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Correspondence should be addressed to Karel Fiala, karel.fiala@ibot.cas.cz

Received 6 October 2011; Accepted 8 December 2011

Academic Editors: D. Alard and C. Calfapietra

Copyright © 2012 Karel Fiala et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The effect of different amounts of rainfall on the below-ground plant biomass was studied in three grassland ecosystems. Responses
of the lowland (dry Festuca grassland), highland (wet Cirsium grassland), and mountain (Nardus grassland) grasslands were
studied during five years (2006–2010). A field experiment based on rainout shelters and gravity irrigation simulated three climate
scenarios: rainfall reduced by 50% (dry), rainfall increased by 50% (wet), and the natural rainfall of the current growing season
(ambient). The interannual variation in root increment and total below-ground biomass reflected the experimentally manipulated
amount of precipitation and also the amount of current rainfall of individual years. The effect of year on these below-ground
parameters was found significant in all studied grasslands. In comparison with dry Festuca grassland, better adapted to drought,
submontane wet Cirsium grassland was more sensitive to the different water inputs forming rather lower amount of below-ground
plant matter at reduced precipitation.

1. Introduction

Predicted scenarios of global change include an increase of
drought during the growing season and higher frequencies of
extreme rainfall events [1]. Their effects on root production
of various grasslands are mostly unknown. Changes in the
amounts and timing of rainfall events will probably affect
ecosystem processes, including those that control carbon (C)
cycling and storage. If temperature and rainfall conditions
would change more rapidly than the change of CO2 concen-
tration in the atmosphere, their consequences could be much
more serious [2]. These climate changes may affect the sup-
ply of C and energy to the soil microbial populations and
subsequently alter decomposition and mineralization proc-
esses. Seasonal variation in precipitation and temperature are
important controls of soil and plant processes in grasslands.
Such changes may affect numerous soil, plant, and ecosys-
tem properties in grasslands and ultimately influence their
productivity and biological diversity [3–5].

Root mass and rhizosphere represent the main pool of or-
ganic matter and geobioelements of grassland ecosystems [6–
8]. As these ecosystems store up to 30% of the world below-
ground C, it is important to understand how variability in
climate factors affects soil C pools/fluxes, and how C cy-
cling might be affected by changes in precipitation, due to cli-
mate change [9]. The relationships between rainfall and
aboveground biomass production of grasslands have been
studied quite frequently (e.g., [10–13]). The effect of water
stress on grass growth and dry matter production mostly pre-
vailed over other stress factors. The biomass of meadows
mostly decreased with decreasing rainfall, reflecting so main-
ly the impairment of plant nutrition [14].

Production of new roots was often observed during
periods of favourable soil water conditions and dry periods
coincided with a decline of root dry mass (e.g., [15–20]). To
the contrary, Bakker et al. [21] assessed that total fine root
biomass and total fine root length were significantly higher at
the dry site than at the humid site, in accordance with studies
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by Ibrahim et al. [22], Qaderi et al. [23], and Wedderburn
et al. [24]. Some of them also mentioned that the significant
decline in living roots and increase in dead roots correspond-
ed with drought. Thus the total dry mass of below-ground
plant parts comprises also dead undecomposed plant matter.
Amounts of decomposed dead plant parts are associated,
beside others, with differences in soil moisture of various
ecosystems (e.g., [25–30]). Lower precipitation rate or soil
moisture can mostly reduce plant matter decomposition.

Summary of the published results indicates that contra-
dictory data on root growth and below-ground biomass in
dry conditions were often presented. Although there are
data on the interaction between changes in rainfall record
ed over several years and the above-ground biomass produc-
tion, a gap in knowledge still exists on the interannual vari-
ation in root growth and below-ground plant biomass accu-
mulation in various grasslands at different water availabil-
ities. Therefore, our main objective was to determine the
effects of changes in rainfall amounts on the biomass produc-
tion of roots. This was studied in three different grassland
ecosystems occurring in lowland, highland, and mountain
regions. Although rainout shelters were used by several au-
thors [4, 31–33], the effects of different amounts of precip-
itation on interannual variation of root growth were not
studied by them. We expected that combination of the data
from an altitude gradient and from a moisture gradient
will show how rainfall controls the root production and
the biomass accumulation. For this goal we used data from
five-year field experiments which combined naturally var-
ying and artificially manipulated precipitation. Main and a
new contribution of our study to the problem was that we
obtained data with the help of two different and simultane-
ously used methods and results were gathered during a
relatively long period of five years.

