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In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the
first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years
at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral
and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous
weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically,
multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds,
and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different
success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years.
Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that
little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we
recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops.

1. Introduction

Sinapis spp and Diplotaxis spp are cruciferous weeds very
abundant and competitive in temperate areas worldwide that
reduce yield in winter cereal crops, such as wheat (Triticum
durum L.) [1–3] and in legume crops such as lentil (Lens culi-
naris L.) [4, 5], broad bean (Vicia faba L.) [6], and pea (Pisum
sativum L.) [7]. Although wheat sunflower is one of the main
crop rotations in Spain, winter legume crops for human or
animal consumption are also usually introduced into the
crop rotations. The results of field surveys conducted recently
on 30,000 ha near Córdoba and Seville in Andalusia, south-
ern Spain, indicated that more than 65% of winter crops were
infested with cruciferous weeds, including Diplotaxis spp.
(generally D. virgata Cav. DC. and D. muralis L. DC) and
Sinapis spp. (generally S. arvensis L. and S. alba) [8]. Winter
crop weeds in cereals are often controlled by presowing

herbicides (e.g., glyphosate) and applying preemergence her-
bicides to legumes (e.g., linuron in broad bean and pen-
dimethalin in pea). However, these herbicides cannot ade-
quately control cruciferous weeds and specific herbicides,
such as triasulfuron, and can be applied to postemergence
cereals at weed flowering stage, although postemergence
herbicides for legume crops have not yet been developed, and
thus tillage or hand weeding is frequently used to reduce
cruciferous infestations. Moreover, most winter crops in
Mediterranean conditions are produced with nontillage or
minimal tillage techniques to reduce the impact of soil
erosion. Consequently, weeds such as cruciferous have be-
come more problematic because they cannot be reduced by
repeated tillage or cultivation.

Despite the usual uniform management of fields, patchy
distribution of cruciferous and other weed species, as well
as the potential herbicide savings from treating only infested
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areas, has already been assessed using geostatistical ap-
proaches [9, 10]. However, herbicides are usually broadcast
over entire fields, and there are evident economic and
environmental risks from overapplication. To overcome this
situation, patch spraying (in cereals) or hand weeding (in
legumes) of cruciferous weeds has supported the feasibility of
using site-specific weed management (SSWM) for control of
these worldwide weeds. A key component of SSWM is precise
and timely weed maps, and one of the crucial steps for weed
mapping is weed monitoring, either by ground sampling or
by remote detection and identification of weeds. The remote
sensing of weed canopies can significantly improve reliability
compared to ground visits only if the spectral and spatial
resolutions of remote sensing equipment are sufficient for the
detection of differences in spectral reflectance [11, 12]. Late-
season weed detection maps can be used to design SSWM for
the application of in-season postemergence herbicides in the
case that adequate preemergence control was not achieved.
Alternatively, because weed infestations are relatively stable
from year to year, weed maps can be used for site-specific
applications in subsequent years [13]. Both in-season and
next-season maps are important for site-specific cruciferous
weed control.

Spectral response of plant species at canopy or single
leaf scale is unique and known as spectral signature. The
basic principle of using ground-acquired spectral signatures
of weeds and crops is that measured differences in reflectivity
can be used to detect and distinguish different weed species
either in real-time or for the creation of weed maps. Fur-
thermore, these ground-acquired signatures can be used to
build libraries for remote or proximal sensing. Differences in
spectral reflectance can be highlighted by weeds’ distinctive
colours or phenological stages and by the use of vegetation
indices [14–16]. Thus, there has been increased interest in
the identification of weeds, soil background, and crops using
their spectral signatures, along with powerful discrimination
techniques, as a starting point for SSWM.

Hand-held hyperspectral sensors collect data in narrow
and contiguous wavelengths, usually less than 10 nm wide,
to allow detection of small or local variations in absorption
features. By contrast, multispectral scanner systems collect
data for several (3 to 7, usually 100 nm wide) broad
bands, and, although multispectral data are typically easier
to analyse, local variations in absorption might be unde-
tectable within these broader bands. Hyperspectral and
multispectral on-ground data have been successfully used to
distinguish many plant groups, including 27 salt-marsh veg-
etation types in a coastal wetland [17]; corn caraway (Ridolfia
segetum Moris.) in sunflower crop [14]; pitted morning
glory (Ipomea lacunosa L.) [18]; grass weeds in wheat [16];
several weed species in common turfgrass [19]; volunteer
potato and sugar beet [20]; five weeds and two crop species
[21]. However, the use of hyperspectral recordings involves
analysing hundreds of wavelengths, and it is necessary to
use robust classification methods to select a subset of several
wavelengths in order to reduce the large number of hyper-
spectral data without losing any important information.
Neural networks are a powerful multivariate analysis tool
that can detect significant spectral differences and classify the

spectra of weeds and crops into specific groups. Neural
networks have been successfully used for the spectral classi-
fication of grass weed species in winter wheat [15]; however,
to the best of our knowledge, they have not yet been applied
to cruciferous weeds.

