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Abstract
BACKGROUND—This report and a companion report describe a validation of the ability of
serum proteomic profiling via SELDI-TOF mass spectrometry to detect prostatic cancer. Details
of this 3-stage process have been described. This report describes the development of the
algorithm and results of the blinded test for stage 1.

METHODS—We derived the decision algorithm used in this study from the analysis of serum
samples from patients with prostate cancer (n = 181) and benign prostatic hyperplasia (BPH) (n =
143) and normal controls (n = 220). We also derived a validation test set from a separate,
geographically diverse set of serum samples from 42 prostate cancer patients and 42 controls
without prostate cancer. Aliquots were subjected to randomization and blinded analysis, and data
from each laboratory site were subjected to the decision algorithm and decoded.

RESULTS—Using the data collected from the validation test set, the decision algorithm was
unsuccessful in separating cancer from controls with any predictive utility. Analysis of the
experimental data revealed potential sources of bias.

© 2007 American Association for Clinical Chemistry
*Address correspondence to this author at: O. John Semmes, Ph.D., The Virginia Prostate Center, Eastern Virginia Medical School,
Lewis Hall 3110, Norfolk, Virginia 23506. semmesoj@evms.edu.

Financial Disclosures: None declared.

NIH Public Access
Author Manuscript
Clin Chem. Author manuscript; available in PMC 2012 May 17.

Published in final edited form as:
Clin Chem. 2008 January ; 54(1): 44–52. doi:10.1373/clinchem.2007.091470.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



CONCLUSION—The ability of the decision algorithm to successfully differentiate between
prostate cancer, BPH, and control samples using data derived from serum protein profiling was
compromised by bias.

Multiple laboratories have reported that the spectral patterns of mass spectrometric
examinations of specimens of serum can be used to identify patients with several types of
tumors (1–7). Based on work at Eastern Virginia Medical School (EVMS)11 and the Fred
Hutchinson Cancer Research Center, a diagnostic profile of 9 spectral peaks was reported
that could be used to identify patients with prostate cancer (PCa) based on evaluation of
serum using SELDI-TOF mass spectrometry. These studies suggested that an accuracy
>90% in classification of patients with cancer from controls could be expected (8). Such
results would be very important because the current screening methods for PCa using serum
concentrations of prostate-specific antigen (PSA) do not detect the majority of prostate
cancers, including high-grade tumors (9).

Extensive controversy has accompanied the use of mass spectrometric techniques for
identification of early cancers (10–16); there is concern for false discovery and unwarranted
generalizability (17) arising from the analysis of data using methods such as SELDI-TOF
mass spectrometry and other multiplex assays for the detection of disease (18, 19). In
response to such controversy and because of the desire to evaluate the potential clinical
utility of such methodologies, the National Cancer Institute Early Detection Research
Network (EDRN) decided that a rigorous validation study should be undertaken. The
validation study (20) was divided into 3 stages and was specifically targeted at evaluation of
the previously published EDRN study for the detection of PCa (1). In stage 1, a group of 6
institutions reported that SELDI-TOF mass spectrometry instruments at separate sites could
be accurately standardized over a 3-month period and could be used to accurately classify
previously studied PCa patient and control sera using known spectral features (21). Also in
stage 1, the intention was to test if the same algorithm could discriminate between cancer
and noncancer samples derived from independent and geographically distinct
nonoverlapping populations. The development of the original algorithm and the independent
testing are the subject of this report. We present this study and a companion report as a
model for biomarker validation studies.

