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Abstract
Introduction—The pandemic human pathogen, Staphylococcus aureus, displays high levels of
antibiotic resistance and is a major cause of hospital- and community-associated infections. S.
aureus disease manifestation is to a great extent due to the production of a large arsenal of
virulence factors, which include a series of secreted toxins. Antibodies to S. aureus toxins are
found in people who are infected or asymptomatically colonized with S. aureus. Immunotherapies
consisting of neutralizing anti-toxin antibodies could provide immediate aid to patients with
impaired immune systems or in advanced stages of disease.

Areas covered—Important S. aureus toxins, their roles in pathogenesis, rationales for selecting
S. aureus toxins for immunization efforts, and caveats associated with monoclonal antibody-based
passive immunization are discussed. This review will focus on hyper-virulent community-
associated methicillin-resistant S. aureus (CA-MRSA) because of their recent surge and clinical
importance.

Expert opinion—Antibodies against genome-encoded toxins may be more broadly applicable
than those directed against toxins found only in a sub-population of S. aureus isolates.
Furthermore, there is substantial functional redundancy among S. aureus toxins. Thus, an optimal
anti-S. aureus formulation may consist of multiple antibodies directed against a series of key S.
aureus genome-encoded toxins.
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1. The need for immunotherapies and vaccines against Staphylococcus
aureus

The commensal microorganism, Staphylococcus aureus, is a primary colonizer of human
nares (in ~ 25% of the population) and the etiological agent of many diseases [1, 2]. Since the
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1960s, the use of antibiotics to treat S. aureus-associated infections has become increasingly
problematic owing to the emergence of methicillin-resistant S. aureus (MRSA) and S.
aureus strains that are resistant to a wide variety of different antibiotics [2, 3]. Originally a
pathogen primarily of immune-compromised and otherwise predisposed patients in hospital
settings (hospital associated-MRSA; HA-MRSA) [4], more aggressive methicillin-resistant
strains of S. aureus have recently appeared in the community (community-associated-
MRSA; CA-MRSA), which may successfully infect healthy human people [1–3]. The
majority of CA-MRSA infections are soft skin and tissue infections (SSTIs) (~ 50% of total
cases). However, invasive cases of CA-MRSA-related diseases, such as necrotizing
pneumonia (~ 5% of total cases), are becoming increasingly more widespread. As a
consequence, the treatment of MRSA-infections places great financial strains on public
healthcare [5].

It is commonly believed that the epidemiological success of the pulsed-field type USA300
CA-MRSA isolate, which is now pandemic in the United States, is due to a combination of
high virulence, antibiotic resistance, and colonization capacity, leading to sustainable spread
in the community [6]. The high number of community-associated infections with USA300
has prompted considerable research efforts aimed to develop therapeutics to combat CA-
MRSA. These primarily include strategies interfering with virulence, including most notably
active and passive immunization efforts directed against CA-MRSA toxins and other
virulence factors (reviewed extensively in [7–10]).

Here, an overview on a number of S. aureus toxin families, with a focus on S. aureus toxins
encoded exclusively by, or showing increased expression in, CA-MRSA strains will be
provided. The roles that those toxins have in S. aureus pathogenesis and disease will be
discussed. Finally, the rationales and caveats regarding the use of anti-toxin monoclonal
antibodies (mAbs) as therapeutics for the prevention and treatment of CA-MRSA-mediated
disease will be explored.

