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Abstract

Accurate diagnosis in suspected ischaemic stroke can be difficult. We explored the urinary proteome in patients with stroke
(n = 69), compared to controls (n = 33), and developed a biomarker model for the diagnosis of stroke. We performed
capillary electrophoresis online coupled to micro-time-of-flight mass spectrometry. Potentially disease-specific peptides
were identified and a classifier based on these was generated using support vector machine-based software. Candidate
biomarkers were sequenced by liquid chromatography-tandem mass spectrometry. We developed two biomarker-based
classifiers, employing 14 biomarkers (nominal p-value ,0.004) or 35 biomarkers (nominal p-value ,0.01). When tested on a
blinded test set of 47 independent samples, the classification factor was significantly different between groups; for the
35 biomarker model, median value of the classifier was 0.49 (20.30 to 1.25) in cases compared to 21.04 (IQR 21.86 to
20.09) in controls, p,0.001. The 35 biomarker classifier gave sensitivity of 56%, specificity was 93% and the AUC on ROC
analysis was 0.86. This study supports the potential for urinary proteomic biomarker models to assist with the diagnosis of
acute stroke in those with mild symptoms. We now plan to refine further and explore the clinical utility of such a test in
large prospective clinical trials.
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Introduction

Prompt and accurate diagnosis is crucial for the effective

management of ischaemic stroke and transient ischaemic attack

(TIA). Both are clinical diagnoses, supported by imaging findings.

Even when patients are assessed by a specialist in cerebrovascular

medicine, as many as one fifth of patients initially thought to have

a stroke [1], and one half of patients initially felt to have had a TIA

[2], eventually receive an alternate diagnosis.

Clinical assessment tools can facilitate accurate diagnosis and are

increasingly used in the routine evaluation of patients with suspected

stroke [2,3,4], yielding diagnostic accuracy in the range of 80–90%.

The use of brain imaging, particularly magnetic resonance imaging

(MRI), can provide further certainty and in the setting of stroke is

required to distinguish ischaemia from haemorrhage. In one study,

where MRI with diffusion weighted imaging (DW-MRI) was

directly compared to CT [5], sensitivity of MRI for the detection

of acute cerebral ischaemia was < 83%. Although this is vastly

superior to non-contrast CT in the detection of acute ischaemia

(sensitivity 16%), the false negative rate of MRI approximates to

17%, and it cannot be performed in all patients [5].

The ability rapidly to confirm the presence of stroke, particular

minor ischaemic stroke or TIA and in the significant number of

patients in whom there is early diagnostic doubt would be

advantageous [6,7]. One potential approach is the use of

proteomics, which involves the simultaneous analysis of thousands

of proteins and peptides. Changes in the expression of several

proteins have been described in brain extracellular fluid and plasma

of those with acute stroke [8,9]. Recently, urinary proteomic

biomarker models have been developed and showed potential for

accurate identification of those with, or at high risk of, cardiovas-

cular disorders such as ischaemic heart disease [10], diabetes,

diabetic nephropathy [11] and pre-eclampsia [12]. We hypothesised

that a urinary proteomic biomarker model could be developed to

reliably identify those with minor ischaemic stroke or TIA (those

most likely to have inconclusive brain imaging) and that biomarkers

would be discovered which were associated with stroke severity. We

developed such a biomarker model in a cohort of patients with minor

ischaemic stroke and a control population with excess cardiovascu-

lar risk but no history of recent stroke or TIA.

Results

Demographic Variables
Urine samples were available from 65 cases and 41 controls. All

samples available were included in the proteomics study. There

were differences between the case and control groups in baseline

characteristics (table 1). Cases had a lower frequency of

hypertension and use of alpha-blockers and calcium channel

blockers. However, all except one control and nine cases were

taking at least one anti-hypertensive drug. Of cases, 20 (31.3%)

suffered TIA, the remainder had suffered stroke and 40 (61.5%)

had findings compatible with cerebrovascular disease on brain

imaging although acute cerebral infarction was only demonstrated

in 10 (16.1%) cases. CT was the most commonly performed
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imaging modality. Partial anterior circulation stroke was the

commonest subtype.