Materials and Methods
SAMPLE SELECTION

We identified 194 PCa patients, 216 patients with benign prostatic hyperplasia (BPH), and
1326 healthy control patients from samples collected at EVMS under a protocol approved by
the EVMS Institutional Review Board and sent to the EDRN Data Management and
Coordinating Center. Some patient samples were excluded for the following reasons: PCa—
race not African-American or white (n = 2), age >80 years (n = 4), 1st available sample
collected after biopsy (n = 3), and insufficient volume (n = 4); BPH—race not African-
American or white (n = 42), age >80 years (n = 28), and insufficient volume (n = 3); control
—race not African-American or white (n = 48) and age >80 years (n = 64). All nonexcluded
PCa (n = 181) and BPH (n = 143) sera were selected for inclusion in the study. In addition,
sera from men with no history of PCa or BPH were identified as normal controls and were
selected to match the approximate age and race distribution of men with PCa and BPH. For
PCa and BPH disease conditions, the age frequency distribution over 5-year intervals was

11Nonstandard abbreviations: EVMS, Eastern Virginia Medical School; PCa, prostate cancer; PSA, prostate-specific antigen; EDRN,
National Cancer Institute Early Detection Research Network; BPH, benign prostatic hyperplasia; CTRC, University of Texas Health
Center at San Antonio; UPCI, University of Pittsburgh Cancer Institute; JHU, Johns Hopkins University Medical Center; CPDR,
Center for Prostate Disease Research; UAB, University of Alabama Birmingham.
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constructed by race. For each age/race group, controls were selected at random, with
frequency matching the larger of the case-specific age/race frequencies. The number of
normal controls selected was 220.

For the validation test set, 4 institutions provided 84 samples, 42 PCa and 42 normal
controls, to be evaluated with the classifiers developed from the training data. Two
institutions contributed 14 samples each and 2 contributed 28 samples each. Each institution
provided an equal number of PCa and normal control samples. All samples were collected
following strict standard operating procedure (20). Balance between PCa and normal control
sample collection within each contributing bio-repository produced consistent sample
collection methods for case and control samples despite imbalance in the number of samples
from different centers.

We divided all samples into 18 aliquots of 30 µL and distributed the aliquots evenly to 6
laboratories having SELDI-TOF mass spectrometry systems that had been optimized/
standardized as reported (21). The 6 participating sites were the University of Texas Health
Center at San Antonio (CTRC), University of Pittsburgh Cancer Institute (UPCI), Johns
Hopkins University Medical Center (JHU), Center for Prostate Disease Research (CPDR),
University of Alabama Birmingham (UAB), and EVMS. Each laboratory received 252
aliquots. In addition, 36 aliquots from a pooled reference serum sample were sent to each
laboratory for quality control monitoring. Each laboratory spotted the 252 specimen and 36
pooled serum samples on 36 IMAC-3 ProteinChips® (Ciphergen Biosystems), with either 3
case and 4 control or 4 case and 3 control aliquots per chip along with 1 reference sample.
The position of each aliquot was randomized separately for each laboratory, so PCa and
normal control aliquots occurred in every well with equal probability. Sample replicates
(aliquots) were treated as individuals in randomization. Each laboratory ran the 36 chips in 3
bio-processors. Each laboratory used separate calibrations to convert time-of-flight to mass/
charge (m/z) values.

MASS SPECTROMETRY ANALYSIS
All serum processing steps were performed robotically with a Biomek 2000 Workstation
liquid handling robot (Beckman Instruments) exactly as described by Semmes et al.
(21).Mass accuracy was calibrated externally using the All-in-1 peptide molecular weight
standard (Ciphergen Biosystems).

DATA PROCESSING
Spectral degradation was apparent for some samples. Before further analysis, all spectra
were examined and assessed regarding spectral quality. A logistic regression was fitted with
visual assessment of spectrum degradation as the response and 3 spectrum-specific predictor
variables: a) standard deviation of spectral values, b) autocorrelation of spectrum values
measured by the Durbin-Watson statistic, and c) maximum spectral intensity. The model for
spectral degradation yielded specificity 95% for sensitivity 95%. Because the probability
model for spectral degradation is based on measurable criteria, we used the modeled
probability to exclude spectra from classifier development and testing. Classifying all
samples with modeled probability of spectrum degradation greater than P = 0.1 as degraded,
51 spectra (4.53%) were removed from the training data sets and 12 (2.47%) were removed
from the test set. In most cases, only a single replicate was eliminated from any sample.
However, all replicates for 2 control group samples were excluded, leaving n = 152 control
samples for classifier development.