2. Toxins involved in S. aureus pathogenesis
S. aureus produces and secretes many types of toxins with diverse roles in pathogenesis,
particularly affecting immune evasion and activation of the immune response. These include
alpha-hemolysin (α-hemolysin, Hla), beta-toxin (β-toxin), the superantigens (SAgs), the
leukotoxins, and the phenol-soluble modulins (PSMs). The genes coding for β-toxin, the
SAgs and leukotoxins are mostly encoded by mobile genetic elements (MGEs) [11];
therefore, toxin expression can differ tremendously between different strains of S. aureus.
Only a few S. aureus toxins, such as α-hemolysin and the PSMs, are genome-
encoded [12, 13] and expressed by both HA- and CA-MRSA strains. However, α-hemolysin
and the PSMs are expressed more strongly in CA-MRSA compared to HA-MRSA strains.
This suggests that differences in gene regulation may influence the epidemiological success
of CA-MRSA strains such as USA300 [14, 15]. For example, it has been noted that USA300
shows increased expression of the global regulatory quorum sensing system, accessory gene
regulator (agr) [16], which controls the expression of many virulence factors in a cell density-
dependent manner. The agr locus consists of a divergent promoter, which controls the
transcription of RNAII and RNAIII. The RNAII transcript contains 4 genes encoding a
classical two-component quorum sensing system (agrAC), an auto-inducing peptide (AIP)
precursor (agrD), and the AIP maturation and exporter protein (agrB). Upon increasing
concentration of AIP during growth, the AgrAC two-component system becomes activated
at a certain threshold concentration of AIP. Upon binding of AIP to the membrane protein
AgrC, AgrA is activated, which in turn binds to the divergent promoter and induces
transcription of RNAII and RNAIII. RNAIII is a regulatory RNA molecule that regulates the
expression of a majority of toxins [16]. S. aureus mutants lacking a functional agr regulatory
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system are significantly less virulent than the corresponding wild-type strains, which has
recently been demonstrated specifically for USA300 [14, 17–19].

2.1 Leukotoxins
Neutrophils, or polymorphonuclear leukocytes (PMNs), are key components of the innate
immune system and involved in controlling S. aureus infection [20, 21]. Possibly for that
reason, S. aureus produces a large variety of virulence factors that inhibit neutrophil
function [22], allowing S. aureus to circumvent elimination by innate host defense [23].
Particularly, pore-forming, bi-component leukotoxins with cytolytic affinity towards cells of
myeloid lineage, such as monocytes, macrophages and neutrophils, represent key
contributors to S. aureus immune evasion [24, 25]. Each leukotoxin requires one class S and
one class F protein, which are individually non-toxic, to form a β-barreled pore-forming
structure upon oligomerization [26]. Six class S subunits (LukS-PV, HlgA, HlgC, LukE,
LukM, LukH) and five class F subunits (LukF-PV, HlgB, LukD, LukF′-PV, LukG) have
been described [24, 25, 27, 28]. One exception to this monogamous pairing is the γ-hemolysin
gene cluster, which comprises three genes ((hlgA [or hlg2], hlgC [or lukS] and hlgB [or
lukF]), whose gene products allow the formation of two functional pairs of proteins: Hlg
[HlgA + HlgB] and Luk [HlgB + HlgC]. Notably, all leukotoxins reportedly contribute to
disease progression in at least some animal infection models, with the exception of LukM/
LukF′-PV [29–31].

While the hlg gene cluster occurs in 99% of S. aureus strains [32–34], many other leukotoxin
genes are not uniformly present among S. aureus isolates. The lukDE [35] and lukGH
(lukAB) [24, 25] genes can be found in many sequenced strains or clinical isolates including
USA300 [31]. However, for example, lukDE are not found in the HA-MRSA isolate,
USA200 [36] and the phage-encoded lukF-PV and lukS-PV [33], which code for Panton-
Valentine leukocidin (PVL), are mostly restricted to CA-MRSA strains [37], represented by
only ~ 5% of all clinical isolates. Of note, the role of PVL in S. aureus pathogenesis remains
controversial despite extensive research that has been performed on that
leukotoxin [1, 15, 38, 39]. Owing to the initially observed epidemiological link of lukSF-PV
with CA-MRSA, it has been suggested that PVL contributes to the pathogenesis of typical
CA-MRSA disease manifestations, such as necrotizing pneumonia [15, 40] or the formation
of skin abscesses [41, 42]. However, PVL-negative CA-MRSA strains have since been
isolated, indicating that this epidemiological correlation is not absolute [1, 15]. Furthermore,
animal infection studies investigating the role of PVL in S. aureus disease are not in
agreement [43–50]. These discrepancies may in part be due to differences of the animal
models used, such as inoculum size and host species. Over the last decade, the PVL
controversy may have overshadowed the importance of other, and perhaps more relevant,
leukotoxins that are expressed by a majority of CA-MRSA strains, such as lukDE and
lukGH. These leukotoxins are now being investigated more intensely. Studies using isogenic
S. aureus deletion mutants show that LukDE and LukGH contribute to the virulence of S.
aureus in murine sepsis [36] and renal abscess models [25], respectively. Furthermore, there
have been some, albeit relatively few studies on the contribution of γ-hemolysin to S. aureus
pathogenesis and disease. These studies indicate that γ-hemolysin may have roles in septic
arthritis and weight loss in mice [51] and endophthalmitis in rabbits [52]. However, it is
unknown whether LukDE, LukGH or γ-hemolysin contribute towards other facets of HA-
and CA-MRSA disease, for example, severe cases of pneumonia, as has been suggested for
PVL.