Biomarkers for Presence of Stroke or TIA
All samples were analyzed with CE-MS, and processed to result

in an individual list of peptides and proteins present in each

sample, as well as normalized ion counts as measure for relative

abundance. To identify potential biomarkers for stroke, 26 control

samples and 33 cases were randomly selected. This left a second,

blinded test set, consisting of the remaining 47 samples. These

were analyzed under identical conditions. This approach has been

proven superior in the past to avoid bias introduced due to analysis

of training- and test-set under slightly different conditions.

The compiled proteomics data of the 26 control and 33 case

samples was used to identify potential biomarkers and also to

establish a classifier (the biomarker model). These data are shown

in figure 1. Only two biomarkers were identified that also passed

rigorous adjustment for multiple testing (table 2). Since

multidimensional classifier models based on only 2 biomarkers

perform poorly, we selected additional candidates. Two classifiers

based on either 14 potential biomarkers (all peptides in the dataset

with a nominal p-value ,0.004) or 35 potential biomarkers (all

peptides in the dataset with a nominal p-value ,0.01) were

established. The distribution of these 35 potential biomarkers is

shown in figure 2.

When tested on the blinded test set of 47 samples (32 cases,

15 controls), the proteomic signal was significantly different

between groups; in the 14 biomarker model, median value of

the classifier was 0.96 (21.04 to 3.3) in cases compared to 21.06

(IQR 23.18 to 0.35) in controls, p = 0.006; in the 35 biomarker

model, median value of the classifier was 0.49 (20.30 to 1.25) in

cases compared to 21.04 (IQR 21.86 to 20.09) in controls,

p,0.001. The 14 biomarker model had sensitivity of 75% and

specificity of 73% for identification of stroke and gave an area

under the curve (AUC) of 0.75 on ROC analysis. The 35

biomarker model performed better; sensitivity was 56%, specificity

was 93% and the AUC on ROC analysis was 0.86 (figure 3).

Peptide Sequences of Identified Biomarkers
We were able to sequence and identify several of the peptides

included in the biomarker models (on-line appendix). These

included FXYD domain-containing ion transport regulator 4,

inter-alpha-trypsin inhibitor heavy chain H4, uromodulin, poly-

meric-immunoglobulin receptor and collagen fragments.

Biomarkers Associated with Severity of Stroke
To identify potential biomarkers associated with severity of

stroke, all proteomic data from cases were included in the analysis.

A total of 4453 urinary proteins and peptides detected in the

samples were investigated for their correlation with the NIHSS

score. Several urinary peptides correlated with the NIHSS score,

although only at a moderately high level. Since only the data from

patients with stroke were examined, the correlated peptides

showed essentially no overlap with the potential diagnostic

peptides that differentiate between stroke and control; only one

peptide was identical in both sets. In an attempt to develop a

classifier that may enable classification of the patients with respect

to disease severity, several of the potential biomarkers were

combined using linear combination of the normalized amplitude

of the single biomarkers. Such linear combination generally does

not result in ‘‘overfitting’’, as it is one-dimensional only. When

subsequently testing the classifier based on the 34 potential

biomarkers that showed the highest correlation, it was strongly

correlated with NIHSS score (r = 0.74, 95% CI 0.60 to 0.84,

p = ,0.0001) (figure 4).