As smaller amounts of precipitation cause reductions in
above-ground production, we expected to find lower root
increments and lower biomass allocation to below-ground
plant parts in drier years and in reduced rainfall treatments.
We hypothesized that

(1) experimentally manipulated amounts of rainfall con-
trol root growth in grasslands such that the lowest
yearly root increments take place in the drier treat-
ments,

(2) the lowest accumulation of total below-ground plant
parts occurs in reduced amounts of rainfall,

(3) interannual variation in root production and accu-
mulation are characterized by their lower values
recorded in dry years.

2. Material and Methods

2.1. Study Sites. This study was conducted during five years
(2006–2010) at three sites in different grassland ecosystems.
They were situated in (1) a lowland site (the Podyjı́ National
Park near the town of Znojmo, etchplain in the southern
Moravian lowland—lowland grassland), (2) a highland (the
Moravian-Bohemian Highland near the village of Kamen-

Table 1: Soil features of grass stands of studied sites (soil layer 0–
10 cm).

Features
Lowland

site
Highland

site
Mountain

site

pH-H2O 5.4 5.1 4.7

pH-KCl 4.6 4.3 3.8

Organic matter (%) 9.0 13.9 8.6

P (mg kg−1) 44.7 23.0 4.0

K (mg kg−1) 359 167 140

Mg (mg kg−1) 166 163 57

Ca (mg kg−1) 1249 1589 426

N tot (%) 0.34 0.44 0.39

ičky, SE of the town of Hlinsko—highland grassland),
and (3) a mountain region (near the locality Bı́lý Křı́ž in
the Moravian-Silesian Beskydy Mts.—mountain grassland).
The mean annual temperature and precipitation (for the
period 1961–1990) in these regions ranged from 8.5◦C and
471 mm (Znojmo, Kuchařovice), through 7◦C and 762 mm
(Kameničky, Svratouch), to 6.5◦C and 947 mm (Bı́lý Křı́ž).
A nutrient-poor shallow soil of the Ranker type occurred in
the lowland site (the bedrock is formed by granite), a brown
acid gleyed soil on crystalline rocks in the highland site,
and a spodo-dystric cambisol (podzol brown soil) on Flysch
Godulian sandstone in the mountain site (Table 1). The low-
land grassland was located near the village of Havranı́ky
(altitude 320 m). It was covered with dry acidophilous short
grass vegetation dominated by the graminoids Festuca ovina,
Avenella flexuosa, Anthoxantum odoratum, Arrhenatherum
elatius and dicots Pimpinella saxifraga, Potentilla arenaria,
Trifolium arvense, Achillea millefolium, and others. The high-
land grassland was characterized as a species rich stand of wet
Cirsium meadow (altitude 530 m). The species composition
of the stand was characterized by frequent species such as
Cirsium palustre, Deschampsia ceaspitosa, Agrostis capilaris,
A. canina, Anthoxanthum odoratum, Polygonum bistorta,
Sanguisorba officinalis, and others. A mountain Nardus grass-
land occurred on the third site in the Beskydy Mts. (altitude
890 m). Its main components are Nardus stricta, Avenella
flexuosa, Festuca rubra, and Agrostis capillaris. The monocots
Holcus mollis and Carex pilulifera and dicots Veronica offici-
nalis and Hieracium laevigatum are also frequently present.
All stands were not cut in the course of the experiment.

The amount of rainfall (ambient treatment) recorded
during the growing seasons at the studied sites fluctuated be-
tween 339 (recorded in 2007) and 606 mm (in 2010) in
the lowland site and between 426 (in 2008) and 794 mm
(in 2010) in highland site (Table 2). At the mountain site,
the precipitation showed less variation over the years (532–
601 mm), but a considerable fluctuation within years. This
was caused mostly by storm rainfalls (810 mm recorded
in 2007). A comparison of the deviations of the amount
of actual precipitation from the long-term average values
(1961–1990) recorded at nearby meteorological stations and
calculated for quarters of the individual years (2006 to
2010) indicates that the stands received a lower amount
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Table 2: Amount of precipitation (the full natural rainfall: ambient
treatment in mm per growing season) recorded at the studied sites
(Lowland: Havranı́ky, Highland: Kameničky; Mountain: Bı́lý Křı́ž)
in the growing seasons 2006 to 2010.