2.2. Staphylococcal superantigens
The superantigen (SAg) family consists of small, serologically distinct proteins including
staphylococcal enterotoxins (SEs) A–E, G–J, staphylococcal enterotoxin-like toxins (SEl)
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K-R, U and X, and Toxic Shock Syndrome Toxin-1 (TSST-1), all of which are ~ 20 – 28
kDa in size [34, 53, 54]. Members of the SAg family are responsible for food poisoning, toxic
shock syndrome and respiratory disease [55]. The SAgs share a common protein
structure [53, 56] that enables each SAg to crosslink different alleles of major
histocompatibility complex (MHC) class II molecules on the surfaces of antigen-presenting
cells with different alleles of the variable region of T-cell receptors (TCRs) [57–59]. These
interactions allow the SAgs to bypass the conventional antigen processing pathway to non-
specifically activate T-cells (~ 50%) and induce the irregular production of high levels of
inflammatory cytokines [60]. This event induces multisystem disease that includes rash,
hypotension, pyrexia, emesis and diarrhea [61]. The SAgs also cause severe life-threatening
multiple organ failure [61].

Of the large number of SAgs that have been described, only the recently discovered SElX is
genome-encoded [54]; all other SAgs are encoded by MGEs [62–64]. Moreover, not all S.
aureus isolates display superantigenic activity [65] because the SAgs are not distributed
equally among S. aureus strains [66]. Furthermore, it is not unusual to see varied levels of
SAg production among S. aureus strains that express SAgs [67–72]. This is attributed to the
involvement of at least three global regulators; agr [73], sarA [74], σB and saeRS [75].
Interestingly, TSST-1 and SEB have been reported to act as negative global regulators of
toxin production [76].

The roles of SAgs in the pathogenesis of S. aureus disease have been investigated in animal
models by administration of purified SAgs [77]. Other studies have compared the differences
in the capacities of naturally occurring SAg+ and SAg− strains [78] and isogenic SAg
mutants [54, 79–81] to cause disease in animals. The overall importance of the SAgs in CA-
MRSA pathogenesis is debatable, because many SAgs that are classically associated with S.
aureus disease are not expressed by CA-MRSA strains. For instance, USA300 does not
typically produce TSST-1, SEB or SEC, SAgs that are most often associated with toxic
shock [73, 82]. As one noticeable exception, SElX has been shown to contribute to USA300
necrotizing pneumonia in rabbits [54]. However, it is unknown if SElX contributes to other
manifestations of CA-MRSA disease, such as SSTIs.

2.3. Alpha-hemolysin
The genome-encoded α-hemolysin (Hla), one of the first toxins described for S. aureus, has
recently received considerable attention as a target for an anti-S. aureus vaccine and the
production of neutralizing antibodies for passive immunization. α-hemolysin is produced by
a majority of S. aureus strains and its expression is regulated by at least three global
regulatory systems, which include agr [83]. It is well known for its pore-forming [13, 84–89]

and pro-inflammatory [90] properties. However, its cognate receptor, the zinc-dependent
metalloprotease ADAM10 (A disintegrin and metalloproteinase 10), was only recently
discovered [91, 92]. α-hemolysin contributes significantly to the pathogenesis of S. aureus
USA300-induced skin infection and pneumonia [46, 93, 94]. Mice that do not express
ADAM10 are resistant to lethal infection with S. aureus strain USA300 in a pneumonia
model [91], but it is not known if ADAM10 is also required for α-hemolysin induced abscess
formation by S. aureus. Another signal, which is found on immune cells, may also be
required for α-hemolysin-induced pneumonia by S. aureus [95]. This second signal belongs
to a class of cytosolic proteins called nucleotide-binding domain and leucine-rich repeat
containing (NLR) proteins, which are important activators of the innate immune response.
NLRs defend against pathogen infection and endogenous damage in response to a variety of
immunogenic stimuli [96]. Upon activation, several members of this family assemble into
large multimeric protein complexes called inflammasomes, which induce inflammatory
responses. NLRP3 in particular is activated in response to bacterial toxins [97], including S.
aureus β-toxin, γ-hemolysin [98] and α-hemolysin [95]. Thus, NLPR3 inflammasome
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activation and the presence of ADAM10 appear to contribute to the development of S.
aureus pneumonia.