Discussion

We explored the urinary proteome in patients with acute stroke

or TIA and in a group of controls with elevated cardiovascular

risk. We were able to identify a panel of potential urinary peptide

biomarkers, for two of these we could establish significant

differences in a small cohort of patients with acute stroke or TIA

in comparison to a control group. When combining several of

these potential biomarkers to an SVM-based classifier / biomarker

model, this classifier was associated with stroke with very high

significance, and enabled separating of a second blinded cohort

with good accuracy; an AUC of 0.86. These results indicate that

urinary biomarkers enable the detection of stroke in the

population at risk. As already demonstrated previously [10,13],

the data also clearly indicate that classifiers based on a larger

number of biomarkers enable higher accurate classification, are

significantly superior to single or only few biomarker-based

classifiers. This is in part owed to biological variability; while the

urinary peptides can generally be analyzed with high accuracy,

their level is to a substantial degree subject to biological variability,

which can be counteracted by combining an array of biomarker

peptides [14]. Further, we were able to identify a number of

peptides which correlated with stroke severity. Importantly, this

Table 1. Baseline Characteristics.

Variable Cases Controls P Value

Age, years 70.1 (10.6) 66.5 (11.2) 0.100

Female Sex 31 (47.7%) 17 (40.5%) 0.552

Stroke 44 (68.8%) – –

TIA 20 (31.3%) – –

Total Anterior Circulation Stroke 6 (9.4%) – –

Partial Anterior Circulation Stroke 30 (46.9%) – –

Lacunar Stroke 18 (28.1%) – –

Posterior Circulation
Stroke

1 (1.6%) – –

NIHSS Score (median, IQR) 2 (2–4) – –

Smoker 20 (30.8%) 6 (14.3%) 0.066

Ischaemic Heart Disease 20 (30.8%) 11 (26.2%) 0.667

Previous CVA 19 (29.2%) 0 ,0.001

PVD 2 (3.1%) 3 (7.1%) 0.379

Diabetes Mellitus 4 (6.2%) 8 (19.0%) 0.058

Hyperlipidaemia 14 (21.5%) 8 (19.0%) 0.811

Hypertension 34 (52.3%) 36 (85.7%) ,0.001

Atrial Fibrillation 6 (9.2%) 2 (4.8%) 0.477

Dipyridamole Therapy 13.8 (9%) 1 (2.4%) 0.085

ACE I or ARB Therapy 36 (55.4%) 22 (52.4%) 1

Diuretic Therapy 24 (36.9%) 22 (52.4%) 0.161

Beta-blocker Therapy 23 (35.4%) 20 (47.6%) 0.231

CCB Therapy 23 (33.8%) 23 (54.8%) 0.045

Alpha-blocker Therapy 2 (3.1%) 8 (19.0%) 0.013

Any Antihypertensive Therapy 56 (86%) 41 (98%) 0.085

Statin Therapy 50 (76.9%) 31 (73.8%) 1

For continuous variables, values given are mean (SD) unless stated.
doi:10.1371/journal.pone.0035879.t001
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was achieved in a cohort of patients with minor stroke and TIA.

When combing these biomarker to a linear classifier, very good

correlation with the NIHSS score could be obtained. Thus, as well

as assisting with diagnosis, our data suggest proteomic changes

related to severity of stroke which if confirmed could provide

mechanistic insights and help with risk stratification after

ischaemic stroke.

The diagnosis of stroke and TIA can be difficult. The use of

clinical scoring systems and brain imaging can enhance sensitivity

and diagnostic accuracy. CT imaging performs poorly in this

setting with reported sensitivity of 16% early after ischaemic stroke

[5] and we found similar in our study. Crucially, even with MRI

imaging, sensitivity does not reach 100%; even with use of

diffusion weighted MRI imaging meaning novel means to facilitate

diagnosis would be a tremendous advantage. Key predictors of

false-negative diffusion weighted imaging include a brainstem

location of stroke and lower NIHSS score [6]. In a further study,

25% of patients with mild stroke or stroke-like deficits had a

negative DWI study [7]. Thus, while MRI is the imaging modality

of choice, it has limitations; sensitivity is not 100%, particularly

after mild stroke or TIA and around 10% of patients are unable to

undergo MRI because of contraindications including electronic

implants, medical instability, agitation and claustrophobia. Fur-

ther, MRI is not always available and in many countries non-

contrast CT remains the initial imaging modality of choice. In our

study, mean NIHSS score was 3.1 suggesting our biomarker model

may enhance diagnostic certainty in exactly the group where even

diffusion weighted MRI is not definitive. This is the first study to

show that models based on the urinary proteomic signal have

potential to assist with the diagnosis of stroke. Although sensitivity

of our model was 54%, specificity was high and further studies will

aim to improve model performance.

