th and r-th outcomes of
subject i. The log pseudolikelihood in (7) is contributed by all bivariate likelihood functions
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for all possible paired outcomes. With this approximation, I simplify the 11-dimensional
integration problems to two-dimensional integration problems. I will show that, through
simulations in the next section, the pseudolikelihood method does not lose the efficiency of
the estimates and yields robust estimated parameters and standard errors.

In practice, the pseudolikelihood method can be programed with the flexible procedure
NLMIXED in SAS. However, because of the estimation for the high-dimensional nonlinear
mixed-effects model, one often needs a careful selection of starting values to make the
algorithm convergence criterion satisfied. My recommendation for the selection of initial
values is to use the estimates from univariate models. It should be cautioned that the
pseudolikelihood method does not guarantee the estimated covariance matrix to be always
positive definite, although it yields reasonable parameter estimates. I define here an
unstructured covariance matrix in the joint model. Depending on the applications, one may
consider a variety of covariance structures, such as compound symmetry, autoregressive
covariance structures.

When the dimension of the response is very high, there are a few skills that can be applied in
the model fitting. The dispersion parameters are the nuisance parameters in the joint model,
since the mean and covariance parameters are of interest here. The estimated likelihood
approach can help us to fit the complex model (Pawitan, 2001, chapter 10). It replaces the
nuisance parameters with their reasonable estimates in the likelihood function, and then
maximizes the estimated likelihood. In my study, a good choice could be plugging the
dispersion parameter estimates from univariate models into the joint log pseudolikelihood.
The estimated likelihood does not account for the extra uncertainty due to the nuisance
parameter, however there is little practical difference between it and the likelihood with
unknown nuisance parameters from my simulation experiences. It often increases stability of
estimating the high-dimensional covariance parameters. Another method that helps the
model fitting is to use Laplace approximation in the numerical computation, which is also
beneficial to the convergence of the algorithm.

4 Simulations
I conducted simulation studies to evaluate the performance of the proposed models. The first
simulation study was to compare regression models for simulated continuous percentage
data. I set the mean function μ1i j = β10 + β11t1i j + u1i with β10 = 0.5, β11 = 1 and u1i ~ N(0,
0.52), where the subject i = 1, …, n and the time point j = 1, …, m. Two left-skewed
distributions were considered for generating the percentage data: y1i j ~ Beta(exp{μ1i j}/(1 +
exp{μ1i j}), 15); or y1i j ~ Simplex(exp{μ1i j}/(1 + exp{μ1i j}), 6). I set n = 10, or 50 and m
= 10, or 25. Three different regression modelswere applied to fit the simulated data: the beta
mixed model (BMM), the simplex mixed model (SMM), and the normal linear mixed model
with logistic transformation (i.e., log(y/(1 − y))) (LMM1). Table 2 summarized the results
from 500 replicates of simulations. The means and SDs of the parameter estimates, as well
as the means of the estimated standard errors (Mean ) are reported for each model. The
results show that both BMM and SMM outperform LMM1 for the parameter estimation.
Although LMM1 gives reasonable estimates, it tends to estimate the true parameters larger.
It is unsurprising thatBMMis slightly better than SMM for the data from the beta mixture
distribution, while SMM becomes a little better than BMMfor the data from the simplex
mixture distribution. The Mean s are close to the SDs of the parameter estimates, which
indicates the models give reasonable estimates for standard errors. As sample size increases,
the SDs and Mean s became smaller for all models. In summary, BMMand SMM are
compatible in modeling longitudinal percentages observed in (0, 1).
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My second simulation study evaluated the performance of different regression models for
simulated overdispersed count data. Similarly, the mean function was μ2i j = β20 + β21t2i j +
u2i with β20 = 1, β21 = 1, and u2i ~ N(0, 1). Two types of distributions were considered for
generating the count data: y2i j ~ NB(exp{μ2i j}, 1/2); or y2i j ~ Poisson(exp{μ1i j}). Both
cases generate overdispersed count data, since the mean function contents a random effect.
However, the data from the negative-binomial mixture distribution are more overdispersed
than the data from the Poisson mixture distribution. Three different regression models were
applied to fit the simulated count data: the negative-binomial mixed model (NMM), the
Poisson mixed model (PMM), and the normal linear mixed model with logarithm
transformation (i.e., log(y + 0.5)) (LMM2). Table 3 summarized the results from 500
replicates. Both NMM and PMM outperform LMM2 in terms of the parameter estimation.
Note that, in the case of simulated negative-binomial data, the Mean s of β1based on the
PMM are much smaller than the corresponding SDs. Poisson distribution assumes that its
variance equals its mean, thus the estimated  are too low and the inference from the PMM
could be mistaken. In summary, PMM seems to handle mildly overdispersed data but not to
deal with moderately/severely overdispersed data.