2.4 Phenol-soluble modulins
The phenol-soluble modulins (PSMs) are a family of small, amphipathic peptides with
cytolytic and pro-inflammatory properties towards a range of cells types including
erythrocytes and neutrophils [12]. The pro-inflammatory properties of PSMs (such as,
induction of intracellular calcium flux, chemotaxis, and cytokine production in neutrophils)
are dependent on binding to their cognate receptor, human formyl peptide receptor 2
(FPR2). Of note, PSM-dependent cell lysis occurs independently of FPR2 binding [99]. Two
PSM sub-families can be distinguished: PSMα peptides, which include the well-known δ-
toxin, are 20 – 26 amino acids, and PSMβ peptides 43 – 44 amino acids in length [12].
Generally, members of the PSMα class show more pronounced pro-inflammatory and
especially lytic activities than members of the PSMβ class [12].

Similar to many other S. aureus virulence determinants, PSMs are under control of the agr
global regulatory system [12, 100]. However, in contrast to most Agr targets, they are
regulated directly by AgrA rather than via RNAIII [100, 101]. Most S. aureus strains contain
the RNAIII-embedded hld gene encoding δ-toxin [102], and the operons coding for the psmα
and the psmβ genes, which are located on two separate loci [12]. In contrast to the ubiquitous
prevalence of the psmα and the psmβ genes, the psm-mec gene [103] is restricted to HA-
MRSA strains carrying staphylococcal cassette chromosome mec (SCCmec) types II, III and
VIII [101].

Importantly, CA-MRSA isolates secrete higher amounts of PSMs in average compared to
HA-MRSA isolates [12], suggesting that the PSMs have a prominent role in CA-MRSA
pathogenesis. Indeed, isogenic CA-MRSA psmα mutants are severely impaired in their
ability to form abscesses and cause sepsis in mice [12]. Collectively, the α-class PSMs,
including δ-toxin, and the β-class PSMs all play a role in the dissemination of CA-MRSA
from biofilm-related catheter infections in mice [104]. Biofilms are sticky agglomerations
consisting of a mixture of bacterial cells and extracellular polysaccharide matrices and are
intrinsically resistant to antibiotics and mechanisms of host defense [105]. The detergent-like
quality of PSMs [12, 106] influences the development of mature biofilms by breaking
interactions between cell populations, introducing channel formation, followed by the
detachment of cell clusters, leading to bacterial dissemination in vivo [104, 107]. Finally,
PSMs act synergistically with β-toxin [108, 109] and PVL [110] in vitro. Since important CA-
MRSA isolates do not produce β-toxin [111] and not all CA-MRSA isolates harbor the lukF-
PV and lukS-PV genes, this synergism may infer a cooperative relationship between
virulence factors produced by different strains of S. aureus that have different toxin
expression profiles.

3. Anti-toxin antibody responses in humans
Soon after birth, 40 – 50% of the population carry S. aureus. By 14 months of age, there can
be a ~ 40% reduction in carriage rates [112, 113] and S. aureus can remain a persistent
colonizer in the nares of adults in ~ 25% of the population [114]. In healthy human
individuals, antibody responses toward many S. aureus antigens can be detected, such as cell
surface components, non-protein antigens, and toxins [54, 115–118], indicating that S. aureus
antigens are immunogenic.

Antibodies against most S. aureus toxins are not readily detected in healthy newborns
although anti-TSST-1 antibodies were reported [119]. In healthy adults, carriers of S. aureus
can produce greater levels of antibodies towards S. aureus antigens than non-carriers, but
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these titers are generally less pronounced at the age of 65 and higher [116]. Of the anti-toxin
antibodies, only significantly higher levels of anti-TSST-1 and anti-SEA have been
described in carriers compared to non-carriers; and it is thought that previous exposure(s) to
different S. aureus strains may account for the diverse levels of antibody titers between
individuals [116, 117].

