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Abstract
The Price equation partitions total evolutionary change into two components. The first component
provides an abstract expression of natural selection. The second component subsumes all other
evolutionary processes, including changes during transmission. The natural selection component is
often used in applications. Those applications attract widespread interest for their simplicity of
expression and ease of interpretation. Those same applications attract widespread criticism by
dropping the second component of evolutionary change and by leaving unspecified the detailed
assumptions needed for a complete study of dynamics. Controversies over approximation and
dynamics have nothing to do with the Price equation itself, which is simply a mathematical
equivalence relation for total evolutionary change expressed in an alternative form. Disagreements
about approach have to do with the tension between the relative valuation of abstract versus
concrete analyses. The Price equation’s greatest value has been on the abstract side, particularly
the invariance relations that illuminate the understanding of natural selection. Those abstract
insights lay the foundation for applications in terms of kin selection, information theory
interpretations of natural selection, and partitions of causes by path analysis. I discuss recent
critiques of the Price equation by Nowak and van Veelen.
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The heart and soul of much mathematics consists of the fact that the “same” object
can be presented to us in different ways. Even if we are faced with the simple-
seeming task of “giving” a large number, there is no way of doing this without also,
at the same time, “giving” a hefty amount of extra structure that comes as a result
of the way we pin down—or the way we present—our large number. If we write
our number as 1729 we are, sotto voce, ordering a preferred way of “computing it”
(add one thousand to seven hundreds to two tens to nine). If we present it as 1 + 123

we are recommending another mode of computation, and if we pin it down—as
Ramanujuan did—as the first number expressible as a sum of two cubes in two
different ways, we are being less specific about how to compute our number, but
have underscored a characterizing property of it within a subtle diophantine
arena. ...

This issue has been with us, of course, forever: the general question of abstraction,
as separating what we want from what we are presented with. It is neatly packaged
in the Greek verb aphairein, as interpreted by Aristotle in the later books of the
Metaphysics to mean simply separation: if it is whiteness we want to think about,
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we must somehow separate it from white horse, white house, white hose, and all
the other white things that it invariably must come along with, in order for us to
experience it at all

(Mazur, 2008, pp. 222–223).

Somewhere ... between the specific that has no meaning and the general that has no
content there must be, for each purpose and at each level of abstraction, an
optimum degree of generality

(Boulding, 1956, pp. 197–198).

Introduction
Evolutionary theory analyzes the change in phenotype over time. We may interpret
phenotype broadly to include organismal characters, variances of characters, correlations
between characters, gene frequency, DNA sequence—essentially anything we can measure.

How does a phenotype influence its own change in frequency or the change in the
frequencies of correlated phenotypes? Can we separate that phenotypic influence from other
evolutionary forces that also cause change? The association of a phenotype with change in
frequency, separated from other forces that change phenotype, is one abstract way to
describe natural selection. The Price equation is that kind of abstract separation.

Do we really need such abstraction, which may seem rather distant and vague? Instead of
wasting time on such things as the abstract essence of natural selection, why not get down to
business and analyze real problems? For example, we may wish to know how the
evolutionary forces of mutation and selection interact to determine biological pattern. We
could make a model with genes that have phenotypic effects, selection that acts on those
phenotypes to change gene frequency, and mutation that changes one gene into another. We
could do some calculations, make some predictions about, for example, the frequency of
deleterious mutations that cause disease, and compare those predictions to observations. All
clear and concrete, without need of any discussion of the essence of things.

However, we may ask the following. Is there some reorientation for the expression of
natural selection that may provide subtle perspective, from which we can understand our
subject more deeply and analyze our problems with greater ease and greater insight? My
answer is, as I have mentioned, that the Price equation provides that sort of reorientation. To
argue the point, I will have to keep at the distinction between the concrete and the abstract,
and the relative roles of those two endpoints in mature theoretical understanding.

Several decades have passed since Price’s (1970, 1972a) original articles. During that span,
published claims, counter-claims and misunderstandings have accumulated to the point that
it seems worthwhile to revisit the subject. On the one hand, the Price equation has been
applied to numerous practical problems, and has also been elevated by some to almost
mythical status, as if it were the ultimate path to enlightenment for those devoted to
evolutionary study (Box 2).

Box 1

Topics in the theory of natural selection

This article is part of a series on natural selection. Although the theory of natural
selection is simple, it remains endlessly contentious and difficult to apply. My goal is to
make more accessible the concepts that are so important, yet either mostly unknown or
widely misunderstood. I write in a nontechnical style, showing the key equations and
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results rather than providing full derivations or discussions of mathematical problems.
Boxes list technical issues and brief summaries of the literature.

Box 2

Price equation literature

A large literature introduces and reviews the Price equation. I list some key references
that can be used to get started (Hamilton, 1975; Frank, 1995, 1997; Grafen, 2002; Page &
Nowak, 2002; Andersen, 2004; Rice, 2004; Okasha, 2006; Gardner, 2008).

Diverse applications have been developed with the Price equation. I list a few examples
(Hamilton, 1970; Wade, 1985; Frank & Slatkin, 1990; Queller, 1992a, 1992b; Michod,
1997b, 1997a; Frank, 1998; Fox, 2006; Day & Gandon, 2006; Grafen, 2007; Alizon,
2009).

Quantitative genetics theory often derives from the covariance expression given by
Robertson (1966), which is a form of the covariance term of the Price equation. The basic
theory can be found in textbooks (Falconer & Mackay, 1996; Charlesworth &
Charlesworth, 2010). Much of the modern work can be traced through the widely cited
article by Lande and Arnold (1983).

Harman (2010) provides an interesting overview of Price’s life and evokes an Olympian
sense of the power and magic of the Price equation. See Schwartz (2000) for an
alternative biographical sketch.

On the other hand, the opposition has been gaining adherents who boast the sort of
disparaging anecdotes and slogans that accompany battle. In a recent book, Nowak and
Highfield (2011) counter

The Price equation did not, however, prove as useful as [Price and Hamilton] had
hoped. It turned out to be the mathematical equivalent of a tautology. ... If the Price
equation is used instead of an actual model, then the arguments hang in the air like
a tantalizing mirage. The meaning will always lie just out of the reach of the
inquisitive biologist. This mirage can be seductive and misleading. The Price
equation can fool people into believing that they have built a mathematical model
of whatever system they are studying. But this is often not the case. Although
answers do indeed seem to pop out of the equation, like rabbits from a magician’s
hat, nothing is achieved in reality.

Nowak and Highfield (2011) approvingly quote Veelen, García, Sabelis and Egas (2012)
with regard to calling the Price equation a mathematical tautology. Veelen et al. (2012)
emphasize the point by saying that the Price equation is like soccer/football star Johan
Cruyff’s quip about the secret of success: “You always have to make sure that you score one
goal more than your opponent.” The statement is always true, but provides no insight.
Nowak and Highfield (2011) and Veelen et al. (2012) believe their arguments demonstrate
that the Price equation is true in the same trivial sense, and they call that trivial type of truth
a mathematical tautology. Interestingly, magazines, online articles, and the scientific
literature have for several years been using the phrase mathematical tautology for the Price
equation, although Nowak and Highfield (2011) and Veelen et al. (2012) do not provide
citations to previous literature.

As far as I know, the first description of the Price equation as a mathematical tautology was
in Frank (1995). I used the phrase in the sense of the epigraph from Mazur, a formal
equivalence between different expressions of the same object. Mathematics and much of
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statistics are about formal equivalences between different expressions of the same object.
For example, the Laplace transform changes a mathematical expression into an alternative
form with the same information, and analysis of variance decomposes the total variance into
a sum of component variances. For any mathematical or statistical equivalence, value
depends on enhanced analytical power that eases further derivations and calculations, and on
the ways in which previously hidden relations are revealed.

In light of the contradictory points of view, the main goal of this article is to sort out exactly
what the Price equation is, how we should think about it, and its value and limitations in
reasoning about evolution. Subsequent articles will show the Price equation in action,
applied to kin selection, causal analysis in evolutionary models, and an information
perspective of natural selection and Fisher’s fundamental theorem.