A test data set of 30% of samples in each group was chosen at random, and we used the
remaining 70% to construct a disease status classifier. We identified signal peak locations
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using methods described in Yasui et al. (22). We subjected validation spectral data to
baseline subtraction and total ion content normalizations and then sent them to the Data
Management and Coordinating Center for subsequent analysis. Peak intensities over the
interval m/z* (1 ± 0.002) were constructed for all 2570 m/z values returned by the Yasui
algorithm. We used a larger window for these secondary test data to account for slight
differences between the SELDITOF mass spectrometry instruments in the participating
laboratories.

In addition, we used wavelet decomposition of the mass spectrometry signal to identify and
measure peak intensities. Wavelet decomposition, which measures local rate of change in
intensity rather than local intensity, has been shown to be effective at peak identification on
shoulders of dominant peaks (23).

DATA ANALYSIS
Using boosted logistic regression, we constructed 2 classifiers separating PCa from normal
controls with the training data from EVMS. The first classifier used median peak intensity
across replicates within samples at each peak alignment value as candidate predictor
variables. To construct the second classifier, peak intensities were ranked within spectra and
ranks binned into 100 levels. We computed median bin values across replicates within
samples for each aligned m/z value. These median bin values were used as candidate
predictor variables for the second classifier. The second method would be more robust if
between-spectrum variability were large even after normalization and baseline subtraction.

Boosting models were fitted using a 10-fold cross-validation stopping rule. We divided
groups into 10 sets each, balanced with respect to the number of observations in each set.
For each 10% set, the remaining 90% of the data were used to construct a boosting classifier
with K terms (or K iterations), K = 1, 2, 3, …. For each of the 10 divisions of the data, we
computed the misclassification error rate for the 10% of samples that were not used to
construct the classifier and averaged the misclassification error rate over the 10 sets at every
boosting iteration. The average misclassification error rate across the 10 cross-validation
sets was used to determine the number of iterations (M) necessary to achieve a best model.
The boosted logistic regression model was then computed employing all data in the training
set, stopping after M iterations.

For evaluation, we scored the 30% test set data using both classifiers, with positive values of
the boosting linear predictor indicating cases and negative values indicating controls. For the
30% test set, we computed sensitivity and specificity of the classifier. The validating test
data were scored with the same classifiers. We also examined the sensitivity and specificity
for data generated from each laboratory.

Results
CONSTRUCTION OF CLASSIFIER FOR DISCRIMINATING PROSTATE CANCER

After peak selection, we subjected the data to 2 classifier development approaches: the first
used median peak intensities and the second used median binned peak ranks. The boosting
cross-validation error rates decreased through 3 iterations, with a final cross-validation error
rate of 25% for the classifier constructed from median peak intensities. The experimental m/
z values for the 3 peaks included in the classifier were 7775.93, 3651.38, and 3246.57, listed
in order of entry into the classifier. In cross-validation, we observed sensitivity 71% and
specificity 79%. The classifier constructed from median binned peak ranks required only 2
iterations to achieve a minimum cross-validation error rate of 23%. The m/z values for the 2
peaks included in the classifier were 5943.44 and 3449.77. Cross-validation of this set
yielded sensitivity 63% and specificity 89%. It was expected that the cross-validation error
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rates were somewhat optimistic. When the 2 classifiers were used to predict status in the
30% test data set, the misclassification error rates were 27% and 28%, respectively. For the
classifier constructed using median intensities, we observed sensitivity 59% and specificity
85%. The classifier constructed from median binned peak ranks had sensitivity 57% and
specificity 82%.