My third simulation study evaluated the performance of the joint model. Because BMM is
stable for continuous percentage data and the NMM is stable for overdispersed count data
from my experiences, I only considered the beta mixture distribution and the negative-
binomial mixture distribution for the joint modeling in the simulation and the real data
analysis. I had the following simulation design: four outcomes were simulated for the joint
modeling. The first two were percentage responses and the last two were count outcomes.
The mean function was μki j = βk0 + βk1tki j + uki (k = 1, …, 4, i = 1, …, 50, j = 1, …, 10),
where β10 = β20 = 1, β11 = β21 = 0.5, β30 = β40 = 1, β31 = β41 = 1, and (u1i, u2i, u3i, u4i)T

follows a multinormal distribution with σ1 = σ2 = σ3 = σ4 = 1, ρ12 = ρ23 = ρ34 = 0.8, ρ13 =
ρ14 = ρ24 = 0.5. The percentage data were simulated from Beta(exp{μki j}/(1 + exp{μki j}),
10), k = 1, 2 and the count data were simulated from NB(exp{μki j}, 1/3), k = 3, 4. Tables 4
and 5 summarize the results from 500 replicates. In Table 4, the averaged estimates of the
mean parameters from the joint model using the estimated pseudo-likelihood approach are
compared with those from the univariate models (i.e., the four separate individual models
for the four univariate responses by ignoring the correlation). Both the joint model and the
univariate models give accurate estimates for all of the mean parameters. The relative
efficiencies of the estimates based on the joint model to those based on the univariate
models show that the joint model seems slightly more efficient than the univariate models.
However, no big improvement in terms of the estimation of mean parameters has been found
from fitting the joint model. In Table 5, simulation results for the estimates of the covariance
parameters based on the joint model are reported. The estimates remain accurate to the true
parameters, although the estimated standard errors appear a little underestimated. In all, the
pseudolikelihood or the estimated pseudolikelihood method is a feasible approach to fit the
complex joint model for multiple responses.

5 Results
In this section, I present the results of analyzing the multimodality fatigue data. I considered
the beta mixture distribution for the percentage outcomes, since it is more popular than the
simplex mixture distribution and has more empirical support in prior literature. I used the
negative-binomial mixture distribution for count outcomes based on my simulation support
in last section. A joint generalized regression model was fit for the 11 responses. The
normalized time was the fixed-effect covariate, while each linear predictor function
contained a random-effect variable to account for random cluster (subject) effects. The
association among the responses were modeled through an unstructured covariance matrix.
To compare the estimates, 11 univariate generalized models were fit for each response
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variable separately. Table 6 shows the parameter estimates, standard errors and p-values for
the time effect obtained by the joint model with the estimated pseudolikelihood method, as
well as obtained by the 11 separate univariate models. Very similar estimates and inference
results were obtained for the fixed effects.

The null hypotheses of the tests were that the slope of time was equal to zero for each
outcome, that is, β1k = 0, k = 1, …, 11. Using approximate Wald-type tests, the statistical
analyses showed significant decreases during the task performances for the responses,
FORCE, FDPR, FDSR, EDR, while all of the responses from fMRI and FDPL from EMG
showed no significant changes in the study. The outcomes from EMG for the two prime
movers, FDSR and FDPR, and the antagonist, EDR in the right arm followed a similar
decreasing pattern as the FORCE. Each of four slope estimates are less than −1.5. It is not
surprising that the slope estimate of the EMG outcome FDPL in the left aim (the control
muscle) was only −0.339 and was not significantly different from zero. Interesting results
were found for the outcomes from fMRI: although most of the outcomes show slight
declines during the task performances (except that PFC = 0.093 and CG = 0.135), none of
them was significantly different from zero.

Table 7 presents the estimated correlation matrix. These correlation coefficients express the
association among responses from different resources. To better understand the association
of the responses, I performed a principal component analysis (PCA) on the correlation
matrix directly. Figure 3 shows the graphical results from the PCA. The left panel is the
scree plot that displays the eigenvalues of the correlation matrix in the order of component
numbers. The first principal component accounts for as much of the variability in the data as
possible, and each succeeding component accounts for as much of the remaining variability
as possible. The right panel shows the first principle component score versus the second
principle component score. In this reduced representation, I observed that the scales
referring to the outcomes from EMG in the right arm and the force were grouped together.
Oppositely, the scales referring to the outcomes from fMRI were far from the scale of the
force although they were grouped together themselves. Unsurprisingly, the scale referring to
FDPL was standing along than other EMG outcomes.

A residual analysis was performed for the fitted joint model. The standardized ordinary

residuals were calculated based on the definition  (McCullagh and
Nelder, 1989; Ferrari Cribari-Neto, 2004). Figure 4 shows that the residual plots from the
fitted joint model. The left panel displays the plot of the standardized residuals versus their
index. A random pattern has been found, which indicates a reasonable fit for a joint model.
The right panel shows the normal QQ plot for the residuals. The linearity of the points
suggests that the data are close to normal. A few outliers are identified at the high end of the
range. Otherwise, the joint model fit the data quite well. The predictive performance of the
joint model could be further assessed, but it is beyond the focus of this paper. The tools
developed Czado et al. (2009) will be useful for the evaluation.