Overview
The first section derives the Price equation in its full and most abstract form. That derivation
allows us to evaluate the logical status of the equation in relation to various claims of
fundamental flaw. The equation survives scrutiny. It is a mathematical relation that
expresses the total amount of evolutionary change in an alternative and mathematically
equivalent way. That equivalence provides insight into aspects of natural selection and also
provides a guide that, in particular applications, often leads to good approaches for analysis.

The second section contrasts two perspectives of evolutionary analysis. In standard models
of evolutionary change, one begins with the initial population state and the rules of change.
The rules of change include the fitness of each phenotype and the change in phenotype
between ancestor and descendant. Given the initial state and rules of change, one deduces
the state of the changed population. Alternatively, one may have data on the initial
population state, the changed population state, and the ancestor-descendant relations that
map entities from one population to the other. Those data may be reduced to the
evolutionary distance between two populations, providing inductive information about the
underlying rules of change. Natural populations have no intrinsic notion of fitness or rules of
change. Instead, they inductively accumulate information. The Price equation includes both
the standard deductive model of evolutionary change and the inductive model by which
information accumulates in relation to the evolutionary distance between populations.

The third and fourth sections discuss the Price equation’s abstract properties of invariance
and recursion. The invariance properties include the information theory interpretation of
natural selection. Recursion provides the basis for analyzing group selection and other
models of multilevel selection.

The fifth section relates the Price equation to various expressions that have been used
throughout the history of evolutionary theory to analyze natural selection. The most
common form describes natural selection by the covariance between phenotype and fitness
or by the covariance between genetic breeding value and fitness. The covariance expression
is one part of the Price equation that, when used alone, describes the natural selection
component of total evolutionary change. The essence of those covariance forms arose in the
early studies of population and quantitative genetics, have been used extensively during
much of the modern history of animal breeding, and began to receive more mathematical
development in the 1960s and 1970s. Recent critiques of the Price equation focus on the
same covariance expression that has been widely used throughout the history of population
and quantitative genetics to analyze natural selection and to approximate total evolutionary
change.
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The sixth section returns to the full abstract form of the equation. I compare a few variant
expressions that have been promoted as improvements on the original Price equation.
Variant forms are indeed helpful with regard to particular abstract problems or particular
applications. However, most variants are simply minor rearrangements of the mathematical
equivalence for total evolutionary change given by the original Price equation. The recent
extension by Kerr and Godfrey-Smith (2009) does provide a slightly more general
formulation by expanding the fundamental set mapping that defines Price’s approach. The
set mapping basis for the Price equation deserves more careful study and further
mathematical work.

The seventh section analyzes various flaws that have been ascribed to the Price equation.
For example, the Price equation in its most abstract form does not contain enough
information to follow evolutionary dynamics through multiple rounds of natural selection.
By contrast, classical dynamic models of population genetics are sufficient to follow change
through time. Much has been made of this distinction with regard to dynamic sufficiency.
The distinction arises from the fact that classical dynamics in population genetics makes
more initial assumptions than the abstract Price equation. It must be true that all
mathematical equivalences for total evolutionary change have the same dynamic status
given the same initial assumptions. Each additional well-chosen assumption typically
enhances the specificity and reduces the scope and generality of the analysis. The epigraph
from Boulding emphasizes that the degree of specificity versus generality is an explicit
choice of the analyst with respect to initial assumptions.

The Discussion considers the value and limitations of the Price equation in relation to recent
criticisms by Nowak and van Veelen. The critics confuse the distinct roles of general
abstract theory and concrete dynamical models for particular cases. The enduring power of
the Price equation arises from the discovery of essential invariances in natural selection. For
example, kin selection theory expresses biological problems in terms of relatedness
coefficients. Relatedness measures the association between social partners. The proper
measure of relatedness identifies distinct biological scenarios with the same (invariant)
evolutionary outcome. Invariance relations provide the deepest insights of scientific thought.

The Price equation
The mathematics given here applies not only to genetical selection but to selection
in general. It is intended mainly for use in deriving general relations and
constructing theories, and to clarify understanding of selection phenomena, rather
than for numerical calculation (Price, 1972a, p. 485).

I have emphasized that the Price equation is a mathematical equivalence. The equation
focuses on separation of total evolutionary change into a part attributed to selection and a
remainder term. That separation provides an abstraction of the nature of selection. As Price
wrote sometime around 1970 but published posthumously in Price (1995): “Despite the
pervading importance of selection in science and life, there has been no abstraction and
generalization from genetical selection to obtain a general selection theory and general
selection mathematics.”

It is useful first to consider the Price equation in this most abstract form. I follow my earlier
derivations (Frank, 1995, 1997, 1998, 2009), which differ little from the derivation given by
Price (1972a) when interpreted in light of Price (1995).

The abstract expression can best be thought of in terms of mapping items between two sets
(Frank, 1995; Price, 1995). In biology, we usually think of an ancestral population at some
time and a descendant population at a later time. Although there is no need to have an
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ancestor-descendant relation, I will for convenience refer to the two sets as ancestor and
descendant. What does matter is the relations between the two sets, as follows.

Definitions
The full abstract power of the Price equation requires adhering strictly to particular
definitions. The definitions arise from the general expression of the relations between two
sets.

Let qi be the frequency of the ith type in the ancestral population. The index i may be used
as a label for any sort of property of things in the set, such as allele, genotype, phenotype,

group of individuals, and so on. Let  be the frequencies in the descendant population,
defined as the fraction of the descendant population that is derived from members of the
ancestral population that have the label i. Thus, if i = 2 specifies a particular phenotype, then

 is not the frequency of the phenotype i = 2 among the descendants. Rather, it is the
fraction of the descendants derived from entities with the phenotype i = 2 in the ancestors.
One can have partial assignments, such that a descendant entity derives from more than one
ancestor, in which case each ancestor gets a fractional assignment of the descendant. The
key is that the i indexing is always with respect to the properties of the ancestors, and
descendant frequencies have to do with the fraction of descendants derived from particular
ancestors.

Given this particular mapping between sets, we can specify a particular definition for fitness.

Let , where wi is the fitness of the ith type and w̄ = Σqiwi is average fitness.
Here, wi/w̄ is proportional to the fraction of the descendant population that derives from type
i entities in the ancestors.

Usually, we are interested in how some measurement changes or evolves between sets or
over time. Let the measurement for each i be zi. The value z may be the frequency of a gene,
the squared deviation of some phenotypic value in relation to the mean, the value obtained
by multiplying measurements of two different phenotypes of the same entity, and so on. In
other words, zi can be a measurement of any property of an entity with label, i. The average
property value is z̄ = Σqizi, where this is a population average.

The value  has a peculiar definition that parallels the definition for . In particular,  is the
average measurement of the property associated with z among the descendants derived from

ancestors with index i. The population average among descendants is .

The Price equation expresses the total change in the average property value, Δz̄ = z̄′ − z̄, in
terms of these special definitions of set relations. This way of expressing total evolutionary
change and the part of total change that can be separated out as selection is very different
from the usual ways of thinking about populations and evolutionary change. The derivation
itself is very easy, but grasping the meaning and becoming adept at using the equation is not
so easy.

I will present the derivation in two stages. The first stage makes the separation into a part
ascribed to selection and a part ascribed to property change that covers everything beyond
selection. The second stage retains this separation, changing the notation into standard
statistical expressions that provide the form of the Price equation commonly found in the
literature. I follow with some examples to illustrate how particular set relations are separated
into selection and property change components. The next section considers two distinct
interpretations of the Price equation in relation to dynamics.
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Derivation: separation into selection and property value change

We use  for frequency change associated with selection, and  for
property value change. Both expressions for change depend on the special set relation
definitions given above.