Year
Lowland
grassland

Highland
grassland

Mountain
grassland

2006 446 687 574

2007 339 513 810

2008 361 426 601

2009 511 606 532

2010 606 794 580
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Figure 1: Differences in the amount of precipitation from the long-
term average values (1961–1990) recorded at the meteorological
stations Kuchařovice (lowland), Svratouch (highland), and Lysá
hora (mountain, approximately 9, 4, and 8 km from studied sites,
resp.) and calculated for quarters of the years of 2006 to 2010.

of precipitation at the beginning of the growing seasons
2007 and 2008 (second quarters, Figure 1). The data on
the amount of precipitation measured at the studied sites
and comparison with data from meteorological stations indi-
cate that the 2007 and 2008 growing seasons were drier
particularly in comparison with 2006 and 2010 (Figure 1).
In the highland grassland, soil moisture conditions given
by amount of precipitation occurring from the end of May
to June were also influenced here by a higher underground
water table, ranging about −20 cm below soil surface due to
the melting of a huge amount of snow. However, in summer
months, underground water table decreased here often down
to −50 cm.

2.2. Experimental Design. Twelve 2 × 3 m plots were laid
out in an area of relatively homogeneous grasslands at each
of the three localities (four replications of each treatment
were in block design). Rainout shelters constructed above
the canopy of grass stands and a gravity irrigation system
simulated three scenarios: (1) rainfall reduced by 50% (dry

treatment), (2) rainfall enhanced by 50% (wet treatment),
and (3) the full natural rainfall of the current growing season
(ambient treatment—amb). For the dry treatment, rainout
shelters constructed over the experimental plots consisted
of a steel frame supporting plastic transparent strips (small
troughs, see [34]) that covered 50% of the experimental
plots. Such rain water shelters with a roof consisting of bands
of transparent blocks represent well-replicated experiments
with minimal secondary microenvironmental effects [34].
The water was piped as gravity irrigation into the corre-
sponding wet treatment plots. A 0.2 m wide trench was dug
and sheathed with a plastic foil to separate the soil of the
roofed and irrigated areas from the neighbouring soil. No
measurements were performed in a 0.25 m wide peripheral.

2.3. Below-Ground Plant Parts Analyses. In order to assess
yearly root increments (root production), the in-growth core
technique was used during five years. Eight plastic-mesh
tubes with river sand were inserted into holes (5 cm in diam-
eter, 15 cm depth) in experimental treatments (two in each
replicated plot) at the beginning of the growing season. The
tubes were lifted at the end of the growing season and roots
were washed, dried, and weighed. The total below-ground
biomass (TBB) was collected at the end of five growing
seasons. Eight soil cores were taken to the depth of 15 cm
in experimental plots with a root auger (diameter 9.4 cm)
representing more than 90% of total below-ground dry mass
of studied plant communities. The below-ground plant parts
were washed free of soil over a 0.5 mm mesh sieve. Samples
were separated into total roots and rhizomes with shoot bases
(referred as rhizomes for simplification), dried, and weighed.

2.4. Statistical Analysis. Data were evaluated by an analysis of
variance, using statistical package STATISTICA 9. A repeated
measures ANOVA analysis was used to test the effect of ma-
nipulated rainfall as nonrepeated factor on both root incre-
ments and dry mass of below-ground plant parts, where the
years were used as repeated measures factor. Significant dif-
ferences among means were tested (Tukey HSD test (P <
0.05) after ANOVA). Linear correlation analyses were per-
formed between root increments, TBB, and precipitation in-
put to determine whether these parameters are related.

3. Results

3.1. Yearly Root Increments and Their Interannual Variations.
The repeated measures analysis has shown that the yearly
root increments (YRIs) were significantly affected by rainfall
input in the lowland and mountain grasslands (Table 3).
In addition, correlation analysis summarizing five-year data
indicated that the YRI increased with enhanced rainfall in-
put, but significantly only in lowland and highland grass-
lands (Figure 2). Thus the effect of rainfall input on root in-
crement was observed in all studied grasslands. In the high-
land site, the rather variable data on YRI recorded during
five years may explain the mostly nonsignificant results. Al-
though often not significant, a tendency to a higher YRI was
found in wet treatments compared to the dry treatments in
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Table 3: The effect of rainfall input and year on the root increment, roots, rhizomes, and total below-ground biomass (TBB): results of
repeated measures analysis of variance (ANOVA), using years as repeated measures factor (NS: not significant, ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001; df error = 84).