We have developed a biomarker model using urine samples.

This would carry several advantages over a plasma based model.

First, the urinary proteome is more stable that than in plasma.

This raises the possibility of community based sampling, in cases of

suspected mild stroke in rural environments which is less feasible

for plasma proteome analysis. We found the biomarker model with

35 included biomarkers performed best, which is in line with

previous observations where classifiers based on a larger number

of biomarkers result in increased accuracy [10].

We were able to sequence a number of the peptides in the

biomarker models, several of which may have roles in the

pathophysiology of acute ischaemic stroke. For example, these

included one which has recently been shown by other groups to be

under-expressed in acute ischaemic stroke (inter-alpha-trypsin

inhibitor heavy chain H4) [15]. FXYD-4 (CHIF) is a regulator of

Na-K-ATPase [16]. Dysfunction of such ion pumps is a key

feature of the cytotoxic oedema which occurs in acute ischaemic

stroke and expression of FXYD-4 is altered in renal ischaemic

Figure 1. Urinary polypeptide signatures in cases and controls. Normalized molecular weight (800–20 000 Da) in logarithmic scale is plotted
against normalized migration time (18–45 minutes). The mean signal intensity of the polypeptide peak is given in 3-dimensional depiction. n = 26
controls and 33 cases.
doi:10.1371/journal.pone.0035879.g001

Figure 2. Polypeptide signatures of the 35 biomarker model in cases and controls. Normalized molecular weight (800–20 000 Da) in
logarithmic scale is plotted against normalized migration time (18–45 minutes). The mean signal intensity of the polypeptide peak is given in 3-
dimensional depiction. n = 26 controls and 33 cases.
doi:10.1371/journal.pone.0035879.g002
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injury [17]. Polymeric-immunoglobulin receptor is known to be

expressed in neuronal tissue and may be implicated in protein

transcytosis across the blood brain barrier [18]. Blood brain

barrier dysfunction is also a pathological feature of acute ischaemic

stroke. Phosphatases have been implicated in the pathogenesis of

other brain disorders [19] and gamma-glutamyl transpeptidase is

present on the apical surface of endothelial cells at the blood brain

barrier and expression increases in animal models of stroke [20].

An angiotensinogen peptide also differed between controls and

cases. There are several possible explanations for this. The renin –

angiotensin system is involved both in the pathogenesis of

hypertension, is modulated by numerous anti-hypertensive agents

but is also a critical mediator of ischaemic injury in acute stroke

[21]. Given the use of most anti-hypertensive drugs was similar

and hypertension was common in both groups, this difference may

well reflect the ischaemic injury in the case group. Uromodulin

levels were slightly lower in cases. There are recent reports that

uromodulin may have a role in blood pressure regulation and uric

acid metabolism [22], both of which link with outcome after

stroke. Further, uromodulin may induce inflammatory cytokine

production [23]. Several collagen fragments were predictive of

stroke. Whilst the exact biological function of collagen fragments is

unclear in acute stroke, it is unsurprising that collagen be affected

given its abundance in extracellular matrix of blood vessel

adventitia. Given that some collagen fragments were increased

in cases and others were reduced, it is possible that these changes

Table 2. Proteins included in biomarker models. Mass is measure in Daltons.