We are after an alternative expression for total change, Δz̄. Thus,

Switching the order of the terms on the right side of the last line yields

(1)

a form emphasized by Frank (1997, eqn 1). The first term separates the part of total change
caused by changes in frequency. We call this the part caused by selection, because this is the
part that arises directly from differential contribution by ancestors to the descendant
population (Price, 1995). Because the set mappings define all of the direct attributions of
success for each i with respect to the associated properties zi, it is reasonable to separate out
this direct component as the abstraction of selection. It is of course possible to define other
separations. I discuss one particular alternative later. However, it is hard to think of other
separations that would describe selection in a better way at the most abstract and general
level of the mappings between two sets. This first term has also been called the partial
evolutionary change caused by natural selection (eqn 7).

The second term describes the part of total change caused by changes in property values.

Recall that , and that  is the property value among entities that descend from i.
Many different processes may cause descendant property values to differ from ancestral
values. In fact, the assignment of a descendant to an ancestor can be entirely arbitrary, so
that there is no reason to assume that descendants should be like ancestors. Usually, we will
work with systems in which descendants do resemble ancestors, but the degree of such
associations can be arranged arbitrarily. This term for change in property value encompasses
everything beyond selection. The idea is that selection affects the relative contribution of
ancestors and thus the changes in frequencies of representation, but what actually gets
represented among the descendants will be subject to a variety of processes that may alter
the value expressed by descendants.

The equation is exact and must apply to every evolutionary system that can be expressed as
two sets with certain ancestor-descendant or mapping relations. It is in that sense that I first
used the phrase mathematical tautology (Frank, 1995). The nature of separation and
abstraction is well described by the epigraph from Mazur at the start of this article.

Derivation: statistical notation
Price (1972a) used statistical notation to write eqn 1. For the first term, by following prior
definitions we have
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so that

using the standard definition for population covariance.

For the second term, we have

where E means expectation, or average over the full population. Putting these statistical
forms into eqn 1 and moving w̄ to the left side for notational convenience yields a
commonly published form of the Price equation

(2)

Price (1995) and Frank (1995) present examples of set mappings expressed in relation to the
Price equation.

Dynamics: inductive and deductive perspectives
The Price equation describes evolutionary change between two populations. Three factors
express one iteration of dynamical change: initial state, rules of change, and next state. In
the Price equation, the phenotypes, zi, and their frequencies, qi, describe the initial
population state. Fitnesses, wi, and property changes, Δzi, set the rules of change. Derived

phenotypes, , and their frequencies, , express the next population state.

Models of evolutionary change essentially always analyze forward or deductive dynamics.
In that case, one starts with initial conditions and rules of change and calculates the next
state. Most applications of the Price equation use this traditional deductive analysis. Such
applications lead to predictions of evolutionary outcome given assumptions about
evolutionary process, expressed by the fitness parameters and property changes.

Alternatively, one can take the state of the initial population and the state of the changed
population as given. If one also has the mappings between initial and changed populations
that connect each entity, i, in the initial population to entities in the changed population, then
one can calculate (induce) the underlying rules of change. At first glance, this inductive
view of dynamics may seem rather odd and not particularly useful. Why start with
knowledge of the evolutionary sequence of population states and ancestor-descendant
relations as given, and inductively calculate fitnesses and property changes? The inductive
view takes the fitnesses, wi, to be derived from the data rather than an intrinsic property of
each type.
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The Price equation itself does not distinguish between the deductive and inductive
interpretations. One can specify initial state and rules of change and then deduce outcome.
Or one can specify initial state and outcome along with ancestor-descendant mappings, and
then induce the underlying rules of change. It is useful to understand the Price equation in its
full mathematical generality, and to understand that any specific interpretation arises from
additional assumptions that one brings to a particular problem. Much of the abstract power
of the Price equation comes from understanding that, by itself, the equation is a minimal
description of change between populations.

The deductive interpretation of the Price equation is clear. What value derives from the
inductive perspective? In observational studies of evolutionary change, we only have data on
population states. From those data, we use the inductive perspective to make inferences
about the underlying rules of change. Note that inductive estimates for evolutionary process
derive from the amount of change, or distance, between ancestor and descendant
populations. The Price equation includes that inductive, or retrospective view, by expressing
the distance between populations in terms of Δz̄. I develop that distance interpretation in the
following sections.

Perhaps more importantly, natural selection itself is inherently an inductive process by
which information accumulates in populations. Nature does not intrinsically “know” of
fitness parameters. Instead, frequency changes and the mappings between ancestor and
descendant are inherent in a population’s response to the environment, leading to a sequence
of population states, each separated by an evolutionary distance. That evolutionary distance
provides information that populations accumulate inductively about the fitnesses of each
phenotype (Frank, 2009). The Price equation includes both the deductive and inductive
perspectives. We may choose to interpret the equation in either way depending on our goals
of analysis.

Abstract properties: invariance
The Price equation describes selection by the term Σ(Δqi)zi = Cov(w, z)/w̄. Any instance of
evolutionary change that has the same value for this sum has the same amount of total
selection. Put another way, for any particular value for total selection, there is an infinite
number of different combinations of frequency changes and character measurements that
will add up to the same total value for selection. All of those different combinations lead to
the same value with respect to the amount of selection. We may say that all of those
different combinations are invariant with respect to the total quantity of selection. The
deepest insights of science come from understanding what does not matter, so that one can
also say exactly what does matter—what is invariant (Feynman, 1967; Weyl, 1983).

The invariance of selection with respect to transformations of the fitnesses, w, and the
phenotypes, z, that have the same Cov(w, z) means that, to evaluate selection, it is sufficient
to analyze this covariance. At first glance, it may seem contradictory that the covariance,
commonly thought of as a linear measure of association, can be a complete description for
selection, including nonlinear processes. Let us step through this issue, first looking at why
the covariance is a sufficient expression of selection, and then at the limitations of this
covariance expression in evolutionary analysis.

Covariance as a measure of distance: definitions
Much of the confusion with respect to covariance and variance terms in selection equations
arises from thinking only of the traditional statistical usage. In statistics, covariance typically
measures the linear association between pairs of observations, and variance is a measure of
the squared spread of observations. Alternatively, covariances and variances provide
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measures of distance, which ultimately can be understood as measures of information
(Frank, 2009). This section introduces the notation for the geometric interpretation of
distance. The next section gives the main geometric result, and the following section
presents some examples.

The identity Σ(Δqi)zi = Cov(w, z)/w ̄ provides the key insight. It helps to write this identity

in an alternative form. Note from the prior definition  that

(3)

where ai = wi/w̄ − 1 is Fisher’s average excess in fitness, a commonly used expression in
population and quantitative genetics (Fisher, 1930, 1941; Crow & Kimura, 1970). A value of
zero means that an entity has average fitness, and therefore fitness effects and selection do
not change the frequency of that entity. Using the average excess in fitness, we can write the
invariant expression for selection as

(4)

We can think of the state of the population as the listing of character states, zi. Thus we
write the population state as z = (z1, z2, …). The subscripts run over every different entity in
the population, so the vector z is a complete description of the entire population. Similarly,
for the frequency fluctuations, Δqi = qiai, we can write the listing of all fluctuations as a
vector, Δq = (Δq1, Δq2, …).

It is often convenient to use the dot product notation

in which the dot specifies the sum obtained by multiplying each pair of items from two
vectors. Before turning to some geometric examples in the following section, we need a
definition for the length of a vector. Traditionally, one uses the definition

in which the length is the square root of the sum of squares, which is the standard measure
of length in Euclidean geometry.

Covariance as a measure of distance: examples
A simple identity relates a dot product to a measure of distance and to covariance selection

(5)

where φ is the angle between the vectors Δq and z (Fig. 1). If we standardize the character
vector ƶ = z/||z||, then the standardized vector has a length of one, ||ƶ|| = 1, which simplifies
the dot product expression of selection to
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providing the geometric representation illustrated in Fig. 1.

The covariance can be expressed as the product of a regression coefficient and a variance
term

(6)

where the notation βxy describes the regression coefficient of x on y (Price, 1970). This
identity shows that the expression of selection in terms of a regression coefficient and a
variance term is equivalent to the geometric expression of selection in terms of distance.

