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Abstract

The suprachiasmatic nucleus (SCN) is the master circadian clock in mammals and is composed of thousands of neuronal
oscillators expressing different intrinsic periods. These oscillators form a coupled network with a free-running period around
24 h in constant darkness and entrainable to the external light-dark cycle (T cycle). Coupling plays an important role in
setting the period of the network and its range of entrainment. Experiments in rats have shown that two subgroups of
oscillators within the SCN, a ventrolateral (VL) subgroup that receives photic input and a dorsomedial (DM) subgroup that is
coupled to VL, can be desynchronized under a short (22-h) T cycle, with VL entrained to the cycle and DM free-running. We
use a modified Goodwin model to understand how entrainment of the subgroups to short (22-h) and long (26-h) T cycles is
influenced by light intensity, the proportion of neurons that receives photic input, and coupling heterogeneity. We find that
the model’s critical value for the proportion of photically-sensitive neurons is in accord with actual experimental estimates,
while the model’s inclusion of dispersed coupling can account for the experimental observation that VL and DM
desynchronize more readily under the 22-h than under the 26-h T cycle. Heterogeneous intercellular coupling within the
SCN is likely central to the generation of complex behavioral patterns.
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Introduction

Circadian (,24 h) rhythms in physiological and behavioral

measures are universal in living things, reflecting the period of the

earth’s rotation. In mammals, circadian rhythms are regulated by

a master clock in the suprachiasmatic nucleus (SCN) of the

hypothalamus, composed of approximately 20,000 neuronal

oscillators; SCN neurons are nonidentical, express different

intrinsic periods, and are coupled together to form a network

with a coherent output [1]. The period of the network’s output

signal is adaptable. Under constant darkness, the rhythm has a

free-running period close to 24 h; whereas under an external light-

dark cycle (T cycle), it is precisely entrained to a period identical to

the external cycle.

The SCN network is heterogeneous [2,3,4]. It can be divided

into distinct functional subgroups, including a ventrolateral part

(VL), which receives photic input from the retina, and a

dorsomedial part (DM), which is coupled to VL; both VL and

DM contribute to the generation of overt circadian rhythms in

physiological and behavioral measures. Peptide neurotransmitters

differ between the VL and DM subdivisions, with neurons that

express vasoactive intestinal polypeptide (VIP) in the VL and

arginine vasopressin in the DM. Periods may vary in different

regions of the SCN, with DM running faster than VL in tissue

slices [5]. Gamma aminobutyric acid (GABA) neurons are present

throughout the SCN and may play a role in coupling the two

subdivisions [6]. It has been shown that the circadian oscillation

between VL and DM can desynchronize with exposure to short T

cycles [7] or after a phase shift of the light-dark cycle [6,8,9]; the

VL appears to set the final phase of the SCN after the phase shift

[6,8,9].

Much experimental [10,11,12] and theoretical [13,14,15] work

has been motivated by a desire to understand how this

heterogeneous SCN network is reliably entrained and able to

generate a coherent output signal, and neuropeptidergic mecha-

nisms appear to be necessary elements [16,17,18]. Modeling

studies suggest that the circadian clock’s free-running period is

proportional to the average intercellular coupling strength [13]

and that coupling governs the clock’s range of entrainment to T

cycles [15]. However, coupling strength between cells in the SCN

network is unlikely to be uniform. The effects of heterogeneous

coupling on network synchronization have been studied previously

in multi-oscillator models. Daido considered the dispersion of

coupling strengths in the Kuramoto model and studied the

synchronization property of the network [19,20]; coupling
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strength between two oscillators was chosen from a normal

distribution. Hong and Strogatz considered a heterogeneous

network with excitatory (positive) and inhibitory (negative)

coupling in the Kuramoto model to understand the relative

contributions of excitatory and inhibitory properties on network

synchronization [21]. Our recent work (C.G. and Z.L.) has

demonstrated that the dispersion of coupling strengths between

SCN cellular oscillators can influence the emergent free running

period of the network [22]. To our knowledge, however, there has

been no work on the relationship between coupling dispersion and

network entrainment.