Effect Root increment Rhizomes Roots TBB

df F P F P F P F P

Lowland grassland

Rainfall input 2 8.0 ∗∗ 4.5 ∗ 2.0 NS 2.4 NS

Year 4 12.4 ∗∗∗ 0.9 NS 1.9 NS 2.6 ∗

Interaction 8 1.5 NS 2.1 ∗ 1.8 NS 1.2 NS

Highland grassland

Rainfall input 2 2.5 NS 7.8 ∗∗ 12.9 ∗∗∗ 14.5 ∗∗∗

Year 4 8.8 ∗∗∗ 1.7 NS 10.8 ∗∗∗ 4.5 ∗∗

Interaction 8 1.0 NS 1.6 NS 1.3 NS 0.8 NS

Mountain grassland

Rainfall input 2 9.3 ∗∗ 1.2 NS 2.7 NS 5.4 NS

Year 4 11.0 ∗∗∗ 3.2 ∗ 19.7 ∗∗∗ 10.8 ∗∗∗

Interaction 8 1.6 NS 0.1 NS 0.7 NS 0.4 NS
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Figure 2: Relationship between the yearly root increment and pre-
cipitation input along the experimental precipitation gradient. Each
point indicates annual mean.

all studied grassland (Table 4). The percentage increase or
decrease in YRI in dry and wet treatments in comparison
with the ambient precipitation recorded in five years (2006–
2010) is summarized in Figure 3. According to 5-year means,
marked increase in root production (38, 15, and 54%) has
been observed in the wet treatment in the lowland, highland
and mountain grassland, respectively. On the other hand,
21% reduction (in average) of root production was found
in dry treatment of the lowland grassland, while no effect
of decreased rainfall input was noted in the highland and
mountain grasslands in comparison with ambient treatment
(Figure 3).

In the first three years (2006–2008), the YRI recorded
in the dry treatment of the lowland Festuca grassland repre-
sented, on the average, only about 49% (57 g m−2 year−1) of
the root biomass formed in stands affected by higher precip-
itation input (wet treatment, Table 4). However, in 2009 and
2010, a significantly greater root production (mostly above
100 g m−2 year−1) was formed in Festuca grassland in the dry
treatment than in previous years and even reached values
recorded in the wet treatments in 2010 (Table 4). In the
course of five years, a decreasing tendency in YRI was found
with time in all rainfall input treatments of the highland
Cirsium grassland. This was documented by the highest
significant values recorded in 2006 (183 and 219 g m−2 year−1

in the dry and wet treatments, resp.) and lower amount of
roots recorded in 2010 (69, resp., 63% of the values at the
beginning of experiment, Table 4). Substantial increases of
YRI were found in the ambient and wet treatments only in
2009, probably due to improved water conditions after two
relatively dry years. In mountain Nardus grassland, mostly
significantly higher values of YRI were assessed through all
treatments in the 2006 and 2009 growing seasons (Table 4).
During five years, the data on YRI averaged here 156, 140,
and 229 g m−2 year−1 in the dry, ambient, and wet treat-
ments, respectively. The significantly highest YRI value
(355 g m−2 year−1) was found in the wet treatment in 2009.

3.2. Below-Ground Plant Parts and Their Interannual Varia-
tions. The repeated measures analysis confirmed the signif-
icant effect of a varying rainfall input on the accumulation
of roots, rhizomes, and TBB in highland and rhizomes
in lowland grasslands (Table 3). Concerning interactions,
below-ground plant parts were not affected by the interac-
tion of rainfall input and year, except rhizomes in lowland
grassland. In addition, the increasing dry mass of both roots
(not presented) and TBB in the stand of highland Cirsium
grassland correlated positively with the increasing amount
of precipitation (Figure 4). Values recorded in the other two
grassland types were more variable and this relationship was
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Table 4: Mean values (±SE) of yearly root increment under different amounts of precipitation (dry, ambient, and wet treatments) recorded
in five years (2006–2010): results of one-way ANOVA analysis (NS: not significant, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). Different letters
denote significantly different values for rhizomes, roots, and total separately (Tukey HSD test (P < 0.05) after ANOVA).