Mass
CE
time Protein Name Protein Sequence P value

896.5 22.5 Gamma-glutamyltranspeptidase 2 VAVPGEIRG ,0.001 *

1164.5 26.1 FXYD domain-containing ion transport regulator 4 DPFANKDDPF 0.005

1170.6 26.4 Beta-2-microglobulin SDLSFSKDWS 0.007

1170.6 21.2 Hemoglobin subunit alpha VLSPADKTNVK 0.009

1194.6 29.2 Collagen alpha-1(I) chain GDRGEpGPpGPAG ,0.001 *

1210.4 36.5 Protein Phosphatase 1 regulatory subunit 3F isoform 1 GGGEGSTDGGmSPS 0.009

1240.6 27.1 Inter-alpha-trypsin inhibitor heavy chain H4 FSVMPGLKMTM 0.007

1532.6 26.4 Collagen alpha-1(II) chain RDGEPGTPGNpGPpGP 0.003 *

1541.6 24.5 Fibrinogen alpha chain DEAGSEADHEGTHST ,0.001 *

1576.6 26.4 FRAS1-related extracellular matrix protein 3 RPSFMATmMmEVD 0.005

1640.6 23.2 – – 0.004

1640.7 31.0 Collagen alpha-3(IX) chain AAGAGLDGpEGDQGpQGp ,0.001 *

1773.82 34.6 Isoform 1 of Collagen alpha-1(IV) chain GppGPPGppGPPGEKGQMG ,0.001 *

1786.6 38.3 – – 0.003 *

1794.7 23.3 – – ,0.001

1911.1 25.0 Uromodulin SGSVIDQSRVLNLGPITR 0.005 *

1912.9 32.7 Collagen alpha-1 (I) chain NGApGNDGAKGDAGApGApGSQ 0.004 *

1925.8 23.2 Isoform 1 of Fibrinogen alpha chain PGSPRPGSTGTWNPGSSER 0.003 *

1949.9 21.7 Collagen alpha-1 (I) chain GDDGEAGKpGRpGERGPPGp 0.002

1952.9 32.2 Collagen alpha-2(I) chain GEKGpSGEAGTAGPpGTpGPQG 0.005

1956.1 33.0 Ceruloplasmin (ferroxidase) NGRQKDVDKEFYLFPT 0.005

2007.9 22.1 Collagen alpha-1 (III) chain DGESGRpGRpGERGLpGPpG 0.005

2168.6 35.1 – – 0.008

2548.3 35.2 AGT Angiotensinogen FAVYDQSATALHFLGRVANPLSTA 0.009 *

2607.2 34.4 Collagen alpha-1(XXVII) chain GSKGQpGDSGEMGFpGmAGLFGPKGPP 0.001

2682.1 22.5 – – 0.009

2791.3 29.5 – – 0.009

3157.1 34.7 – – 0.002 *

3223.4 39.1 – – 0.007

3292.5 39.4 – – ,0.001 *

3359.6 31.9 Collagen alpha-1 (I) chain PpGADGQPGAKGEpGDAGAKGDAGPpGPAGPAGPpGPIG 0.008

3583.6 41.5 – – 0.002 *

3681.5 23.5 – – 0.006

4218.0 26.1 Polymeric-immunoglobulin receptor EEKAVADTRDQADGSRASVDSGSSEEQGGSSRALVSTLVPLG 0.006

4263.0 23.5 – – 0.010

CE-time = capillary electrophoresis migration time. All proteins were included in the M35p001 model. * = included in the M14 sig model. The 2 biomarkers that passed
adjustment for multiple testing are labeled in bold.
doi:10.1371/journal.pone.0035879.t002
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reflect levels of an as yet unidentified protease. Our biomarker

models are therefore based on peptides with clear biologic

plausibility and provide potential mechanistic insights worthy of

further evaluation.

There are weaknesses to consider. This study is not a

comparison of the urinary proteome between those presenting

with suspected stroke who have stroke mimic with those who have

confirmed stroke. However, rather than a healthy control group,

our control group was recruited from cardiovascular risk factor

clinics and most had hypertension and a substantial number had

established ischaemic heart disease. The ability of the biomarker

model to distinguish those with stroke from non-stroke patients at

high cardiovascular risk suggests that it may perform well when

tested in those with stroke mimic. Participants were originally

recruited to a study of aspirin resistance which makes generaliza-

tion of our results an important consideration. However, since

inclusion and exclusion criteria were wide, with the exception of

the requirement for pre-existing aspirin use, we believe our results

are generalizable.