We examine this issue in the present work, inspired by an

interesting experiment performed by de la Iglesia et al. [7] in

which rats were exposed to an artificially short 22-h T cycle (11 h

light alternating with 11 h darkness). Individual animals expressed

two separate circadian motor activity rhythms, with one rhythm

entrained by the light and oscillating with a period equal to the

external cycle, while the other was not entrained and expressed a

period greater than 24 h. Analyses of SCN gene expression

suggested that these two motor activity rhythms reflected the stable

forced desynchronization of VL and DM subdivisions, respective-

ly. Here we model how entrainment of the subdivisions is

influenced by coupling dispersion, as well as by the proportion

of cellular oscillators that receive photic input (i.e., that are within

VL) and the light intensity.

We use the Goodwin model, a network model of coupled

oscillators that has been widely used to describe the mammalian

circadian clock [13,22,23,24,25,26] (defined in Methods). An

individual cellular oscillator of the Goodwin model has three

variables: a clock gene mRNA, a clock protein, and a transcrip-

tional inhibitor, all of which form a transcription-translation

negative feedback loop. It is assumed that light induces the clock

gene mRNA, that a neurotransmitter is increased by the clock

gene mRNA, and that neurotransmitters from different neurons

form a mean field that couples the neurons together. We consider

that pN neurons receive photic input, where N is the total number

of neurons in the SCN network and p is the ratio of the number of

VL neurons to the total number of SCN neurons. We take T

cycles of 22 h and 26 h as examples, i.e., symmetrically distant

from 24 h. We chose mean field coupling for all of the neurons in

the Goodwin model. The coupling strength gi of all the N neurons

satisfies a normal distribution with mean valueSgT and

deviation g.

Results

T-cycle Entrainment of an SCN Network without
Dispersion of Coupling Strengths

To determine the effects of p and light intensity, Kf , on the

entrainment of VL and DM to T cycles, we have numerically

simulated the Goodwin model with no dispersion of coupling

strengths, i.e., g~0. Figure 1 shows the mean field time series of

VL and DM oscillations in the 22-h light-dark cycle. Similar to

previous observations [13], we find that the time series show quasi-

periodic behavior with low light intensity. In (A), the behavior of

VL follows the 22-h cycle and sustains a stable phase relationship

to it, while the behavior of DM loses its phase relationship to the

cycle and runs with a period close to the intrinsic period of the

network. This dissociation mimics the forced desynchronization of

motor activity rhythms in rats under such a T cycle, as noted

previously [7,27]. When p is increased, both VL and DM can be

entrained, as in (B). Here the peak of the mean field time series of

VL appears around the onset of darkness, whereas that of the DM

is phase delayed. This change also can be implemented by Kf . If

Kf is reduced, neither VL nor DM entrain to the 22-h cycle. If Kf

is increased, both VL and DM can be entrained, as in (B). In sum,

both the number of neurons receiving light and the light intensity

are important factors for entrainment of the entire SCN network

to the T-cycle.

To understand the influence of the parameters p and Kf on

entrainment, we have calculated the phase diagram of the period

of the mean fields of VL and DM in the p-Kf plane under short

and long T cycles, i.e., of 22 h and 26 h, withg~0 (Figure 2). (A)

and (C) show that the behavior of VL follows the T cycle for all

values of p, provided that the light intensity is greater than a

critical value, such as Kf w0:02. When Kf v0:02, the period of

VL may not be entrained to the T cycle, depending on p; for

example, in Fig. 2A, the period of VL can be 23 h or 24 h. For

DM to follow the cycle, however, p also must be larger than some

threshold; that is, there must be a sufficient number of light-

receiving neurons in VL in order to drive the neurons in DM. For

a given level of Kf , increasing p may allow the entire network to

entrain to the driving T cycle. Surprisingly, when p is decreased

under the 26-h T cycle (D), there is a threshold of p at which the

period of DM suddenly jumps to a value of 20.8 h to form a

locking ratio of 4:5 with the 26-h T cycle; with further decreased p,

the period monotonically increases to reach a value of 24 h at

p~0.

Figure 1. Mean field oscillations of VL and DM during a 22-h T
cycle. (A) VL follows the T cycle, whereas DM free runs for the
parameters p~0:1 and Kf ~0:05. (B) Both VL and DM follow the T cycle
for the parameters p~0:4 and Kf ~0:05. The dispersion of the coupling
strengths, g, is set to zero in both (A) and (B). The grey bar indicates the
dark phase, and the white bar the light phase, of the T cycle.
doi:10.1371/journal.pone.0036900.g001

Network Model of Suprachiasmatic Nucleus
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A comparison of (B) and (D) shows that the threshold of p for

entrainment of DM to the 26 h T cycle is greater than that for the

22 h cycle, suggesting that desynchronization between VL and

DM might be more likely under long than under short T cycles.