Individuals infected with S. aureus generally produce greater levels of antibodies to PVL, α-
hemolysin, and SAgs than healthy individuals [44, 115, 119, 120]. Furthermore, low levels of
antibodies may be associated with more severe S. aureus infections [120]. However, presence
of antibodies is not necessarily associated with protection, as recently described for the role
of anti-PVL antibodies in PVL+ CA-MRSA infections in humans [121].

Sera from S. aureus-infected patients may demonstrate neutralizing activity against S. aureus
toxins, such as SAgs [117, 122, 123] but whether there is neutralizing activity of these sera
towards other S. aureus toxins remains to be determined. Altogether, although much
information has been garnered from these serological studies, the roles that anti-S. aureus
antibodies play during infection still remains largely unknown.

4. S. aureus toxins as targets for monoclonal antibody therapy
Unlike active immunization, which sometimes requires repeated boosters and long periods
of time for maximum immune responses to be generated, passive immunization would
provide immediate treatment for unvaccinated patients to help reduce the severity of acute S.
aureus disease. Perhaps even more importantly, mAb therapy would benefit immune-
compromised patients or infants with immature immune systems or even add to the existing
pool of potentially protective anti-S. aureus antibodies. Clearly, it is important for such
therapy to take effect that S. aureus is rapidly identified. Moreover, late stages of S. aureus
infection may not be amenable to passive therapy, as advanced stages of toxin-mediated
tissue destruction will have ensued. Even though there are caveats to passive immunization,
much research has recently been performed on neutralizing mAbs against S. aureus toxins;
and some of these successfully protected from S. aureus infection in animal models (Table
1). Polyclonal anti-toxin antibodies also are protective in animal models of S. aureus
infection (Table 1). However, many of the investigated toxins, such as PVL and SEB, are
not expressed by all S. aureus strains. Therefore, anti-PVL and anti-SEB antibodies may
only be useful in treating acute infections caused by PVL and SEB-expressing S. aureus
strains. Instead, core-genome encoded toxins, such as α-hemolysin, SElX, LukGH, and
PSMs may better serve as targets for antibody generation, as antibodies against those toxins
may be more broadly applicable for acute cases of S. aureus infections. The use of these
toxins as targets for mAb generation will be discussed in more detail below.

4.1 Antibody therapy against the leukotoxins
Even though there is controversy over whether PVL is a decisive virulence determinant in S.
aureus, there is still strong interest in creating a vaccine against PVL and producing anti-
PVL mAbs. There are several points supporting the use of anti-PVL antibodies for passive
immunization. First, humans are capable of generating humoral immune responses against
PVL [115, 117, 121]. Second, polyclonal and mAbs to PVL are neutralizing [121, 124, 125].
Third, injection of PVL together with a tetravalent anti-PVL mAb, which binds both LukS-
PV and LukF-PV antigens simultaneously, reduced inflammation and tissue destruction in a
non-lethal model of endophthalmitis in rabbits [124]. Finally, anti-PVL mAbs exhibit cross-
reactivity with other leukotoxins, such as HlgC [124]. On the other hand, there are many
important findings that negate the benefits of using anti-PVL antibodies. First, polyclonal
anti-PVL antibodies failed to neutralize the cytotoxicity of a PVL-expressing USA300 strain
toward human neutrophils in vitro [126]. Second, anti-PVL immune sera did not protect from
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S. aureus pneumonia in passive immunization experiments using mice [46]. Third, PVL-
neutralizing antibodies did not protect children from primary or recurrent CA-MRSA-
associated SSTIs [121]. Finally, the presence of anti-PVL antibodies may in fact exacerbate
disease caused by PVL-expressing CA-MRSA during early stages of infection [127]. These
antibodies may prevent the interactions of PVL with cells of the innate immune system,
resulting in poor activation of the immune response and a decreased ability to mount an
attack to the infection.

LukDE and LukGH (LukAB) also interact with innate immune cells [24, 25] and are lytic
toward neutrophils [24, 25]. Furthermore, PVL and LukGH lyse other innate immune cells,
such as human monocytes and macrophages [25, 128]. S. aureus strains that express one or
more of these leukotoxins at sufficient levels thus may severely impair the ability of the host
to mount an effective immune response. However, it remains to be investigated whether
antibodies to leukotoxins other than PVL also may enhance the virulence of S. aureus in a
way similar to anti-PVL antibodies. Finally, it has been reported that active immunization
with PVL subunits relieves mice of severe skin and intranasal infection with PVL-
expressing CA-MRSA [44]. Phase II clinical trials are currently underway using a
recombinant LukS-PV toxin subunit. The results of this study have yet to be released [129].