Year Yearly root increment

Dry Ambient Wet P

Lowland grassland

2006 58.8± 15a 103.1± 28b 103.2± 25b ∗∗

2007 63.8± 16a 77.5± 17a 136.0± 63b ∗

2008 48.5± 9a 57.6± 20a 110.1± 26b ∗∗∗

2009 110.0± 19a 145.7± 43ab 182.4± 59b NS

2010 112.4± 30a 117.6± 39a 118.1± 40a NS

Highland grassland

2006 182.9± 38a 194.4± 41a 218.6± 29a NS

2007 168.6± 54a 180.1± 53a 181.8± 44a NS

2008 140.2± 30a 131.9± 56a 159.4± 32a NS

2009 144.2± 46a 197.8± 50ab 235.6± 50b ∗

2010 126.0± 44a 109.8± 29a 135.8± 49a NS

Mountain grassland

2006 225.8± 69a 270.9± 44a 271.0± 73a NS

2007 131.0± 28a 138.9± 75a 190.0± 83a NS

2008 123.1± 59a 121.4± 41a 194.4± 47b ∗

2009 183.5± 100a 168.0± 45a 354.8± 155b ∗

2010 122.6± 34a 111.0± 31a 180.5± 23b ∗∗
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Figure 3: Percentage increase or decrease in yearly root increment (ambient treatment = 100%) in dry and wet treatments recorded in five
years (2006–2010).
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Table 5: Mean values (±SE) of dry mass of rhizomes, roots, and total below-ground biomass (TBB) under different amounts of precipitation
(dry, ambient and wet treatments) recorded in five years (2006–2010): results of one-way ANOVA analysis (NS: not significant, ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001). Different letters denote significantly different values for rhizomes, roots and total separately (Tukey HSD test
(P < 0.05) after ANOVA).

Year Rhizomes Roots TBB

Dry Amb Wet P Dry Amb Wet P Dry Amb Wet P

Lowland grassland

2006 225± 33a 219± 26a 169± 26a NS 830± 34a 732± 52a 854± 81a NS 1056± 56a 951± 56a 1022± 99a NS

2007 165± 31a 163± 23a 186± 35a NS 654± 39a 881± 75b 919± 53b ∗∗ 818± 47a 1045± 86b 1104± 72b ∗

2008 142± 25a 192± 44a 349± 62b ∗ 829± 54a 917± 112a 764± 41a NS 971± 40a 1109± 118a 1076± 72a NS

2009 192± 26a 131± 29a 180± 41a NS 725± 71a 813± 68a 679± 67a NS 917± 74a 943± 71a 859± 94a NS

2010 109± 20a 166± 25a 321± 122a NS 729± 115a 1043± 103a 953± 154a NS 928± 109a 1208± 118a 1294± 205a NS

Highland grassland

2006 367± 57a 464± 107a 565± 82a NS 1549± 96a 1609± 72ab 1854± 94b ∗ 1916± 124a 2074± 171ab 2419± 142b ∗

2007 236± 44a 347± 48ab 419± 72b ∗ 961± 99a 1282± 117b 1360± 100b ∗ 1197± 124a 1629± 149b 1779± 135b ∗

2008 300± 26a 421± 98a 989± 310b ∗ 1009± 124a 1403± 56b 1368± 104b ∗ 1309± 121a 1824± 125b 2357± 294b ∗∗

2009 276± 55a 754± 159b 680± 166b ∗ 1146± 131a 1179 ± 86a 1313± 129a NS 1422± 180a 1932± 158ab 1993± 205b ∗

2010503± 148a 449± 138a 568± 108a NS 1185± 104a 1198± 90a 1651± 118b ∗∗ 1641± 215a 1647± 194a 2112± 218a NS

Mountain grassland

2006401± 102a 499± 82a 486± 76a NS 1365± 116a 1519± 111a 1568± 211a NS 1766± 151a 2018± 94a 2054± 184a NS

2007422± 114a 526± 76a 511± 92a NS 982± 75a 954± 70a 1015± 125a NS 1404± 103a 1479± 112a 1526± 113a NS