There were some differences between the case and control

groups. Cases had a higher incidence of previous stroke, and lower

incidence of hypertension and lower usage of calcium channel

blockers. It is possible, but unlikely, that these differences will have

confounded results. A substantial minority of our cases had

suffered TIA; albeit a TIA deemed severe enough to warrant

admission to hospital. The proteomic signal in those with NIHSS

of 0 was similar to that in controls suggesting that our model may

perform best in those with minor stroke (where it would still be

clinically useful) rather than in those with suspected TIA. We

found a correlation between 34 biomarkers and NIHSS score but

this was a mild cohort of stroke patients and this finding needs to

be replicated in a wider population of stroke patients.

Our study was small, but it enabled identification of biomarkers

and the generation of classifiers that also were validated in

independent blinded samples, following recommended procedures

for proteomic analysis [24]. While the data show a clear and

highly significant association of the biomarkers and models with

stroke, it is evident that the results require further refinement and

evaluation in larger prospective studies where we can fully assess

the potential role in clinical practice.

In summary, we have developed a urinary proteomic biomarker

model which shows potential to assist with the diagnosis of acute

stroke in those with mild symptoms, and in the assessment of

severity. We now plan to explore the clinical utility of such a test in

large prospective clinical trials.

Figure 3. Receiver operating characteristics curve for the 14 and 35 biomarker models.
doi:10.1371/journal.pone.0035879.g003

Figure 4. Scatter plot of National Institute of Health of Stroke
Scale (NIHSS) score and the biomarker model classifier (modA).
doi:10.1371/journal.pone.0035879.g004
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Materials and Methods

Study Population
The study was performed in the Institute of Cardiovascular and

Medical Sciences at the University of Glasgow. The study protocol

was approved by the Scottish Multicenter Research Ethics

Committee A. All participants gave written informed consent

before participation in the study. Samples were obtained during a

study of the prevalence of aspirin resistance in those with acute

stroke [25]. In this study, all participants gave blood samples for

platelet function analysis and a proportion gave their first urine

sample following admission.

Cases were aged .18 years, were taking aspirin therapy, and

had a diagnosis of ischaemic stroke or transient ischaemic attack.

All participants were recruited within 24 hours of onset of

symptoms and the first urine passed thereafter was used. Urine

samples were thus all obtained within 24 hours (median time from

recruitment to obtaining urine sample 20 minutes, IQR 0 to

60 minutes) and before further drug treatment was used. Those

with brain imaging which suggested intracerebral haemorrhage

were excluded. Cases were identified on admission to the Acute

Stroke Unit and gave informed consent. Where potential

participants were unable to consent, assent from the nearest

relative or welfare guardian was accepted. Consecutive patients

meeting these criteria were included. We followed our well

established procedures for identifying those who have suffered

stroke or TIA. All participants referred to our unit are reviewed

within 24 hours of first contact by a Consultant Stroke Physician

and standard investigations organized. Clinical features, imaging

findings and diagnosis is then reviewed in a multi-disciplinary

team meeting which includes 6 Consultant Stroke Physicians, a

Radiologist and a Neurologist. It is at this meeting that a final

consensus diagnosis of stroke or non-stroke is applied.

Controls comprised individuals aged over 18 years of age who

were taking aspirin therapy. They were required to be at excess

cardiovascular risk, defined as attending a secondary care specialist

cardiovascular risk factor clinic. They were required to have taken

aspirin for a minimum of one year, to never to have suffered a

cardiovascular event on aspirin and to never have suffered stroke

or stroke like symptoms. Exclusion criteria were the same as for

cases (with the exception of the need for brain imaging). All gave

informed consent and were mostly identified during out-patient

attendance at local out-patient clinics.