Taken together, there are strong arguments against the use of anti-PVL antibodies to treat
CA-MRSA disease. Furthermore, there is currently no compelling evidence for a necessary
role of PVL in CA-MRSA pathogenesis, leaving the possibility that CA-MRSA strains
without PVL may further expand or PVL-positive CA-MRSA strains may lose the PVL-
encoding prophage without a substantial loss of virulence characteristics. Moreover,
pursuing development of an anti-PVL mAb- or antigen-based vaccine is problematic from a
marketing point of view, because only ~ 5% of S. aureus clinical isolates possess the genes
coding for PVL, limiting its applicability. Finally, although active immunization with PVL
subunits appears to be an encouraging alternative to passive immunization, active
vaccination with a combination of LukGH or LukDE subunits may help protect against a
larger number of S. aureus infections.

4.2 Antibody therapy against the superantigens
The SAgs are responsible for a range of symptoms and diseases in humans that range from
food poisoning to toxic shock. Passive therapy with anti-SAg antibodies would likely help
alleviate the symptoms associated with SAg-related disease by preventing the interactions of
the SAgs with their ligands. Antibodies against TSST-1, SEA, SEB, SEC are readily
detected in healthy individuals [117, 130–132] and individuals with active S. aureus
infections [119], indicating that these SAgs are immunogenic.

There is particular interest in developing neutralizing antibodies against the category B
bioterrorism agent, SEB, which is resistant to denaturing and highly toxic to
humans [133, 134]. Anti-SEB mAbs are neutralizing in vitro [135] and passive therapy with
anti-SEB antibodies successfully prevents SEB-induced disease manifestations in mice [136]

and monkeys [137] against lethal challenge with purified SEB. While there is certainly cross-
reactivity of anti-SAg mAbs with several SAgs [138], it is unlikely that a monovalent SEB
mAb will protect from infection by many SEB- expressing S. aureus strains of high clinical
importance, such as the pandemic CA-MRSA strains. In contrast, passive immunization
with several different anti-SAg mAbs would potentially be able to protect against a larger
variety of S. aureus strains. Furthermore, the genome-encoded SElX may serve as an
attractive alternative target for generating mAbs, because it is expressed by a majority of S.
aureus isolates including the CA-MRSA strain USA300 [54]. Finally, passive immunization
is not the only strategy for interfering with SAg-producing strains; other strategies include
active immunization with detoxified SAgs [139–141], the use of soluble forms of engineered
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TCR Vβ proteins [142], and hybrid TCR Vβ/MHCII proteins [143] that can block the binding
activity of SEB toward its natural ligands found on T cells and antigen-presenting cells.

4.3 Antibody therapy against α-hemolysin
Healthy human individuals that are colonized with S. aureus produce high levels of
antibodies directed toward α-hemolysin [116, 117]. As α-hemolysin is expressed by a
majority of S. aureus strains, passive immunization with mAbs to α-hemolysin may be
effective against many different S. aureus strains including strains of CA-MRSA. Several
studies have shown the protective efficacy of anti-α-hemolysin antibodies in S. aureus
abscess [144, 145] and pneumonia [46, 146] murine infection models. In addition, active
immunization with a detoxified α-hemolysin derivative (H35L) was shown to reduce the
severity of S. aureus-induced pneumonia [46] and S. aureus abscess [145] infections.
Interestingly, recombinant α-hemolysin toxoid is being tested in the same phase II clinical
trial as recombinant LukS-PV [129].

4.4 Antibody therapy against the phenol-soluble modulins
The genome-encoded PSMs show little variation in amino acid sequences between S. aureus
strains [12]. Therefore, antibodies against PSMs could serve as an effective passive
immunization strategy against a broad spectrum of S. aureus strains. Infants with invasive S.
aureus infections do not appear to produce antibodies to the strongly cytolytic PSMα3 [147],
but anti-PSM antibodies can be raised in animals injected with PSMs and adjuvant [107, 148]

indicating that the PSMs have immunogenic potential. High levels of PSMs are produced by
CA-MRSA strains in vitro [12, 14], but the levels of PSM in-vivo production are yet
unknown. Therefore, the lack of anti-PSM antibody production, which is observed at least in
infants, may either be due to a low production level of PSMs under those conditions, or if
the infection is localized, such as in a SSTI, the host may not be able to detect enough PSMs
in order to generate antibodies. Antibodies against PSMs may be more readily detected in
adults or in other types of S. aureus diseases. However, this needs to be determined by
including the relatively recently discovered PSMs as antigens in future human serological
studies.