2008 317± 97a 434± 78a 457± 68a NS 855± 82a 947± 61ab 1114± 56b ∗ 1172± 96a 1380± 134ab 1571± 111b ∗

2009 330± 77a 381± 92a 383± 94a NS 888± 52a 1167± 49b 1154± 76b ∗∗ 1218± 105a 1548± 121a 1536± 157a NS

2010 227± 48a 356± 61a 322± 55a NS 1372± 91a 1318± 90a 1429± 53a NS 1599± 130a 1674± 141a 1751± 48a NS

not significant (Figure 4). The greatest differences in below-
ground plant parts were usually recorded between dry and
wet treatments. In lowland grassland, TBB fluctuated in a
narrow range of values and differences between plant parts
and years were mostly not significant. Nevertheless, these
changes have shown here significant differences between dry
and wet treatments recorded in the second year of experi-
ment (Table 5). Similar significant decreases were also found
in mountain grassland, but only for roots (2008 and 2009)
and TBB (2008). In the highland grassland, however, signif-
icant differences in below-ground plant parts between dry
and wet treatments were found nearly in all years (Table 5).

During five years studied, the TBB fluctuated between
1197 and 1916 g m−2 in dry and 1779 and 2419 g m−2 in
wet treatments of the highland grassland. In addition, the
TBB ranged between 818 and 1056 g m−2 in dry and 859 to
1294 g m−2 in wet treatments in the lowland grassland and
between 1172 and 1766 g m−2 in dry and 1526 to 2054 in wet
mountain grassland (Table 5). Thus TBB of those grasslands
was generally lower in comparison with values of Cirsium
highland grassland. According to 5-year means, both the
greatest reduction (by 15 and 18%, resp.) and accumulation
(10 and 17%, resp.) of the root biomass and TBB have been
noted in the highland grassland (Figure 5). On the other
hand, the mountain grassland was characterized by relatively
stable variations in the amount of below-ground plant parts
under different amounts of rainfall (Figure 5). In addition,
the decrease in the amount of rainfall input resulted also in
a lower amount of rhizomes in dry treatment than that in

Lowland grassland (r2 = 0.22; P = 0.079)
Highland grassland (r2 = 0.56; P = 0.001)
Mountain grassland (r2 = 0.1; P = 0.265)
Significant fit curve
Not significant fit curve
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Figure 4: Relationship between the amount of total below-ground
plant dry mass and precipitation input along the experimental
precipitation gradient. Each point indicates annual mean.

wet treatments in highland (significant in 2007–2009) and
lowland grasslands (significant in 2008) (Table 5).

Interannual changes in below-ground biomass of low-
land Festuca grassland were characterized by fluctuation of
data in a narrow range of values and differences between
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Figure 5: Percentage increase or decrease in dry mass of rhizomes, roots, and total below-ground plant biomass (ambient treatment = 100%)
in dry and wet treatments recorded in five years (2006–2010).

them were mostly not significant (Table 5). Nevertheless, se-
veral significant differences in roots and TBB between dry
and wet treatments were found in the second year (2007).
In highland and mountain grasslands, respectively, a consid-
erable significant reduction of roots (by 327 and 565 g m−2)
and TBB (by 445 and 539 g m−2) occurred in ambient treat-
ments in the second year (2007) in comparison with the pre-
vious year. A decreasing tendency in the dry mass of these
plant parts also occurred in the following two years, particu-
larly in the dry treatment of the mountain grassland (Table
5). The greatest significant differences between rainfall input
treat-ments were here found in the third year when 1571 and
only 1172 g m−2 of TBB accumulated in wet and dry treat-
ments, respectively. On the contrary, an increase in root and
TBB mostly occurred in all treatments in the studied grass-
lands in the last year (2010). In all grasslands studied, the
mean values of dry mass of rhizomes including shoot bases
were also lower in the dry in comparison with wet treat-
ments, but mostly not significantly (Table 5). In the highland
grassland, however, the pronounced reduction of rhizomes
recorded due to lower precipitation was mostly significant.

4. Discussion

4.1. Yearly Root Increments and Their Interannual Variations.
Our assumption that root growth is affected by experimen-
tally manipulated rainfall inputs was confirmed for all stud-
ied grasslands. However, this fact was documented by signif-
icant effects of rainfall input treatments in ANOVA analyses
in lowland and mountain grasslands and by correlation

analyses which demonstrated that the yearly root increment
(YRI) increased linearly with increasing precipitation in low-
land and highland grasslands.