ANALYSIS OF DATA FOR SOURCES OF BIAS
Postexperimental analysis can reveal hidden bias by evaluating the overall detail of collected
data. To identify potential bias, we constructed spectral intensity heat maps with spectra
arranged with respect to sample characteristics such as case status and specimen collection
date within case status. In this analysis, we observed differences in mass spectroscopy
profiles between prostate cancer cases collected before and after 1996. Heat maps of the
mass spectroscopy profiles around primary peaks 7775.93 and 5943.44, which were
dominant features for classification, suggested that the PCa cases collected before 1996 have
considerably different spectral profiles from those collected in 1996 or later (Fig. 1A and B).
For the 1st peaks that enter into each classifier, PCa cases collected after 1996 appear to
have spectral profiles more similar to normal control samples, which were all collected after
1995. We also observed that overall higher intensities were associated with normal control
and recent PCa cases compared with older PCa cases. The fact that older cases contained
lower intensities and were all cancers was strong evidence of sample bias. Interestingly, this
was not the case for the secondary peaks (Fig. 1C and D). Peaks that entered the classifiers
in the 2nd or 3rd boosting iteration exhibited little difference between PCa samples collected
before and after 1996. When we compiled all potential confounding aspects of the sample
collection (see Table 1), we uncovered some disparities in time of storage (reflected as date
of collection) and the number of freeze-thaws.

EVALUATION OF CLASSIFICATION ROBUSTNESS
Similarity in secondary peak intensity values between pre- and post-1996 PCa samples
suggests there might be some ability to discriminate between PCa and normal control
samples in the independent 84-sample test set collected from the 4 biorepositories.
Therefore, we performed all subsequent analysis both with and without the pre-1996 data.
We will refer to the initial data set as study A and after removal of the pre-1996 spectra as
study B. We performed the same classifier construction approaches on study A and study B;
because of space limitations, the results of study B are included as supplemental data. Fig. 2
displays ROC curves showing the utility of the classifier constructed from median intensities
in predicting cancer status in study A. For Pittsburgh, the best point along the ROC curve
produces 58.3% correct classification. Both EVMS and CTRC achieve 67.9% correct
prediction at the best point along the ROC curve. Across the 6 laboratories, the average
maximum correct prediction probability is 62.8%. The median intensity classifier from study
A has significant ability to predict cancer status only for the 2 laboratories EVMS and
CTRC. ROC curves for the median binned rank classifier approach in study A (see
Supplemental Data Fig. 2) demonstrate similar classifier function, with a mean across the 6
laboratories of 64.6%.

ROC curves constructed for the 4 classifiers obtained when we restrict sample collection to
the post-1996 time period indicate no improvement in predictive utility for the models
tested, except for 1 model employing median binned rank intensity values for peak locations
and peak intensities measured through wavelet detail functions (see Supplemental Data Fig.
3).
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MULTILABORATORY TESTING OF THE CLASSIFIER; AGREEMENT BETWEEN
LABORATORIES

We next examined the across-laboratory agreement for each classifier as applied to the test
set. Again, we analyzed the data with and without the pre-1996 data (see Supplemental Data
Tables 1 and 2). Laboratory agreement among the 6 sites in predicting case status is shown
in Table 2. Agreement exceeds 80% in all but 1 instance (agreement between laboratories at
JHU and CPDR was 78.6%). For the median intensity classifier, the association of cancer
status prediction across laboratories was significant at P <0.05 (Fisher exact χ2). There was
significant association at P <0.05 for the prediction of cancer status across all but 2
laboratory pairs (UAB with CTRC and UAB with JHU) when using the median binned peak
ranks classifier. The high agreement between laboratories is confounded by the poor
predictive ability of the models, which places constraints on the number of samples for
which the prediction can differ. Both classifiers predicted the majority of samples as
controls (see Table 3).