Although S. aureus catheter-related biofilm infections are not a focus of this review, this
subject area warrants a brief discussion. PSMs play a crucial role in biofilm structuring and
dissemination of biofilm-associated infection in these organisms [104, 107]. Notably, anti-
PSMβ antibodies blocked the dissemination of S. epidermidis catheter infection in mice.
Therefore, passive immunization with anti-PSM antibodies may be useful to inhibit the
dissemination of bacteria from biofilm formed on catheters. However, more research is
clearly needed to investigate antibody therapy against PSMs.

5. Expert opinion
There is an urgent need for research aimed to find a successful immunization strategy
against S. aureus infections. This is warranted in particular because of the high levels of
antibiotic resistance shown by pandemic strains of S. aureus. Antibodies against S. aureus
toxins may have particular value, as they neutralize the binding affinity of the toxins,
preventing pro-inflammatory responses and cytolytic activities. Furthermore, they may
block toxin oligomerization even after insertion into cell membranes, thus preventing
cytolytic activity of the toxin.

Choosing a specific S. aureus toxin as a singular vaccine target is complicated by the fact
that S. aureus produces many, often functionally redundant toxins. Some toxins are
immunogenic and play important roles in S. aureus pathogenesis, but many are not
expressed by all S. aureus isolates. Therefore, targeting core-genome encoded toxins, such
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as α-hemolysin, LukGH, SElX or the PSMs, would serve as a better basis for vaccine
development than toxins only produced by a sub-population of strains, such as PVL,
TSST-1, SEA, SEB and SEC, especially when aiming for a vaccine preparation with broad
applicability.

Monoclonal antibodies raised against only one S. aureus antigen are protective in animal
models of S. aureus infection, but frequently, only disappointing results were achieved with
many of those mAbs in human phase 1/2 clinical trials (reviewed in [149]). An alternative,
and perhaps more successful, strategy would comprise a mAb preparation consisting of
antibodies against different toxins and possibly other S. aureus virulence factors, such as
surface proteins, to simultaneously target establishment and exacerbation of infection. In
theory, such antibody therapy would thus be able to inhibit different aspects of S. aureus
pathogenesis. Interestingly, it was recently shown that administration of two different mAbs
against S. aureus SEB led to significantly more protection than one singular SEB-directed
mAb [136]. This concept is not new - similar results have been achieved with mAbs against
toxins produced by other bacterial species, such as Bacillus anthracis anthrax toxin [150],
Clostridium botulinum neurotoxin A [151] and C. difficile toxins A and B [152]. However, it
needs to be further explored whether such a vaccination strategy, i.e. using antibodies
against different S. aureus antigens, would be broadly effective against S. aureus. Moreover,
it needs to be cautiously evaluated whether antitoxin antibodies may have the opposite effect
of exacerbating S. aureus disease, such as in the case of passive immunization with anti-
PVL antibodies [127].

In summary, unsuccessful clinical trials with predominantly non-toxin-based S. aureus
antigens warrant new approaches to protect against the new wave of pandemic CA-MRSA
strains in addition to the continuously high disease burden due to HA-MRSA. There is
strong evidence from laboratory experiments suggesting that passive immunization
approaches using anti-toxin antibodies may be as successful as those directed toward other
S. aureus antigens. However, human clinical trials will always be required as ultimate proof
of efficacy against S. aureus infection [9, 136, 153].
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Highlights

• Passive immunization with one antibody or active immunization with one
antigen may not be sufficient to protect against different epidemic S. aureus
strains.

• Genome-encoded virulence factors, such as SElX, PSMs and α-hemolysin, as
targets would allow universal treatment against different epidemic S. aureus
strains.

• Active immunization against leukotoxins may be advantageous. However, other
leukotoxins, such as LukDE and LukGH, should be considered in addition to
PVL.

• Passive immunization with multiple mAbs against different S. aureus virulence
factors may be more beneficial than passive immunization with one mAb.
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