Our results are supported by findings of several authors.
For example, the lowest yearly production of new roots and
root elongation rates were found due to a decrease of the soil
water content (e.g., [17, 35, 36]). Based on a large collection
of field measures, Hui and Jackson [8] concluded that the
proportion of the below-ground net biomass production in
the total net primary production was negatively correlated
with the average annual temperature and precipitation across
sites. Our results indicate higher root increments in cool
and wet highland and mountain sites, while lower values in
dry and warmer environments of lowland sites were found.
Perez and Frangi [37] reported that below-ground net pro-
ductivity in grassland sites increased with altitude. On the
other hand, a greater root production at lower than at higher
elevated sites was found in several temperate grasslands [38].
Nevertheless, root production may not be a simple function
of altitude [38, 39]. In our case, both altitude and amount of
rainfall can explain obtained results of individual sites.

The repeated measures analysis also exhibited the effect
of year on YRI in all studied grasslands. The results show the
lowest YRI in the dry treatment of the lowland dry grassland
and a decreased root production in the dry treatments of the
highland and mountain grasslands, particularly during the
first three years. This fact can be associated with the lower
regular rainfall recorded during this period. The YRI signif-
icantly increased in the Festuca lowland grassland in 2009
and 2010. In these years, the amount of precipitation was
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above the long-term averages. In the mountain grassland, the
YRI varied over a wide range of values. This could also be
associated with fluctuating amounts of the current precipi-
tation. Production of new roots was observed during periods
of favourable soil water conditions [40, 41] and the decline in
the below-ground net biomass production was found in dry
years [15, 16, 18]. In addition, the below-ground net primary
production was not related to the early but to the late rainfall
in the rainy season [17]. However, Fitter et al. [39] concluded
that a yearly increase in root biomass can be rather a function
of changes in length of the growing season, not soil temper-
ature. In the present study, in the drier vegetation seasons
(2007 and 2008) decreased YRIs were recorded in nearly all
grasslands and treatments, but particularly in the mountain
grassland. Thus these interannual variations in root produc-
tion reflected not only the experimentally manipulated
amount of precipitation but also the current rainfall, that is,
dry and wet conditions of individual growing seasons.

4.2. Below-Ground Plant Parts and Their Interannual Varia-
tions. We expected to find a lower accumulation of below-
ground plant parts in dry conditions. The repeated mea-
sures analysis showed that data of dry mass of all below-
ground plant parts of the studied wet Cirsium grassland in
highland were only significantly affected by the rainfall input
treatment. In this grassland, the introduced reduction and
increase of amounts of rain were connected with a decrease
or increase in all below-ground plant parts. Correlation anal-
ysis suggested a significant positive relationship between pre-
cipitation input and root and TBB in the highland grassland.
These our results support the hypothesis that the different
amounts of rainfall will be reflected in the below-ground
plant biomass and the lowest accumulation of total below-
ground plant parts will occur in reduced amounts of rainfall.

Dry conditions appear to influence the root mortality
(e.g., [24, 40–42]). Above all summer droughts can lead
to increased root mortality, thereby reducing root biomass.
Hayes and Seastedt [15] also mention that the significant de-
cline in living roots and increase in dead roots corresponded
with drought. Therefore the disappearance of roots and con-
sequently decrease in root dry mass could have resulted from
the low rainfall. Decomposition processes can modify the
amount of TBB in different soil moisture conditions, re-
sulting in varying accumulation of below-ground undecom-
posed plant litter. Drought mostly resulted in a decline of
below-ground dry mass [43].

The repeated measures analysis also showed that TBB
of all studied grasslands changed significantly with year.
Thus both experimentally and naturally altered rainfall in-
puts were associated with variation in values of the below-
ground dry mass, although not significantly in all five years.
Not significant data on interactions between rainfall in-
put and year indicated that dry or wet years reduced or in-
creased below-ground biomass in dry and wet treatments in
the same extent. The interannual variation was characterized
by a decreasing tendency in the amount of TBB after experi-
mental reduction of precipitation in all studied grasslands.
In addition, a considerable reduction of the TBB occurred
through all rainfall input treatments in the studied highland

and mountain grasslands in the second year of the experi-
ment (2007). In comparison with other years, the grasslands
received the lowest amount of precipitation in the first part
of this growing season. In wet Cirsium highland grassland,
differences in water availability were reflected, mostly signifi-
cantly, in accumulated root dry matter. Therefore, our last as-
sumption to find a lower root accumulation in dry years was
confirmed in wet Cirsium grassland.