All urine samples were immediately frozen at 270uC.

Sample preparation
Sample preparation was performed as described previously

[26]. In short, a 0.7 mL aliquot was thawed immediately before

use and diluted with 0.7 mL 2 M urea, 10 mM NH4OH

containing 0.02% SDS. To remove proteins of higher molecular

mass the sample was filtered using a Centrisart ultracentrifugation

filter device (20 kDa MW cut-off; Sartorius, Goettingen, Ger-

many) at 3,000 rcf until 1.1 ml filtrate was obtained. The filtrate

was then loaded onto a PD-10 desalting column (GE Healthcare,

Sweden) and equilibrated in 0.01% NH4OH in HPLC-grade

H2O (Roth, Germany) to decrease matrix effects by removing

urea, electrolytes, and salts, and also to enrich polypeptides.

Finally, samples were lyophilized and stored at 4uC. Shortly before

CE-MS analysis, lyophilisates were resuspended in HPLC-grade

H20 to a final protein concentration of 0.8 mg/mL verified by the

BCA test (Interchim, Montlucon, France).

Capillary Electrophoresis-Mass Spectometry (CE-MS)
analysis

All samples available were analysed with CE-MS in accordance

with recently published guidelines for clinical proteome analysis

[24]. CE-MS analysis was performed as previously described using a

P/ACE MDQ capillary electrophoresis system (Beckman Coulter,

Fullerton, USA) on-line coupled to a MicroTOF MS (Bruker

Daltonic, Bremen, Germany) [12]. The ESI sprayer (Agilent

Technologies, Palo Alto, USA) was grounded, and the ion spray

interface potential was set between 24.0 and 24.5 kV. Data

acquisition and MS acquisition methods were automatically

controlled by the CE via contact-close-relays. Spectra were

accumulated every 3 s over a range of m/z 350 to 3000. Details

on accuracy, precision, selectivity, sensitivity, reproducibility, and

stability of the CE-MS method have been provided previously

[26,27].

Data processing
Mass spectral ion peaks representing identical molecules at

different charge states were deconvoluted into single masses using

MosaiquesVisu software [28]. Only those signals with z .1 that

were observed in a minimum of 2 consecutive spectra with signal-

to-noise ratios .4 were included. The software employs a

probabilistic clustering algorithm and uses both isotopic distribu-

tion as well as conjugated masses for charge-state determination of

peptides/proteins. The resulting peak list characterizes each

polypeptide by its molecular mass, CE-migration time, and ion

signal intensity (amplitude) value. We applied a calibration method

for CE-migration time and ion signal intensity on the basis of

‘‘internal standard’’ peptides, which we proved to be superior over

creatinine normalization [29,30]. In addition, this method of

standardization is not affected by renal function, hence no

adjustments for reduced GFR are required [30] All detected

peptides were deposited, matched, and annotated in a Microsoft

SQL database, allowing further analysis and comparison of

multiple samples [31]. Peptides were considered identical within

different samples, when mass deviation was lower than 50 ppm for

small peptides or 75 ppm for larger peptides and proteins. Due to

analyte diffusion, CE peak widths increase with CE migration

time. In the data clustering process this effect was compensated by

linearly increasing cluster widths over the entire electropherogram

(19 to 45 min) from 2 to 5%. After calibration, deviation of

migration time was controlled to be below 0.45 min.

Establishment of stroke-specific classifiers
In order to develop the biomarker models that differed between

cases and controls, a random selection of 33 cases and 26 controls

was used. The remaining samples were then used to internally

validate the biomarker models. Biomarker models were generated

using the support-vector-machine (SVM) based MosaCluster

software [10,12]. The software generates multimarker models by

combination of polypeptides that are differentially distributed

between case and control samples. In SVM, a urine sample is

regarded as a p-dimensional vector, p being the number of

peptides included in the pattern. The SVM algorithm constructs a

(p21) –dimensional separation plane between case and control

vectors. From all possible hyperplanes that separate cases and

controls, the one with the largest distance to the nearest data

points on both sides is selected. Sample classification itself is

performed by determining the Euclidian distance of a particular

data set to the maximal margin of the hyperplane and assignment

of a positive or negative value depending on which side of the

hyperplane, case or control, the vector is located.