I emphasize these identities for two reasons. First, as Mazur stated in the epigraph: “The
heart and soul of much mathematics consists of the fact that the ‘same’ object can be
presented to us in different ways.” If an object is important, such as natural selection surely
is, then it pays to study that object from different perspectives to gain deeper insight.

Second, the appearance of statistical functions, such as the covariance and variance, in
selection equations sometimes leads to mistaken conclusions. In the selection equations, it is
better to think of the covariance and variance terms arising because they are identities with
geometric or other interpretations of selection, rather than thinking of those terms as
summary statistics of probability distributions. The problem with thinking of those terms as
statistics of probability distributions is that the variance and covariance are not in general
sufficient descriptions for probability distributions. That lack of sufficiency for probability
may lead one to conclude that those terms are not sufficient for a general expression of
selection. However, those covariance and variance terms are sufficient. That sufficiency can
be understood by thinking of those terms as identities for distance or measures of
information (Frank, 2009).

It is true that in certain particular applications of quantitative genetics or stochastic sampling
processes, one does interpret the variances and covariances as summary statistics of
probability distributions, usually the normal or Gaussian distribution. However, it is
important to distinguish those special applications from the general selection equations.

Invariance and information
For the general selection expression in eqn 5, any transformations that do not affect the net
values are invariant with respect to selection. For example, transformations of the fitnesses
and associated frequency changes, Δq, are invariant if they leave unchanged the distance
expressed by Δq · z = Cov(w, z)/w̄. Similarly, changes in the pattern of phenotypes are
invariant to the extent that they leave Δq · z unchanged. These invariance properties of
selection, measured as distance, may not appear very interesting at first glance. They seem
to be saying that the outcome is the outcome. However, the history of science suggests that
studying the invariant properties of key expressions can lead to insight.

Few authors have developed an interest in the invariant qualities of selection. Fisher (1930)
initiated discussion with his fundamental theorem of natural selection, a special case of eqn
5 (Frank, 1997). Although many authors commented on the fundamental theorem, most
articles did not analyze the theorem with respect to its essential mathematical insights about
selection. Ewens (1992) reviewed the few attempts to understand the mathematical basis of
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the theorem and its invariant quantities. Frank (2009) tied the theorem to Fisher information
(Frieden, Plastino & Soffer, 2001; Frieden, 2004), hinting at an information theory
interpretation that arises from the fundamental selection equation of eqn 5.

In spite of the importance of selection in many fields of science, the potential interpretation
of eqn 5 with respect to invariants of information theory has hardly been developed. I briefly
outline the potential connections here (Frank, 2009). I develop this information perspective
of selection in a later article, along with Fisher’s fundamental theorem.

To start, define the partial change in phenotype caused by natural selection as

(7)

The concept of a partial change caused by natural selection arises from Fisher’s fundamental
theorem (Fisher, 1930; Price, 1972b; Ewens, 1989; Frank & Slatkin, 1992). With this
definition, we can use eqns 5 and 6 to write

(8)

From eqn 3, we have the definition for the average excess in fitness ai = wi/w̄ − 1. Thus, we
can expand the expression for the variance in fitness as

From eqn 3, we also have the change in frequency in terms of the average excess, Δqi = qiai,
and equivalently, ai = Δqi/qi, thus

where  is a standardized fluctuation in frequency, and Δq̂ is the vector of
standardized fluctuations. These alternative forms simply express the variance in fitness in
different ways. The interesting result follows from the fact that

is the Fisher information, F, in the frequency fluctuations, Δq̂. Fisher information is a
fundamental quantity in information theory, Bayesian analysis, likelihood theory and the
informational foundations of statistical inference. Fisher information is a variant form of the
more familiar Shannon and Kullback-Leibler information measures, in which the Fisherian
form expresses changes in information.

Once again, we have a simple identity. Although it is true that Fisher information is just an
algebraic rearrangement of the variance in fitness, some insight may be gained by relating
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selection to information. The variance form calls to mind a statistical description of selection
or a partial description of a probability distribution. The Fisher information form suggests a
relation between natural selection and the way in which populations accumulate information
(Frank, 2009).

We may now write our fundamental expression for selection as

We may read this expression for selection as: the change in mean character value caused by
natural selection, ΔSz̄, is equal to the total Fisher information in the frequency fluctuations,
F, multiplied the scaling β that describes the amount of the potential information that the
population captures when expressed in units of phenotypic change. In other words, the
distance ΔSz̄ measures the informational gain by the population caused by natural selection.

The invariances set by this expression may be viewed in different ways. For example, the
distance of evolutionary change by selection, ΔSz̄, is invariant with respect to many
different combinations of frequency fluctuations, Δq̂, and scalings between phenotype and
fitness. Similarly, any transformations of frequency fluctuations that leave the measure of
information, F (Δq̂), invariant do not alter the scaled change in phenotype caused by natural
selection. The full implications remain to be explored.

Summary of selection identities
The various identities for the part of total evolutionary change caused by selection include

(9)

These forms show the equivalence of the statistical, geometrical and informational
expressions for natural selection. These general abstract forms make no assumptions about
the nature of phenotypes and the patterns of frequency fluctuations caused by differential
fitness. The phenotypes may be squared deviations so that the average is actually a variance,
or the product of measurements on different characters leading to measures of association,
or any other nonlinear combination of measurements. Thus, there is nothing inherently
linear or restrictive about these expressions.

Selection versus evolution
The previous sections discussed the part of evolutionary change caused by selection. The
full Price equation (eqn 2) gives a complete and exact expression of total change, repeated
here as

(10)

or in terms of the dot product notation as
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(11)

The full change in the phenotype is the sum of the two terms, which we may express in
symbols as

Fisher (1930) called the term ΔEz̄ the change caused by the environment (Frank & Slatkin,
1992). However, the word environment often leads to confusion. The proper interpretation is
that ΔEz̄ encompasses everything not included in the expression for selection. The term is
environmental only in the sense that it includes all those forces external to the particular
definition of the selective forces for a particular problem.

The ΔE term is sometimes associated with changes in transmission (Frank, 1995,
1997Frank, 2012a; Okasha, 2006). This interpretation arises because E(wΔz) is the fitness
weighted changes in character value between ancestor and descendant. One may think of
changes in character values as changes during transmission.

It is important to realize that everything truly means every possible force that might arise
and that is not accounted for by the particular expression for selection. Lightning may strike.
New food sources may appear. The Price equation in its general and abstract form is a
mathematical identity—what I previously called a mathematical tautology (Frank, 1995).

In applications, one considers how to express ΔEz̄, or one searches for ways to formulate the
problem so that ΔEz̄ is zero or approximately zero. This article is not about particular
applications. Here, I simply note that when one works with Fisher’s breeding value as z,
then near equilibria (fixed points), one typically obtains Δz → 0 and thus E(wΔz) → 0. In
other cases, the search for a good way to express a problem means finding a form of
character measurement that defines z such that characters tend to remain stable over time, so
that Δz → 0 and thus E(wΔz) → 0. For applications that emphasize calculation of complex
dynamics rather than a more abstract conceptual analysis of a problem, methods other than
the Price equation often work better.

Abstract properties: recursion and group selection
To iterate is human, to recurse, divine (Coplien, 1998).

Essentially all modern discussions of multilevel selection and group selection derive from
Price (1972a), as developed by Hamilton (1975). Price and Hamilton noted that the Price
equation can be expanded recursively to represent nested levels of analysis, for example,
individuals living in groups.

Start with the basic Price equation as given in eqn 10. The left side is the total change in
average phenotype, z̄. The second term on the right side includes the terms Δzi in E(wΔz) =
ΣqiwiΔzi.

Recall that in defining zi, we specified the meaning of the index i to be any sort of labeling
of set members, subject to minimal consistency requirements. We may, for example, label
all members of a group by i, and measure zi as some property of the group. If the index i
itself represents a set, then we may consider the members of that set. For example, zij may
be the jth member of the ith set, or we may say, the ith group. In the abstract mathematical
expression, there is no need to think of the ith group as having any spatial or biological
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meaning. However, we may consider i as a label for spatially defined groups if we wish to
do so.