INTERSTUDY ANALYSIS FOR THE PRESENCE OF M/Z PEAKS THAT DISPLAY
CONSISTENT DISCRIMINATORY VALUE

The classifiers constructed for the training data may select candidate predictors that are not
truly predictive (type I error) and may fail to select markers that are predictive (type II
error). Without a priori knowledge regarding which classifiers to investigate among more
than a thousand candidates, the probability of committing either type I or type II error is
high. Accordingly, we investigated the predictive utility in the validation study data for a set
of candidate markers with the best marginal predictive utility in the training data.

We plotted training data prediction error rates against validation study error rates, allowing
sample-specific cut points for classifying diseased and nondiseased groups. Markers that
have inconsistent effect-direction (e.g., mean in the PCa group is higher than mean in the
normal controls in the training data but lower in the data of the confirmation study) are
plotted in red (Fig. 3). Markers that have consistent effect-direction are plotted in black. We
examined 96 candidate markers with the best predictive utility in the training data. To
account for differential sample selection and laboratory effects, sample-specific cut points
were allowed for separating PCa from normal controls. In addition to plotting consistent and
inconsistent markers with different color symbols, symbol size is constructed proportional to
marker mean intensity in the training data (Fig. 3).

Among the 96 markers with best predictive utility, the number of markers with inconsistent
effect-direction was approximately 15 (EVMS 14, UAB 15, CPDR 14, CTRC 18, UPITT
15, JHU 15). If we assume that results for the 6 laboratories in the validation sample are
independent of one another, the number of markers that have 5 or 6 consistent observations
across the validation laboratories have an expected value of 10.5 (χ2 458.77, df=1, P
<0.0001). We observed 76 markers with 5 (n = 11) or 6 (n = 65) consistent observations that
were significantly different from the expected value of 10.5. Assuming that 5 of 6
laboratories with consistent direction is indicative of a consistent effect, observed
consistency is still much greater than chance (χ2 32.67, df=1, P <0.0001). Among the 54
markers with best performance in the training data, 53 were consistent across 5 or 6
laboratories. The number of markers that were inconsistent across training and evaluation
data sets was between 1 and 2 (EVMS 0, UAB 3, CPDR 1, CTRC 2, UPITT 1, JHU 1).

Discussion
The algorithm described in this study is identical to the one used in our early analysis of
analytical reproducibility (21). In that study, we demonstrated that the algorithm could
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correctly differentiate between PCa and control samples when those samples were derived
from the same patient cohort used to develop the algorithm. Over the intervening time
period, we maintained instrument output optimization by weekly calibration to 3 serum
reference peaks as described (21). Thus, the low probability of correctly predicting prostate
cancer among the 84 test set samples indicates that the initial samples collected for training
the classifier differed markedly from the 84 samples collected for evaluating consistency of
case assignment. Further investigation of the samples collected for developing the classifier
revealed that the collection period for PCa samples was considerably different from the
collection period for normal control samples. Of the 127 PCa samples used to construct the
classifier, 78 (61.4%) were collected before 1996. In contrast, only 1 of the normal control
samples (0.7%) was collected before 1996. This storage bias was obvious in retrospect.
However, when designing discovery studies aimed at distinguishing between early less
aggressive cancer vs late/aggressive cancer, this storage bias may be difficult to avoid.
Specifically, in the case of prostate cancer, the incidence of advanced disease (Gleason >8)
has dramatically reduced to the point that it is difficult to accrue significant numbers of
high-grade disease at a single clinical site. Other disease models can be expected to present
different but equally cryptic challenges as clinical treatment options change.

Our analysis uncovered possible sources of storage time variability that arose from different
collection protocols. Specifically, many samples collected before 1996 were derived from
in-house PSA testing conducted at EVMS. In the intervening years, the standardization of
laboratory tests for PSA resulted in a reduction in the number of serum samples derived
from testing in-house. This change resulted in the reduction of freeze-thaw cycles in the
majority of samples post-1996 from 1 cycle to 0 cycles. Also of critical impact to this study
was the decline in the numbers of patients with advanced vs early PCa, a trend being
experienced wherever PSA testing is aggressively employed. Thus, researchers can expect
that increased demand for sample numbers will be especially affected by decreasing sample
availability and variations in the storage process. As we learn more about the ideal
conditions for both collection and storage of samples, even more changes may be
introduced, and these changes might introduce new bias. These are critical issues often
overlooked in the biomarker discovery process that are likely to be the single greatest reason
most biomarker discoveries fail to be validated.