Urinary Proteomics and Stroke
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To develop a biomarker model related to stroke severity, the

normalized logarithmic amplitudes of significantly correlated

markers (nominal p-value ,0.01, r.0.33) were combined additive

in a linear model, as described [27].

Sequencing of peptides
The urine samples were analysed on a Dionex Ultimate 3000

RSLS nano flow system (Dionex, Camberly UK). The samples

(5 ml) were loaded onto a Dionex 100 mm62 cm 5 mm C18 nano

trap column at a flowrate of 5 ml/min by a Ultimate 3000 RS

autosampler (Dionex, Camberley UK) The composition of the

loading solution was 0.1% formic acid and acetonitrile (98:2).

Once loaded onto the trap column the sample was then washed off

into an Acclaim PepMap C18 nano column 75 mm615 cm, 2 mm

100 Å at a flowrate of 0.3 mm/min. The trap and nano flow

column were maintained at 35uC in a column oven in the

Ultimate 3000 RSLC. The samples were eluted with a gradient of

solvent A: 0.1% formic acid verses solvent B: acetonitrile starting

at 5% B rising to 50% B over 100 min. The column was washed

using 90% B before being equilibrated prior to the next sample

being loaded. The eluant from the column was directed to a

Proxeon nano spray ESI source (Thermo Fisher Hemel UK)

operating in positive ion mode then into an Orbitrap Velos

FTMS. The ionisation voltage was 2.5 kV and the capillary

temperature was 200uC. The mass spectrometer was operated in

MS/MS mode scanning from 380 to 2000 amu. The top 10

multiply charged ions were selected from each full scan for MS/

MS analysis, the fragmentation method was HCD at 35% collision

energy. The ions were selected for MS2 using a data dependant

method with a repeat count of 1 and repeat and exclusion time of

15 s. Precursor ions with a charge state of 1 were rejected. The

resolution of ions in MS1 was 60,000 and 7,500 for HCD MS2.

Data files from experiments performed on the HCD-enabled

LTQ were searched against the IPI rat non-redundant database

using the Open Mass Spectrometry Search Algorithm (OMSSA,

http://pubchem.ncbi.nlm.nih.gov/omssa) and SEQUEST (by

using Thermo Proteome Discoverer), without any enzyme

specificity. No fixed modification was selected, and oxidation of

methionine and proline were set as variable modifications. Mass

error window of 10 ppm and 0.05 Da were allowed for MS and

MS/MS, respectively. In the case of SEQUEST, the peptide data

were extracted using high peptide confidence and top one peptide

rank filters.

For further validation of obtained peptide identifications, the

strict correlation between peptide charge at pH of 2 and CE-

migration time was utilized to minimize false-positive identifica-

tion rates [32]: Calculated CE-migration time of the sequence

candidate based on its peptide sequence was compared to the

experimental migration time.

Statistical analysis
Descriptive statistics were used to describe the data. After testing

for normal distribution, continuous data were compared by

Wilcoxon t-test, as this test has proven to be of superior statistical

power in proteomics datasets [33]. A P-value ,0.05 was

considered to be statistically significant. P-values were calculated

using the natural-logarithm transformed intensities and the

Gaussian approximation to the t-distribution. In order to control

the false discovery rate, the scores were ranked and significance

thresholds were adjusted by the Benjamini and Hochberg method

[13]. Once candidate biomarker models were identified, their

sensitivity, specificity and area under the receiver operating

characteristic (ROC) curve were calculated. The relationship

between potential biomarkers and stroke severity measured by the

National Institute of Health Stroke Scale was compared using the

spearman correlation co-efficient.
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