With i defining a group, we may analyze the selection and evolution of that ith group. The
term Δzi becomes the average change in the z measure for the ith group, composed of

members with values zij. The terms  are the average property values of the descendants of
the jth entity in the ith group. The descendant entities that derive from the ith group do not
have to form any sort of group or other meaningful structuring, just as the original i labeling
does not have to refer to group structuring in the ancestors. However, we may if we wish
consider descendants of i as retaining some sense of the ancestral grouping.

Because zi represents an averaging over the entities j in the ith group, we are assuming the
notational equivalence Δzi = Δz̄i. From that point of view, for each group i we may from
eqn 10 express the change in the group mean by thinking of each group as a separate set or
population, yielding for each i the expression

We may substitute this expression for each i into the E(wΔz) = ΣqiwiΔzi term on the right
side of eqn 10. That substitution recursively expands each change in property value, Δzi, to
itself be composed of a selection term and property value change term. For each group, i, we
now have expressions for selection within the group, Cov(wi, zi)/w̄i, and average property
value change within the group, E(wiΔzi)/w̄i. If we write out the full expression for this last
term, we obtain

In the term Δzij, each labeling, j, may itself be a subgroup within the larger grouping
represented by i. The recursive nature of the Price equation allows another expansion to the
characters zijk for the kth entity in the jth grouping that is nested in the ith group, and so on.
Once again, the indexing for levels i, j, and k do not have to correspond to any particular
structuring, but we may choose to use a structuring if we wish.

One could analyze biological problems of group selection without using the Price equation.
Because the Price equation is a mathematical identity, there are always other ways of
expressing the same thing. However, in the 1970s, when group selection was a very
confused subject, the Price equation’s recursive nature and Hamilton’s development
provided the foundation for subsequent understanding of the topic. All modern conceptual
insights about group selection derive from Price’s recursive expansion of his abstract
expression of selection.

History and alternative expressions of selection
I have emphasized the general and abstract form of the Price equation. That abstract form
was first presented rather cryptically by Price (1972a). In that article, Price described the
recursive expansion to analyze group selection. Apart from the recursive aspect, the more
general abstract properties were hardly mentioned in Price (1972a) and not developed by
others until 1995.
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While I was writing my history of Price’s contributions to evolutionary genetics (Frank,
1995), I found Price’s unpublished manuscript The nature of selection among W. D.
Hamilton’s papers. Price’s unpublished manuscript gave a very general and abstract scheme
for analyzing selection in terms of set relations. However, Price did not explicitly connect
the abstract set relation scheme to the Price equation or to his earlier publications (Price,
1970, 1972a).

I had The nature of selection published posthumously as Price (1995). In my own article, I
explicitly developed the general interpretation of the Price equation as the formal abstract
expression of the relation between two sets (Frank, 1995).

Price (1970) wrote an earlier article in which he presented a covariance selection equation
that emphasized the connection to classical models of population genetics and gene
frequency change. That earlier covariance form lacks the abstract set interpretation and
generally has narrower scope. Preceding Price, Robertson (1966) and Li (1967) also
presented selection equations that are similar to Price’s (1970) covariance expression.
Robertson’s covariance form itself arises from classical quantitative genetics and the
breeder’s equation, ultimately deriving from the foundations of quantitative genetics
established by Fisher (1918). Li’s form presents a covariance type of expression for classical
population genetic models of gene frequency change.

One cannot understand the current literature without a clear sense of this history. Almost all
applications of the Price equation to kin and group selection, and to other problems of
evolutionary analysis, derive from either the classical expressions of quantitative genetics
(Robertson, 1966) or classical expressions of population genetics (Li, 1967).

In light of this history, criticisms can be confusing with regard to the ways in which the
Price equation is commonly used. For example, in applications to kin or group selection, the
Price equation mainly serves to package the notation for the Robertson form of quantitative
genetic analysis or the Li form of population genetic analysis. The Price equation packaging
brings no extra assumptions. In some applications, critics may believe that the particular
analysis lacks enough assumptions to attain a desired level of specificity. One can, of course,
easily add more assumptions, at the expense of reduced generality.

The following sections briefly describe some alternative forms of the Price equation and the
associated history. That history helps to place criticisms of the Price equation and its
applications into clearer light.

Quantitative genetics and the breeder’s equation
Fisher (1918) established the modern theory of quantitative genetics, following the early
work of Galton, Pearson, Weldon, Yule and others. The equations of selection in
quantitative genetics and animal breeding arose from that foundation. Many modern
applications of the Price equation to particular problems follow this tradition of quantitative
genetics. A criticism of these Price equation applications is a criticism of the central
approach of evolutionary quantitative genetics. Such criticisms may be valid for certain
applications, but they must be evaluated in the broader context quantitative genetics theory.
This section shows the relation between quantitative genetics and a commonly applied form
of the Price equation (Rice, 2004).

Evolutionary aspects of quantitative genetics developed from the breeder’s equation
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in which the response to selection, R, equals the selection differential, S, multiplied by the
heritability, h2. The separation of selection and transmission is the key to the breeder’s
equation and to quantitative genetics theory.

The covariance term of the Price equation is equivalent to the selection differential, S, when
one interprets the meaning of fitness and descendants in a particular way. Suppose that we
label each potential parent in the ancestral population of size N with the index, i. The initial
weighting of each parent in the ancestral population is qi = 1/N. Assign to each potential

parent a weighting with respect to breeding contribution, , with fitnesses
standardized so that w̄ = 1 and the wi are relative fitnesses.

With this setup, ancestors are the initial population of potential parents, each weighted
equally, and descendants are the same population of parents, weighted by their breeding
contribution. The character value for each individual remains unchanged between the
ancestor and descendant labelings. These assumptions lead to Δz̄*= Cov(w, z), the change
in the average character value between the breeding population and the initial population.
That difference is defined as S, the selection differential.

To analyze the fraction of the selection differential transmitted to offspring, classical
quantitative genetics follows Fisher (1918) to separate the character value as z = g + ε, with
a transmissible genetic component, g, and a component that is not transmitted, which we
may call the environmental or unexplained component, ε. Following standard regression
theory for this sort of expression, ε̄ = 0.

For a parent with z = g+ε, the average character value contribution ascribed to the parent
among its descendants is z′ = g, following the idea that g represents the component of the
parental character that is transmitted to offspring. If we assume that the only fluctuations of
average character value in offspring are caused by the transmissible component that comes
from parents, then the genetic component measured by g is sufficient to explain expected
offspring character values. Thus, Δz = z′ − z = −ε, and E(wΔz) = −Cov(w, ε).

Substituting into the full Price equation from eqn 2 and assuming w̄ = 1 so that all fitnesses
are normalized

(12)

The expression Δz̄ = Cov(w, g) was first emphasized by Robertson (1966), and is
sometimes called Robertson’s secondary theorem of natural selection. Robertson’s
expression summarizes the foundational principles of quantitative genetics, as conceived by
Fisher (1918) and developed over the past century (Falconer & Mackay, 1996; Lynch &
Walsh, 1998; Hartl, 2006).

It is commonly noted that Robertson’s theorem is related to the classic breeder’s equation. In
particular,
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where R is the response to selection, S = Cov(w, z) is the selection differential, and h2 =
Var(g)=Var(z) is a form of heritability, a measure of the transmissible genetic component.
Additional details and assumptions can be found in several articles and texts (Crow &
Nagylaki, 1976; Frank, 1997; Rice, 2004).

Population genetics and the covariance expression
Price (1970) expressed his original formulation in terms of gene frequency change and
classical population genetics, rather than the abstract set relations that I have emphasized. At
that time, it seems likely that Price already had the broader, more abstract theory in hand,
and was presenting the population genetics form because of its potential applications. The
article begins

This is a preliminary communication describing applications to genetical selection
of a new mathematical treatment of selection in general.

Gene frequency change is the basic event in biological evolution. The following
equation...which gives frequency change under selection from one generation to the
next for a single gene or for any linear function of any number of genes at any
number of loci, holds for any sort of dominance or epistasis, for sexual or asexual
reproduction, for random or nonrandom mating, for diploid, haploid or polyploid
species, and even for imaginary species with more than two sexes...