My statistical analysis results for the fatigue study showed that the levels of the fMRI
signals at the different ROIs were only negligibly affected by severe muscle fatigue, but by
contrast there were significant reductions in the outcomes of the force and EMG with
MVCs. The outcomes of the force and EMG were highly correlated, while no strong
association was detected between fMRI and force outcomes. Several medical papers
reported concordant findings as ours. Liu et al. (2005a) showed that fatigue induced by
sustained or repetitive MVCs resulted in progressive declines in muscle and EMG signals,
while the MVC fatigue had a minimal effect on EEG signals of the preparation phase but a
more substantial effect on the signals of the sustained phase of the motor task. Liu et al.
(2005b) reported that fMRI-measured brain activation level in the primary sensorimotor
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cortex was only minimally to moderately affected by severe muscle fatigue. Post et al.
(2009) recently reported a study of motor fatigue using fMRI techniques. Their results
suggested that, although the central nervous system changed its input to the relevant motor
areas, this change was insufficient to overcome fatigue-related changes in the voluntary
drive.

6 Discussion
I presented a joint model to analyze the multidimensional responses from multimodalities,
which was motivated by the muscle fatigue study. A pseudolikelihood method within a
GLMM framework was applied to the neuroscience data. The outcomes from
multimodalities in neuroscience are often of multiple different natures. It is very important
to specify a reasonable distribution based on the nature of the data when I model the data.
As I have shown in simulations, a GLMM with specifying a suitable distribution has
practical advantages for modeling data with special nature. The GLMMs appear more
favorable than the linear regression models with certain transformation. The linear
regression models with nonlinear transformed responses are usually difficult to interpret for
investigators. Moreover, the joint model I discussed provides a feasible way to model the
association among the multidimensional outcomes with different natures. The approach can
be beneficial to multimodalities neuroscience studies.

In the analysis of the fatigue data, I only considered the random intercept model for the
mean structure. I assumed the correlation between outcomes was constant over time, and the
dispersion parameter for each outcome was constant. These assumptions were because the
number of subjects and the number of time points in the study were relatively small, but the
number of unknown estimates was quite large. My residual analysis showed that the
proposed model fit well for the data. For other studies with sufficient samples, one may
consider more complex models, such as random slope models. Multivariate hierarchical
Bayesian modeling techniques can be an alternative to resolve the modeling of the multiple
nonnormal responses. For multivariate models with complex mean and/or dispersion
structures, Markov chain Monte Carlo methods could be implemented, but they may have
problems in terms of both convergence and computational time. The recent advanced
method, integrated nested Laplace approximation (INLA), could be potentially applied to
solve the high-dimensional multivariate model. Using INLA and its simplified version, one
can directly compute very accurate approximations to the posterior marginals in a complex
Bayesian model (Rue et al., 2009). Recent papers to use INLA include Fong et al. (2010),
Roos and Held (2011), Schroedle and Held (2011), Schroedle et al. (2011). Analyzing the
multivariate neuroscience outcomes from multimodalities with INLA is of interest in my
further research.
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Figure 1.
A graphical description of the fatigue experiment: the subjects performed the muscle
contractions while the data of force, EMG, and fMRI images were collected simultaneously.
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Figure 2.
Summarized longitudinal data with transformations (logistic transformation for percentage
outcomes and logarithm transformation for count outcomes). Each panel shows a plot of the
mean with the standard deviation over the normalized time for a transformed response.
There is the downward trend for the force and the EMG percentages of FDSR, FDPR, and
EDR. In contrasts, there is no strong downward trend in the fMRI counts and the EMG
percentage of FDPL.
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Figure 3.
The graphical results for the principal component analysis (PCA) of the correlation matrix:
the left panel displays the scree plot; the right panel shows that the first principle component
score versus the second principle component score. The scales referring to the outcomes
from electromyography (EMG) in the right arm and the force were grouped together, while
the scales referring to the outcomes from functional magnetic resonance imaging (fMRI)
were far from the scale of the force.
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Figure 4.
Residual plots for the joint model: The left panel shows the plot of the standardized residuals
versus their index, and the right panel shows the normal QQ plot for the residuals.
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Table 1

Description and classification of the response variables of interest, of which six are count data and five are
percentage data.

No. Variable Resource Type Description

1 FORCE Force Percentage Normalized handgrip force

2 FDPR EMG Percentage Normalized data at the flexor digitorum superficialis (right arm)

3 FDSR EMG Percentage Normalized data at the flexor digitorum profundus (right arm)

4 EDR EMG Percentage Normalized data at the extensor digitorum (right arm)

5 FDPL EMG Percentage Normalized data at the flexor digitorum superficialis (left arm)

6 PMC fMRI Count Activated voxel counts at the primary motor cortex

7 PSC fMRI Count Activated voxel counts at the primary sensory cortex

8 PFC fMRI Count Activated voxel counts at the pre-frontal cortex

9 CB fMRI Count Activated voxel counts at the cerebellum

10 CG fMRI Count Activated voxel counts at the cingulate gyrus

11 SMA fMRI Count Activated voxel counts at the supplementary motor area
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