Experimentally, however, this appears not to be the case [28,29],

prompting us to consider the influence of heterogeneous coupling

strengths on the behavior of the SCN network.

T-cycle Entrainment of an SCN Network with Dispersion
of Coupling Strengths

Figure 3 shows the phase diagram of the period of the mean

fields of VL and DM in the p-Kf plane using two values for g.

Although qualitatively similar to the diagrams in Figure 2, there

are quantitative differences when network coupling strengths are

dispersed. In the case of the 22-h T cycle, entrainment is only

modestly affected; in contrast, in the case of the 26-h T cycle,

increased coupling dispersion significantly reduces the critical

value of p for DM entrainment, suggesting that the network can be

entrained to the long T cycle with a relatively lower Kf .

For weak Kf and different values of g, we find that the critical p
(pc) for the 22-h and 26-h T cycles reaches approximately the

values of 0.28 and 0.20, respectively. Figure 4 represents the

variation in pc for different values of Kf and g. In the case of the

22-h T cycle (A), there is little variation in pc for different Kf , e.g.,

pc is between 0.14 and 0.24 for a Kf ~0:04. However, pc does

change significantly in the case of the 26-h T-cycle (B). Thus,

dispersion of coupling strengths affects entrainment in an

asymmetric way, with an influence that is larger for the long than

for the short T cycle.

Instead of randomly assigning coupling values to the network,

we also studied the network by selectively assigning coupling

values. In two separate trials, we assigned the strongest coupling

values to either VL or DM. The phase diagram of the period of

the mean fields of VL and DM in the p–Kf plane was similar to

that previously reported.

We also simulated the network with dispersed oscillator periods,

rather than dispersed coupling strengths, by selecting different

values for the standard deviation of period (s) for each individual

oscillator, such that the period distribution has a mean of 24 h

with variability. Without dispersed coupling, we do not observe

DM entrainment to the long T cycle at any p until s is increased to

a value greater than 5 h. Since such a large non-identical intrinsic

period is not realistic, the dispersion of coupling strengths is likely a

crucial factor affecting the entrainment of the network to different

T cycles.

Importantly, dispersion of coupling influences the mean field

amplitude (Figure 5). The amplitude of VL as a function of p
changes modestly as the dispersion g is increased in the 22-h as

well as the 26-h T cycle (A and C). On the other hand, for DM in

the 22-h T cycle (B), amplitude decreases as g increases. In the 26-

Figure 2. Period of the mean fields of VL and DM in the p2Kf plane. The case for the 22-h T cycle is shown for VL (A) and DM (B), and the
case for the 26-h T cycle is shown for VL (C) and DM (D). The coupling strengths are identical for all the oscillators (i.e., g= 0). Entrainment of the sub-
network to the 22-h cycle is represented by the yellow region, and entrainment of the sub-network to the 26-h cycle is represented by the blue
region.
doi:10.1371/journal.pone.0036900.g002

Network Model of Suprachiasmatic Nucleus
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h T cycle (D), DM amplitude as a function of p changes

dramatically, with relatively diminished amplitude as p is

increased; dispersion g counteracts this effect. The enhancement

of DM amplitude by increased g in the 26-h cycle could be due to

enhanced phase synchronization of the oscillators in the network,

increased amplitude of the individual oscillators, or both. To begin

to distinguish among these possibilities, we studied the effect of

dispersed coupling on the order parameter, a measure that

represents phase synchronization of the network.

Effect of Coupling Dispersion on the Order Parameter of
the Network

Order parameter characterizes the synchronization property of

a network [30,31], and it is defined here by estimating the phases

of the oscillators in VL and DM (see Methods). The order

parameter will be unity if all oscillators in the network are perfectly

synchronized and zero if they are completely uncorrelated. When

their behavior is between these two extremes, the order parameter

will be in (0, 1), i.e., representing a phase difference between VL

and DM or desynchronization of individual oscillators within VL

and/or DM.

We have studied the influence of g on the order parameter.