Using my notation, Price writes the basic covariance form

(13)

In a simple application, p could be interpreted as gene frequency at a single diploid locus
with two alleles. Then P = p̄ is the gene frequency in the population, and βwp is the
regression of individual fitness on individual gene frequency, in which the individual gene
frequency is either 0, 1/2 or 1 for an individual with 0, 1 or 2 copies of the allele of interest.
Li (1967) gave an identical gene frequency expression in his eqn 4.

In more general applications, one can study a p-score that summarizes the number of copies
of various alleles present in an individual, or in whatever entities are being tracked. In
classical population genetics, the p-score would be, in Price’s words above, “any linear
function of any number of genes at any number of loci.” Here, linearity means that p is
essentially a counting of presence versus absence of various things within the ith entity.
Such counting does not preclude nonlinear interactions between alleles or those things being
counted with respect to phenotype, which is why Price said that the expression holds for any
form of dominance or epistasis.

Hamilton (1970) used Price’s gene frequency form in his first clear derivations of the direct
and the inclusive fitness models of kin selection theory. Most early applications of the Price
equation used this gene frequency interpretation.

Price (1970) emphasized that the value of eqn 13 arises from its benefits for qualitative
reasoning rather than calculation. The necessary assumptions can be seen from the form
given by Price, which is always exact, here written in my notation
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where Δp is interpreted as the change in state between parental gene frequency for the ith
entity and the average gene frequency for the part of descendants derived from the ith entity.

In practice, Δp = 0 usually means Mendelian segregation, no biased mutation, and no
sampling biases associated with drift. Most population genetics theory of traits such as
social behavior typically make those assumptions, so that eqn 13 is sufficient with respect to
analyzing change in gene frequency or in p-scores (Grafen, 1984). However, the direction of
change in gene frequency or p-score is not sufficient to predict the direction of change in
phenotype. To associate the direction of change in p-score to the direction of change in
phenotype, one must make the assumption that phenotype changes monotonically with p-
score. Such monotonicity is a strong assumption, which is not always met. For that reason,
p-score models sometimes buy simplicity at a rather high cost. In other applications,
monotonicity is a reasonable assumption, and the p-score models provide a very simple and
powerful approach to understanding the direction of evolutionary change.

The costs and benefits of the p-score model are not particular to the Price equation. Any
analysis based on the same assumptions has the same limitations. The Price equation
provides a concise and elegant way to explore the consequences when certain simplifying
assumptions can reasonably be applied to a particular problem.

Alternative forms or interpretations of the full equation
The full Price equation partitions total evolutionary change into components. Many
alternative partitions exist. A partition provides value if it improves conceptual clarity or
eases calculation.

Which partitions are better than others? Better is always partly subjective. What may seem
hard for me may appear easy to you. Nonetheless, it would be a mistake to suggest that all
differences are purely subjective. Some forms are surely better than others for particular
problems, even if better remains hard to quantify. As Russell (1958, p. 14) said in another
context, “All such conventions are equally legitimate, though not all are equally
convenient.”

Many partitions of evolutionary change include some aspect of selection and some aspect of
property or transmission change. Most of those variants arise by minor rearrangements or
extensions of the basic Price expression. A few examples follow.

Contextual analysis
Heisler and Damuth (1987) introduced the phrase contextual analysis to the evolutionary
literature. Contextual analysis is a form of path analysis, which partitions causes by
statistical regression models. Path analysis has been used throughout the history of genetics
(Li, 1975). It is a useful approach whenever one wishes to partition variation with respect to
candidate causes. The widely used method of Lande and Arnold (1983) to analyze selection
is a particular form of path analysis.

Okasha (2006) argued that contextual analysis is an alternative to the Price equation. To
develop a simple example, let us work with just the selection part of the Price equation
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A path (contextual) analysis refines this expression by partitioning the causes of fitness with
a regression equation. Suppose we express fitness as depending on two predictors: the focal
character that we are studying, z, and another character, y. Then we can write fitness as

in which the β terms are partial regressions of fitness on each character, and ε is the
unexplained residual of fitness. Substituting into the Price equation, we get the sort of
expression made popular by Lande and Arnold (1983)

If the partitioning of fitness into causes is done in a useful way, this type of path analysis can
provide significant insight. I based my own studies of natural selection and social evolution
on this approach (Frank, 1997, 1998).

Authors such as Okasha (2006) consider the partitioning of fitness into distinct causes as an
alternative to the Price equation. If one thinks of the character z in Cov(w, z) as a complete
causal explanation for fitness, then a partition into separate causes y and z does indeed lead
to a different causal understanding of fitness. In that regard, the Price equation and path
analysis lead to different causal perspectives.

One can find articles that use the Price equation and interpret z as a lone cause of fitness (see
Okasha, 2006). Thus, if one equates those specific applications with the general notion of
the Price equation, then one can say that path or contextual analysis provides a significantly
different perspective from the Price equation. To me, that seems like a socially constructed
notion of logic and mathematics. If someone has applied an abstract truth in a specific way,
and one can find an alternative method for the same specific application that seems more
appealing, then one can say that the alternative method is superior to the general abstract
truth.

The abstract Price equation does not compel one to interpret z strictly as a single cause
explanation. Rather, in the general expression, z should always be interpreted as an abstract
placeholder. Path (contextual) analysis follows as a natural extension of the Price equation,
in which one makes specific models of fitness expressed by regression. It does not make
sense to discuss the Price equation and path analysis as alternatives.

Alternative partitions of selection and transmission
In the standard form of the Price equation, the fitness term, w, appears in both components

Frank (1997, 1998) derived an alternative expression
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(14)

This form sometimes provides an easier method to calculate effects. For example, the
second term now expresses the average change in phenotype between parent and offspring
without weighting by fitness effects. A biased mutational process would be easy to calculate
with this expression—one only needs to know about the mutation process to calculate the
outcome. The new covariance term can be partitioned into meaningful components with
minor assumptions (Frank, 1997, p. 1721), yielding

where βz′z is usually interpreted as the offspring-parent regression, which is a type of
heritability. Thus, we may combine selection with the heritability component of
transmission into the covariance term, with the second term containing only a fitness-
independent measure of change during transmission.

Okasha (2006) strongly favored the alternative partition for the Price equation in eqn 14,
because it separates all fitness effects in the first term from a pure transmission
interpretation of the second term. In my view, there are costs and benefits for the standard
Price equation expression compared with eqn 14. One gains by having both, and using the
particular form that fits a particular problem.

For example, the term E(Δz) is useful when one has to calculate the effects of a biased
mutational process that operates independently of fitness. Alternatively, suppose most
individuals have unbiased transmission, such that Δz = 0, whereas very sick individuals do
not reproduce but, if they were to reproduce, would have a very biased transmission process.
Then E(Δz) differs significantly from zero, because the sick, nonreproducing individuals
appear in this term equally with the reproducing population. However, the actual
transmission bias that occurs in the population would be zero, E(wΔz) = 0, because all
reproducing individuals have nonbiased transmission.

Both the standard Price form and the alternative in eqn 14 can be useful. Different scenarios
favor different ways of expressing problems. I cannot understand why one would adopt an a
priori position that unduly limits one’s perspective.

Extended set mapping expression
The Price equation’s power arises from its abstraction of selection in terms of mapping
relations between sets (Frank, 1995; Price, 1995). Although the Price equation is widely
cited in the literature, almost no work has developed the set mapping formalism beyond the
description given in the initial publications. I know of only one article.

Kerr and Godfrey-Smith (2009) noted that, in the original Price formulation, every
descendant must derive from one or more ancestors. There is no natural way for novel
entities to appear. In applications, new entities could arise by immigration from outside the
system or, in a cultural interpretation, by de novo generation of an idea or behavior.
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Kerr and Godfrey-Smith (2009) present an extended expression to handle unconnected
descendants. Their formulation depends on making explicit the connection number between
each individual ancestor and each individual descendant, rather than using the fitnesses of
types. Some descendants may have zero connections.