Differences associated with sample age may result from serum degradation associated with
storage time or freeze-thaws. As has been described before, these and other preanalytical
variables can greatly affect the peptide/protein content of samples (24–30). At peaks used in
the 2 classifiers developed for this study, PCa samples collected after 1996 appeared to be
more similar to normal controls. Also of consideration is the possibility that clinical
protocols such as a decision to collect serum after voiding or fasting may become
standardized without notification to the research group. A particularly insidious issue is the
struggle with “improving” or “standardizing” collection protocol based on knowledge
gained regarding sample stability. Although a close relationship between the clinic and the
research laboratory helps reduce some concerns, even careful practice cannot prevent
variability. Thus, it is recommended that poststudy data analysis such as was performed here
be an integral component of biomarker discovery and validation. In fact, the collective
experiences of many laboratories leading human biomarker discovery efforts has led to calls
for both experimental standards (31) and uniformity in sample preparation (32).

Because our global analysis of the data suggested potential discriminating elements in the
post-1996 data, we decided to construct a new decision algorithm. Additionally, our study
population identified for stage 2 of the overall validation process was derived from multiple
laboratory sites, imposing stricter sample storage criteria including a requirement for
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post-2002 collection date. Accordingly, such a study was initiated and these results are
reported in the companion article.
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Fig. 1. Serum spectra profiles in the vicinity of decision peaks
A. Primary peak for the classifier based on median intensities. B. Primary peak for the
classifier based on median binned rank intensities. C. Secondary peak for the classifier based
on median intensities. D. Secondary peak for the classifier based on median binned rank
intensities. The arrows indicate the peak of interest. PCa and normal control serum
specimens with early and late collection periods for the PCa specimens are indicated.
Specimens are ordered by collection date within each group.
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Fig. 2. ROC curves for the study A median intensity boosting classifier based on peak intensities
obtained using the Yasui method for predicting prostate cancer status in 42 PCa and 42 normal
control serum specimens collected from 4 biorepositories and processed by SELDI-TOF-MS
instruments at 6 EDRN laboratories: EVMS (A), UAB (B), CTRC (C), CPDR (D), UPCI (E), and
JHU (F)
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Fig. 3. Classification error rate in the validation data for 96 peak locations with the lowest
classification error rate in the Prostate 2002 training data
Mean peak intensity in the training data is indicated by the size of each bubble, with higher
intensity peaks having larger bubbles. Black bubbles indicate peak features where the effect
direction is consistent between training and validation data (cases have higher intensity than
controls in both data sets or cases have lower intensity than controls in both data sets). Red
bubbles indicate peaks where the effect direction is inconsistent.
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Table 1

Known characteristics of the serum specimens used for training the classifier.

Characteristic

Dx Group

Normal PCa BPH

n 220 181 143

Mean age, years (SD) 62.5 (6.6) 60.7 (6.7) 65.8 (5.8)

Year blood collected, %

1980–1989 0.0 8.3 0.0

1990–1995 1.4 52.5 90.2

1996–2001 98.6 39.2 9.8

Race, %

White 82.7 79.6 93.0

African-American 17.3 20.4 7.0

Neoadjuvant treatment, %

0 100.0 85.6 99.3

1 0.0 11.6 0.0

Data missing 0.0 2.8 0.7

Source, %

DTU Clinic 0.0 88.4 0.0

Sentara Hospital 100.0 8.8 94.4

Data missing 0.0 2.8 5.6

Estimated freeze-thaw, %

1 or 2 63.2 25.4 57.3

>2 35.4 68.7 22.2

Data missing 1.4 5.9 20.4
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