Figure 6 shows the dependence of order parameter R on the

parameters p and Kf in the p{Kf plane. To reveal the effect of

coupling dispersion, we have considered two cases, one with

g~0:15 and the other with g~0:0. Under the 22-h T cycle,

coupling dispersion reduces R for larger p and Kf values; whereas

under the 26-h T cycle, coupling dispersion enhancesR. As p and

Kf increase from (0,0), the relationship between VL and DM

changes; comparison of Figure 6 with Figures 2 and 3 visualizes

the regions where Rv1, i.e., either when VL and DM express

different periods or when VL and DM express the same period but

with a large phase difference between them. Thus, for the 22-h

cycle, although higher p and Kf values enhance both VL and DM

entrainment to the cycle, the reduction of R with dispersed

coupling suggests that individual oscillators are not fully synchro-

nized within the network, with a greater vulnerability to

perturbations of light intensity. For the 26-h cycle, coupling

dispersion synchronizes network oscillation for p.0.6; the gradual

Figure 3. Effect of coupling dispersion on the period of the mean fields of VL and DM in the p2Kf plane. The case for the 22-h T cycle
is shown for VL (A) and DM (B) with g~0:05 and for VL (C) and DM (D) with g~0:15. The corresponding case for the 26-h T cycle is represented in (E)
- (H).
doi:10.1371/journal.pone.0036900.g003

Figure 4. Effect of coupling dispersion on the critical p. Shown
are the cases for the 22-h (A) and 26-h (B) T cycles.
doi:10.1371/journal.pone.0036900.g004

Network Model of Suprachiasmatic Nucleus
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increase of DM mean field amplitude as p increases further

(Figure 5D) is thus attributable to increased individual oscillator

amplitude.

These considerations imply that VL and DM desynchronize

more readily under the 22-h than under the 26-h T cycle and that

dispersion of coupling strengths improves network robustness

preferentially under the 26-h cycle.

Effect of Coupling Dispersion on the Network’s Phase
Response Curve to a Light Pulse

The network’s capacity to generate phase advances or delays

can be quantified as a phase-response curve (PRC), measured by

plotting the phase shifts that occur in the rhythm when discrete

light pulses are applied at different phase points across the

circadian cycle [24,32,33,34]. Figure 7 represents the family of

PRC’s obtained to a 1-h light pulse of increasing intensities,

showing that the phase response region (i.e., the area under the

delay and advance zones) increases in magnitude with increasing

Kf . Notably, as the value of g increases, the area under the delay

zone increases relatively more than that under the advance zone,

as calculated in Table 1, where S represents the ratio of the area

under the delay zone to the area under the advance zone.

Advances should correspond to the capacity of the network to

follow a T cycle less than 24 h, while delays should correspond to

its capacity to follow a T cycle greater than 24 h [35].

Discussion

Here we analyze the photic desynchronization of two subgroups

of circadian oscillators in a network model of the suprachiasmatic

nucleus. As also demonstrated in experiments with rats exposed to

a short T cycle of low light intensity [7,36], a subgroup of

oscillators receiving photic input (VL) can entrain to the external

cycle while the other, coupled subgroup (DM) expresses an

unentrained period greater than 24 h.

Granada et al. [37] have modeled this forced desynchroni-

zation of rat activity rhythms as a single oscillator with

oscillatory interactions (modulation and superposition) between

the external cycle and the internal clock, while Schwartz et al.

[38] have modeled entrainment to the T cycle by two coupled

oscillators forced by a Zeitgeber. Casiraghi et al. [39] have used

a two oscillator model to analyze a chronic jet lag paradigm

that leads to forced desynchrony, and they observed an

asymmetry in its behavior similar to our findings reported

Figure 5. Effect of coupling dispersion on the amplitude of the mean fields of VL and DM. The case for the 22-h T cycle is shown for VL (A)
and DM (B), and the case for the 26-h T cycle is shown for VL (C) and DM (D).
doi:10.1371/journal.pone.0036900.g005

Network Model of Suprachiasmatic Nucleus
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here. We have taken the Goodwin model and extended it to

include p, the proportion of all SCN cellular oscillators that

receive photic input, and g, the dispersion of coupling strengths.