With an explicit description of connections, an extended Price equation follows. The two
core components of covariance for selection and expected change for transmission occur,
plus a new factor to account for novel descendants unconnected to ancestors.

The notation in Kerr and Godfrey-Smith (2009) is complex, so I do not repeat it here.
Instead, I show a simplified version. Suppose that a fraction p of the descendants are
unconnected to ancestors. Then we can write the average trait value among descendants as

where  is the phenotype for the jth member of the descendant population that is
unconnected to ancestors, and αj is the frequency of each unconnected type, with Σαj = 1.
Given those definitions, we can proceed with the usual Price equation expression

Note that the term weighted by 1 − p leads to the standard form of the Price equation, so we
can write

In the component weighted by p, no connections exist between the descendant  and a
member of the ancestral population. Thus, we have no basis to relate those terms to fitness,
transmission, or property change. Kerr and Godfrey-Smith (2009) use an alternative notation
that associates all entities with their number of connections, including those with zero. The
outcome is an extended set mapping theory for evolutionary change. The main concepts and
the value of the approach are best explained by the application presented in the next section.

Gains and losses in descendants and ancestors
Fox and Kerr (2011) analyze changes in ecosystem function by modifying the method of
Kerr and Godfrey-Smith (2009). They measure ecosystem function by summing the
functional contribution of each species present in an ecosystem. To compare ecosystems,
they consider an initial site and a second site. When comparing ecosystems, the notion of
ancestors and descendants may not make sense. Instead, one appeals to the more general set
mapping relations of the Price equation.

Assume that there is an initial site with total function T = Σzi, where zi is the function of the
ith species. At the initial site, there are s different species, thus we may also express the total
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as T = sz̄, where z̄ is the average function per species. At a second site, total function is

, with s′ different species in the summation, and T′ = s′z̄′. Let the number of
species in common between the sites be sc. Thus, the initial site has S = s − sc unique
species, and the second site has S′ = s′ − sc unique species.

Fox and Kerr (2011) write the change in total ecosystem function as

The term S′z̄′ represents the change in function caused the gain of an average species, in
which S′ is the number of newly added species, and z̄′ is the average function per species.
Fox & Kerr suggest that a randomly added species would be expected to function as an
average species, and so interpret this term as the contribution of random species gain. The
term Sz̄ is interpreted similarly as random species loss with respect to the S unique species
in the first ecosystem not present in the second ecosystem.

Fox & Kerr partition the term sc(Δz̄) into three components of species function: deviation
from the average for species gained at the second site, deviation from the average for species
lost from the first site, and the changes in function for those species in common between
sites.

The point here concerns the approach rather than the theory of ecosystem function. To
analyze changes between two sets, one often benefits by an explicit decomposition of the
relations between the two sets. The original Price equation is one sort of decomposition,
based on tracing the ways in which descendants derive from and change with respect to
ancestors. Fox and Kerr (2011) extend the decomposition of change by set mapping to
include specific components that make sense in the context of changes in ecosystem
function.

More work on the mathematics of set mapping and decomposition would be very valuable.
The Price equation and the extensions by Kerr, Godfrey-Smith, and Fox show the potential
for thinking carefully about the abstract components of change between sets, and how to
apply that abstract understanding to particular problems.

Other examples
No clear guidelines determine what constitutes an extension to the Price equation. From a
broad perspective, many different partitions of total change have similarities, because they
separate something like selection from other forces that alter the similarity between
populations.

For example, the stochastic effects of sampling and drift create a distribution of descendant
phenotypes around the ancestral mean. In the classical Price formulation, there is only the
single realization of the actual descendants. A stochastic version analyzes a collection of
possible descendant sets over some probability distribution, and a mapping from the
ancestor set to each possible realization of the descendant set.

In other cases, partitions will split components more finely or add new components not in
Price’s formulation. I do not have space to review every partition of total change and
consider how each may be related to Price’s formulation. I list a few examples here.
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Grafen (1999) and Rice (2008) developed stochastic approaches. Grafen (2007) based a
long-term project on interpretations and extensions of the Price equation. Page and Nowak
(2002) related the Price equation to various other evolutionary analyses, providing some
minor extensions. Wolf, Brodie, Cheverud, Moore and Wade (1998), Bijma and Wade
(2008), and many others developed extended partitions by splitting causes with regression or
similar methods such as path analysis. Various forms of the Price equation have been
applied in economic theory (Andersen, 2004).

Difficulties with various critiques of the Price equation
A reliable way to make people believe in falsehoods is frequent repetition, because
familiarity is not easily distinguished from truth (Kahneman, 2011, p. 62).

One must distinguish the full, exact Price equation from various derived forms used in
applications. The derived forms always make additional assumptions or express approximate
relations (Frank, 1997). Each assumption increases specificity and reduces generality in
relation to particular goals.

Critiques of the Price equation rarely distinguish the costs and benefits of particular
assumptions in relation to particular goals. I use van Veelen’s recent series of papers as a
proxy for those critiques. That series repeats some of the common misunderstandings and
adds some new ones. Nowak recently repeated van Veelen’s critique as the basis for his
commentary on the Price equation (Veelen, 2005; Veelen, García, Sabelis & Egas, 2010;
Veelen, 2011; Veelen et al., 2012; Nowak, Tarnita & Wilson, 2010; Nowak & Highfield,
2011).

Dynamic sufficiency
The Price equation describes the change in some measurement, expressed as Δz̄. Change is
calculated with respect to particular mapping relations between ancestor and descendant
populations. We can think of the mappings and the beginning value of z̄ as the initial
conditions or inputs, and Δz̄ as the output.

The output, z̄′ = z̄ + Δz̄, does not provide enough information to iterate the calculation of
change in order to get another value of Δz̄ starting with z̄′. We would also need the mapping
relations between the new descendant population and its subsequent descendants. That
information is not part of the initial input. Thus, we cannot study the dynamics of change
over time without additional information.

This limitation with regard to repeated iteration is called a lack of dynamic sufficiency
(Lewontin, 1974). Confusion about the nature of dynamic sufficiency in relation to the Price
equation has been common in the literature. In Frank (1995, pp. 378–379), I wrote

It is not true, however, that dynamic sufficiency is a property that can be ascribed
to the Price Equation—this equation is simply a mathematical tautology for the
relationship among certain quantities of populations. Instead, dynamic sufficiency
is a property of the assumptions and information provided in a particular problem,
or added by additional assumptions contained within numerical techniques such as
diffusion analysis or applied quantitative genetics. ... What problems can the Price
equation solve that cannot be solved by other methods? The answer is, of course,
none, because the Price Equation is derived from, and is no more than, a set of
notational conventions. It is a mathematical tautology.

I showed how the Price equation helps to define the necessary conditions for dynamic
sufficiency. Once again, the Price equation proves valuable for clarifying the abstract
structure of evolutionary analysis.
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Compare my statement to Veelen et al. (2012)

Dynamic insufficiency is regularly mentioned as a drawback of the Price equation
(see for example Frank, 1995; Rice, 2004). We think that this is not an entirely
accurate description of the problem. We would like to argue that the perception of
dynamic insufficiency is a symptom of the fundamental problem with the Price
equation, and not just a drawback of an otherwise fine way to describe evolution.
To begin with, it is important to realize that the Price equation itself, by its very
nature, cannot be dynamically sufficient or insufficient. The Price equation is just
an identity. If we are given a list of numbers that represent a transition from one
generation to the next, then we can fill in those numbers in both the right and the
left hand side of the Price equation. The fact that it is an identity guarantees that the
numbers that appear on both sides of the equality sign are the same. There is
nothing dynamically sufficient or insufficient about that (this point is also made by
Gardner et al., 2007, p. 209). A model, on the other hand, can be dynamically
sufficient or insufficient.

This quote from Veelen et al. (2012) demonstrates an interesting approach to scholarship.
They first cite Frank as stating that dynamic insufficiency is a drawback of the Price
equation. They then disagree with that point of view, and present as their own interpretation
an argument that is nearly identical in concept and phrasing to my own statement in the very
paper that they cited as the foundation for their disagreement.