The results of the present study correspond with data of
other authors (e.g., [15, 18, 44, 45]) who noted that root
biomass and root length were lower in dry years. Drought
and soil moisture decrease reduced decomposition processes
of dead plant matter, whereas enhanced soil moisture can ac-
celerate decomposition below-ground in many ecosystems
(e.g., [26, 27, 29, 30, 46]). Changes in the distribution of
the rain during the year may be more important than chan-
ges in the total amount of rain. Mid-growing season drought
can result in accelerated death and decomposition of new
roots [15]. Below-ground turnover rates in grasslands de-
creased with altitude [37]. This fact was confirmed by data
on total root dry mass from different regions summarized by
Fiala [47, 48]. Therefore the total dry mass of below-ground
plant parts comprises also various amounts of dead unde-
composed plant matter, in upper elevation sites particularly.
Nevertheless, recorded increase of root biomass in studied
years can indicate rather new root growth than the decreased
decomposition.

5. Conclusions

Our results indicate the strong effect of reduced precipitation
on decrease of roots and TBB in the wet submontane Cirsi-
um grassland, occurring often in the central European re-
gion. Below-ground plant matter is considered as stabiliz-
ing element of grasslands, which also functioning as water
storage in the landscape. Therefore a substantial reduction
of root matter can contribute to destabilization of grassland
ecosystems. In addition, the wet submontane Cirsium grass-
land often occurs in spring regions providing supply of
drinking water. Although the YRI decreased linearly with
decreasing precipitation in lowland and highland grasslands,
the same relationship was not found for roots and TBB in
the mountain. In the studied mountain Nardus grassland,
amount of precipitations cannot be always the main predic-
tor of the amount of below-ground plant biomass due to
relatively high current rainfall. The dry Festuca grassland
can be better adapted to dry conditions and below-ground
biomass fluctuated here in a narrow range of values. The
new information related to the influence of precipitation on
growth and accumulation of roots is particularly important,
because most current literature has focused on the above-
ground biomass production, but grasslands accumulate
larger plant biomass below-ground.

Acknowledgments

This research was supported by Grant nos. 526/06/0556
(Grant Agency of the Czech Republic) and MSM6215648905



The Scientific World Journal 9

(Research plan MSM), by project CzechGlobe
(CZ.1.05/1.1.00/02.0073), and by Research Intentions AV0Z
60050516 and AV0Z 60870520. The authors are indebted to
Dr. J. P. Kaiser (The Netherland) for his review of the text.

References

[1] K. E. Trenberth, A. Dai, R. M. Rasmussen, and D. B. Parsons,
“The changing character of precipitation,” Bulletin of the
American Meteorological Society, vol. 84, no. 9, pp. 1205–1161,
2003.

[2] D. W. Lawlor, “Plant responses to global change: temperature
and drought stress,” in Responses of Plant Metabolism to Air
Pollution and Global Change, L .J. de Kok and I. Stulen, Eds.,
pp. 193–207, Backhuys Publishers, Leiden, The Netherlands,
1998.

[3] A. K. Knapp, P. A. Fay, J. M. Blair et al., “Rainfall variability,
carbon cycling, and plant species diversity in a mesic grass-
land,” Science, vol. 298, no. 5601, pp. 2202–2205, 2002.

[4] P. A. Fay, D. M. Kaufman, J. B. Nippert, J. D. Carlisle, and C. W.
Harper, “Changes in grassland ecosystem function due to ex-
treme rainfall events: implications for responses to climate
change,” Global Change Biology, vol. 14, no. 7, pp. 1600–1608,
2008.

[5] J. Kreyling, M. Wenigmann, C. Beierkuhnlein, and A. Jentsch,
“Effects of extreme weather events on plant productivity and
tissue die-back are modified by community composition,”
Ecosystems, vol. 11, no. 5, pp. 752–763, 2008.

[6] M. Rychnovska, “Grasslands: a multifunctional link between
natural and man-made ecosystems,” Ekológia (ČSSR), vol. 2,
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