We find, first, that network desynchronization (with an

entrained VL but an unentrained DM) depends on light

intensity and the value of p. Relatively higher light intensities

protect the network from desynchronization, as reported

experimentally [36]. Experiments estimate that the value of p

for the rodent SCN ranges from 20% to 33%, based on

molecular, electrophysiological, and computational studies

[40,41]. Comparing these results to our simulations in

Figure 4, we find that g~0:15 is a good parameter value to

Figure 6. Effect of coupling dispersion on the order parameter of the network. The case for the 22-h T cycle is shown with coupling
dispersion g~0:0 (A) and g~0:15 (B), and the case for the 26-h T cycle is shown with coupling dispersion g~0:0 (C) and g~0:15 (D).
doi:10.1371/journal.pone.0036900.g006

Figure 7. Effect of coupling dispersion on the phase response curve (PRC) of the network. Shown are PRCs with coupling dispersions
g~0:0 (A), g~0:05 (B), and g~0:15 (C). Although the network shows relatively larger phase advances and delays with increased coupling dispersion,
the area under the phase delay zones is greater than that under the advance zones. The PRCs were similar for all the values of p§pc .
doi:10.1371/journal.pone.0036900.g007

Network Model of Suprachiasmatic Nucleus
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fit the experiments. At this value, there is a critical value of p
for network entrainment to short (22 h) and long (26 h) T cycles

of 0.28 and 0.20, respectively, and the critical value appears

fairly insensitive to Kf . We predict that the rat SCN is likely to

have this very large heterogeneity in coupling strengths, given

that the critical p best matches the experimental estimate for the

larger values of g.

Second, we find that the inclusion of dispersed coupling

strengths affects network entrainment in a preferential manner,

such that increased g significantly reduces the critical value of p for

DM entrainment to the 26-h T cycle. A consequence of this g
influence is that network robustness is superior under the 26-h

cycle while desynchronization is favored under the 22-h cycle. In

fact, such an asymmetry has been observed experimentally, with

no obvious desynchronization of rat motor activity rhythms during

exposure to long T cycles [28].

The basis for this asymmetry is unclear. Coupling dispersion

appears to generally increase the effect of light on the system, and

since the delay zone of the PRC is greater than the advance zone,

a preferential effect on entrainment to the 26-h T cycle might be

expected. But such an explanation does not account for the u-

shaped, rather than monotonic, pc function for the 22-h T cycle.

Moreover, differences in entrainment to short and long T cycles

may not be a general feature of the SCN; it may not be true for

other species [42], and the possible effects of locomotor activity

itself on SCN network behavior (e.g., in or out of a running wheel,

diurnal or nocturnal activity pattern) needs further investigation.

Our findings may provide new elements to the theory of

coupled oscillators, especially with regard to chimera states in

which one group of the system is synchronized and the other is

desynchronized [43,44,45,46,47]; in these studies, the oscillators in

the two groups are identical and the chimera states are generally

induced by the initial conditions. However, in our case, the

discovery that the subgroup VL may be entrained to the T cycle

while the group DM remains free-running is similar to the chimera

state, but this phenomenon does not depend on the initial

conditions. Thus, a novel oscillator theory is needed to explain this

robustness to initial conditions and should be a topic for further

studies.

Heterogeneous intercellular coupling within the SCN is likely

central to the generation of complex behavioral patterns. Non-

uniform SCN network architecture also has been implicated in the

phase-‘‘splitting’’ of locomotor activity cycles seen in hamsters

maintained in constant environmental light [48]. In the future, we

hope to consider how topology influences entrainment, in contrast

to the mean field used here.

Methods

We represent each mammalian cell of the network as a

Goodwin oscillator. The Goodwin model is a widely used

mathematical model to represent the behavior of the gene

regulatory network in single cellular circadian oscillators [13].

The model represents the transcription-translation behavior of the

single cell by using three variables that include a clock gene

mRNA (x), a clock protein (y), and a transcriptional inhibitor (z).

As our network model, we consider the mean field-modified

Goodwin model proposed by [13] with a global coupling strength.

The modified Goodwin model with N oscillators is represented as

follows:

dxi

dt
~s a1

kn
1

kn
1zzn

i

{a2
xi

k2zxi

zac
giF

kczgiF

� �
zLi

dyi

dt
~s k3xi{a4

yi

k4zyi

� �

dzi

dt
~s k5yi{a6

zi

k6zzi

� �

dVi

dt
~s k7xi{a8

Vi

k8zVi

� �

F~
1

N

XN

i~1

Vi

i~1,2,3,:::,N

ð1Þ

Where the state variables xi, yi, zi represent the concentrations,

respectively, of a clock gene mRNA, a clock protein and a

transcriptional inhibitor in each clock cell i. Neurotransmitter Vi is

induced by the mRNA xi. The intercellular coupling is

implemented through the neurotransmitter F which acts as a

mean field of Vi, the coupling strength gi represents the sensitivity

of the individual oscillator to the neurotransmitter and is required

to be a positive value here, and Li is the light term. We considered

the parameters as in [13]:

(a1~0:7nM=h, k1~1:0nM, n~4:0, a2~0:35nM=h,

k2~1:0nM, k3~0:7=h,

a4~0:35nM=h, k4~1:0nM, k5~0:7=h, a6~0:35nM=h,

k6~1:0nM, k7~0:35=h,

a8~1:0nM=h, k8~1:0nM, ac~0:4nM=h, kc~1nM):

The coupling strength gi is different for different oscillators and

assumes a value from a normal distribution with a mean 0.5 and a

standard deviation g. When g=0, the network is heterogeneous

with distribution of coupling.

In order to understand the dissociation behavior observed under

a T cycle outside the range of entrainment, we modified the

Goodwin model to include the fact that light acts directly on only a

portion of the neurons in the network. Furthermore, the light term

Li that is applied to a fraction pN neurons with p being less than

one and positive, is considered to be located in the VL subdivision.

Mathematically, the effect of light is represented as:

Li~
Kf , if iƒpN & mod t,TLð ÞƒTL

2

0, else

(

Where TL is the period of the light-dark cycle and Kf is the light

intensity.

As pointed out in our previous paper [22], the dispersion of

coupling strengths influences the free-running period of the SCN.

Table 1. Effect of coupling dispersion on the ratio of the area
of the delay zone to the advance zone.

g Kf 0.01 0.02 0.03 0.04

0.00 0.69 0.70 0.71 0.73

0.05 0.82 0.85 0.89 0.92

0.15 1.80 1.40 1.40 1.40

The ratio increases with increasing coupling dispersion.
doi:10.1371/journal.pone.0036900.t001

Network Model of Suprachiasmatic Nucleus
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In order to compare the influence of different coupling dispersions

on entrainment of the SCN network to T cycles, it is necessary to

make the free-running period the same for different dispersions.

To set the free-running period to 24 h, we multiply a rescaling

factor s to the left hand of equation (1) except for the light term

and coupling term, i.e., multiply the same s to the parameters

a1, a2, k3, a4, k5, a6, k7, a8, ac for the deviation g. For example, s is

equal to 1.26 for g~0:0, 1.22 for g~0:05, 1.16 for g~0:1, and

1.13 for g~0:15.

For simplicity, we refer to the network that is comprised of pN

neurons as VL and the network comprised of the remaining

(1{p)N neurons as DM. To understand the behavior of the VL

and DM subdivisions, we define the mean field of VL and DM

respectively as

FVL~
1

pN

XpN

i~1

Vi,

FDM~
1

N{pN

XN

i~1zpN

Vi

In addition, to understand the synchronization properties

between VL and DM, we have estimated the phase of the

individual neurons by using the Hilbert transform [49,50]. From

the estimated phase of VL and DM, we introduce an order

parameter as:

R~
1

2
SDeihVLzeihDM DT

where h is the estimated phase from the mean field output time

series of VL or DM and ST denotes average over time. The

average of
dh

dt
is defined as the angular frequency and the period is

obtained by T~
2p

h
: . To determine entrainment of VL or DM to

the TL, we estimated the period of VL or DM and estimated its

absolute difference from TL. If the absolute difference in period is

less than 0.25 h, the corresponding subgroup (VL or DM) is

considered to be entrained. To numerically calculate the

equations, we use the fourth order Runga-Kutta method with

time step of 0.1 h. Initial 20000 time steps are neglected to avoid

the effect of transients. The number of oscillators isN~100, and

the simulations are performed five times, with initial conditions

selected randomly from a uniform distribution in the range (0–1)

for x, y, and z. We have also calculated the case of N~400 and

time step of 0.01 h. Two additional simulations are performed

with selective assignment of coupling in which larger values are

assigned to either VL or DM without changing the intrinsic

distribution of gi.

To obtain the phase-response curve, we applied 1-h light pulses

at different phases to the model, with intensity Kf and with

different values for p§pc. The corresponding advance or delay is

detected from the output of the network. Advance corresponds to

the capacity of the SCN network to follow a light-dark cycle with

period less than the free running period, and delay is the capacity

of the network to follow a light-dark cycle with period greater than

the free running period [35].
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