In this case, I think it is important to clarify the concepts and history, because influential and
widely cited authors, such as Nowak, are using van Veelen’s articles as the basis for their
own critiques of the Price equation and approaches to fundamental issues of evolutionary
analysis.

With regard to dynamics, any analysis achieves the same dynamic status given the same
underlying assumptions. The Price equation, when used with the same underlying
assumptions as population genetics, has the same attributes of dynamic sufficiency as
population genetics.

Interpretation of covariance
Veelen et al. (2012) claim that

Maybe the most unfortunate thing about the Price equation is that the term on the
right hand side is denoted as a covariance, even though it is not. The equation
thereby turns into something that can easily set us off in the wrong direction,
because it now resembles equations as they feature in other sciences, where
probabilistic models are used that do use actual covariances.

One can see the covariance expression in the standard form of the Price equation given in
eqn 2. In the Price equation, the covariance is measured with respect to the total population,
in other words, it expresses the association over all members of the population. In many
statistical applications, one only has data on a subset of the full population, that subset
forming a sample. It is important to distinguish between population measures and sample
measures, because they refer to different things.

Price (1972a, p. 485) made clear that his equation is about total change in entire populations,
so the covariance is interpreted as a population measure

[W]e will be concerned with population functions and make no use of sample
functions, hence we will not observe notational conventions for distinguishing
population and sample variables and functions.
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In additional to population and sample measures, covariance also arises in mathematical
models of process. Suppose, for example, that I develop a model in which random processes
influence fitness and random processes influence phenotype. If the random fluctuations in
fitness and the random fluctuations in phenotype are associated, the random variables of
fitness and phenotype would covary. All of these different interpretations of covariance are
legitimate, they simply reflect different situations.

Discussion
In Frank (1995), I wrote: “What problems can the Price equation solve that cannot be solved
by other methods? The answer is, of course, none, because the Price Equation is derived
from, and is no more than, a set of notational conventions. It is a mathematical tautology.”

Nowak and Highfield (2011) and Veelen et al. (2012) emphasize the same point in their
critique of the Price equation, although they present the argument as a novel insight without
attribution. Given that the Price equation is a set of notational conventions, it cannot
uniquely specify any predictions or insights. A particular set of assumptions leads to the
same predictions, no matter what notational conventions one uses. The Price equation is a
tool that sometimes helps in analysis or in seeing general connections between apparently
disparate ideas. For many problems, the Price equation provides no value, because it is the
wrong tool for the job.

If the Price equation is just an equivalence, or tautology, then why I am enthusiastic about
it? Mathematics is, in its essence, about equivalences, as expressed beautifully in the
epigraph from Mazur. Not all equivalences are interesting or useful, but some are, just as not
all mathematical expressions are interesting or useful, but some are.

That leads us to the question of how we might know whether the Price equation is truly
useful or a mere identity? It is not always easy to say exactly what makes an abstract
mathematical equivalence interesting or useful. However, given the controversy over the
Price equation, we should try. Because there is no single answer, or even a truly unique and
unambiguous question, the problem remains open. I list a few potential factors.

“[A] good notation has a subtlety and suggestiveness which at times make it seem almost
like a live teacher” (Russell, 1922, pp. 17–18). Much of creativity and understanding comes
from seeing previously hidden associations. The tools and forms of expression that we use
play a strong role in suggesting connections and are inseparable from cognition (Kahneman,
2011). Equivalences and alternative notations are important.

The various forms of the covariance component from the Price equation given in eqn 9 show
the equivalence of the statistical, geometrical and informational expressions for natural
selection. The recursive form of the full Price equation provides the foundation for all
modern studies of group selection and multilevel analysis. The Price equation helped in
discovering those various connections, although there are many other ways in which to
derive the same relations.

Hardy (1967) also emphasized the importance of seeing new connections between
apparently disparate ideas:

We may say, roughly, that a mathematical idea is ‘significant’ if it can be
connected, in a natural and illuminating way, with a large complex of other
mathematical ideas. Thus a serious mathematical theorem, a theorem which
connects significant ideas, is likely to lead to important advances in mathematics
itself and even in other sciences.

Frank Page 26

J Evol Biol. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



What sort of connections? One type concerns the invariances discovered or illuminated by
the Price equation. I discussed some of those invariances in an earlier section, particularly
the information theory interpretation of natural selection through the measure of Fisher
information (Frank, 2009). Fisher’s fundamental theorem of natural selection is a similar
sort of invariance (Frank, 2012b). Kin selection theory derives much of its power by
identifying an invariant informational quantity sufficient to unify a wide variety of
seemingly disparate processes (Frank, 1998, Chapter 6). The interpretation of kin selection
as an informational invariance has not been fully developed and remains an open problem.

Invariances provide the foundation of scientific understanding: “It is only slightly
overstating the case to say that physics is the study of symmetry” (Anderson, 1972).
Invariance and symmetry mean the same thing (Weyl, 1983). Feynman (1967) emphasized
that invariance is The Character of Physical Law. The commonly observed patterns of
probability can be unified by the study of invariance and its association to measurement
(Frank & Smith, 2010, 2011). There has been little effort in biology to pursue similar
understanding of invariance and measurement (Frank, 2011; Houle, Pélabon, Wagner &
Hansen, 2011).

Price argued for the great value of abstraction, in the sense of the epigraph from Mazur. In
Price (1995)

[D]espite the pervading importance of selection in science and life, there has been
no abstraction and generalization from genetical selection to obtain a general
selection theory and general selection mathematics. Instead, particular selection
problems are treated in ways appropriate to particular fields of science. Thus one
might say that ‘selection theory’ is a theory waiting to be born—much as
communication theory was 50 years ago. Probably the main lack that has been
holding back any development of a general selection theory is lack of a clear
concept of the general nature or meaning of ‘selection’.

This article has been about the Price equation in relation to its abstract properties and its
connections to various topics, such as information or fundamental invariances. Some readers
may feel that those aspects of abstraction and invariance are nice, but far from daily work in
biology. What of the many applications of the Price equation to kin or group selection? Do
those applications hold up? How much value has been added?

Because the Price equation is a tool, one can always arrive at the same result by other
methods. How well the Price equation works depends partly on the goal and partly on the fit
of the tool to the problem. There is inevitably a strongly subjective aspect to deciding about
how well a tool works. Nonetheless, hammers truly are good for nails and bad for screws.
For valuing tools, there is a certain component that should be open to agreement. For
example, the Robertson (1966) form of the Price equation is widely regarded as the
foundational method for analyzing models of evolutionary quantitative genetics. However,
not all problems in quantitative genetics are best studied with the Robertson-Price equation.
And not all problems in social evolution benefit from a Price equation approach.

The Price equation or descendant methods have led to many useful models for kin selection
(Frank, 1998). The most powerful follow a path analysis decomposition of causes or use a
simple maximization method to analyze easily what would otherwise have been difficult. I
will return to those applications in subsequent articles.
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Fig. 1.
Geometric expression of selection. The plots show the equivalence of the dot product, the
geometric expression and the covariance, as given in eqn 5. For both plots, z = (1, 4) and ƶ =
z/||z|| = (0.24, 0.97). The dashed line shows the perpendicular between the pattern of
frequency changes derived from fitnesses, Δq, and the phenotypic pattern, ƶ. The vertex of
the two vectors is at the origin (0, 0). The distance from the origin to the intersection of the
perpendicular along ƶ is the total amount of selection, ||Δq||cos φ. (a) The vector of
frequency changes that summarize fitness is Δq = (−0.4, 0.4). The angle between the vector
of frequency changes and the phenotypes is φ = arccos [(Δq · ƶ)/||Δq||] which, in this
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example, is 1.03 radians or 59°. In this case, the total selection is ||Δq||cos φ = 0.29. (b) In
this plot, Δq = (0.4, −0.4), yielding an angle φ of 121°. The perpendicular intersects the
negative projection of the phenotype vector, shown as a dashed line, associated with the
negative change by selection of ||Δq||cos φ = −0.29.
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