Both hyperspectral and multispectral remote sensors
have shown promise for weed mapping. The Compact Air-
borne Spectral Imager (CASI), an airborne hyperspectral
sensor, is capable of acquiring data at up to 288 wave-
lengths in the visible and near-infrared spectral range (400–
1000 nm) at 1.9 nm intervals, and, if proper altitudes are
maintained, it can achieve spatial resolutions of 0.5 to
1 m, which are particularly useful for classifying vegetation
classes. Additionally, the CASI spectral collection is user-
programmable, which means that CASI imagery can be
recorded at only a few programmed wavelengths, rather than
the 288 available ones. The CASI sensor has successfully
detected several grass and broadleaved weeds in soybean and
corn fields using Fisher’s linear or other discriminant analysis
[22, 23] and using neural networks [24]. Multispectral and
high-spatial-resolution satellite imagery is also capable of
distinguishing weeds from crops. For example, QuickBird
(average revisit 1–3.5 days; panchromatic image: 0.7-m pixel;
multispectral image in the visible and near-infrared spectral
range from 450 to 900 nm: 2.44-m pixel) has proven to
have sufficient accuracy for mapping weeds, such as Cirsium
arvense in sugar beet at the cotyledon stage [25].

The potential advantages and disadvantages for both
remote platforms are as follows: (i) hyperspectral imagery is
not yet available in many regions and is still expensive,
whereas QuickBird imagery is cheaper and is available
worldwide; (ii) QuickBird usually covers a larger surface area
and could map weed patches in tens of infested fields,
whereas hyperspectral airborne sensors usually cover a small-
er area, although they have superior flight versatility. As part
of an overall research programme to investigate the opportu-
nities and limitations of remote sensed imagery in accurately
mapping cruciferous weeds in winter crops, it is crucial to
explore the potential of these two technologies to identify
variations in weeds’ hyperspectral and multispectral signa-
tures across different years and locations. Such an approach
should point out the significant variations in hyperspectral
and multispectral signatures of the plant species studied,
indicating a set of suitable wavelengths or wavebands for
species discrimination.

Thus, our study had the following objectives: (i) to deter-
mine the hyperspectral and multispectral mean reflectance
curves of cruciferous weeds and two winter crops (wheat
and broad bean) in four years and different locations, (ii)
to select the best hyperspectral wavelengths or multispectral
wavebands to discriminate efficiently between vegetation
types, (iii) to compare the accuracy performance for a spec-
trum classification into the specific group to which it be-
longs, and (iv) to establish the misclassification percentage.
We aimed to identify suitable wavelengths for programming
hyperspectral sensors such as CASI, as well as appropriate
uses of multispectral QuickBird imagery for mapping cru-
ciferous weeds in winter crops.
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Table 1: Sampling years and spectral data acquisition information for cruciferous weeds and crops.

Years Dates Locations and number of fields Crops

2007
April 11 Cañada∗ Broad bean

Galván∗ Winter wheat

April 14 Montalbán∗ Winter wheat

2008 April 10 Lantejuela (two fields: A and B) Winter wheat

2009
March 19 La Rambla (four fields: A, B, C and D) Winter wheat

March 20 Fernán Núñez (four fields: E, F, G and H) Winter wheat

2010

April 21 Guadalcázar (two fields: A and B) Winter wheat

La Veguilla (two fields: A and B) Broad bean

April 22
Écija∗ Winter wheat

Castro∗ Broad bean

Espejo∗ Broad bean
∗

Location with one field sampled.

2. Materials and Methods

The study was conducted in Andalusia, southern Spain, in
early spring from 2007 to 2010 at several locations near
Córdoba and Seville. Fields were sown with wheat and broad
bean crops, and all of them contained a natural mixture of
cruciferous weed infestations (Table 1).

2.1. Spectral Readings. The spectral signatures of weed-free
crop and cruciferous weed patches were taken using an ASD
HandHeld FieldSpec spectroradiometer (Analytical Spectral
Devices, Inc., 5335 Sterling Drive, Boulder, CO, USA) placed
at a height of 60–80 cm above each plant species canopy.
Winter wheat and broad bean crops showed the typical
green colour of the vegetative growth stage, and cruciferous
weeds displayed an intense yellow colour corresponding to
the flowering growth stage, although cruciferous weeds from
2008 fields showed a lightly more advanced phenological
stage and consequently they displayed a less bright yellow
colour (adapted from [26]).

In each field, a total of 115 canopy spectral reflectance
measurements were collected for each plant species along
transects in order to characterise field variability. The spec-
tral data were converted into reflectance, which is the ratio of
energy reflected off the target to the energy that is incident
on the target. Each spectral signature was calibrated using
a barium sulphate standard reflectance panel as a reference
(Spectralon, Labsphere, North Sutton, NH, USA) before and
immediately after every ten measurements. Spectroradiome-
ter readings were taken under sunny conditions between
12:00 h and 14:00 h local time [27] using a 25◦ field-of-view
optic to measure an area of about 0.15 to 0.20 m2. Hyper-
spectral measurements were collected between 325 and
1075 nm with a bandwidth of 1.0 nm, although the reflec-
tance spectra were noisy at the beginning and at the end
of the range, and only the measurements between 400 and
900 nm were analysed. In addition, previous studies have
shown that neighbouring wavelengths can frequently provide
similar information. Thus, hyperspectral measurements were
averaged to represent 100 5 nm wide measurements between

400 and 900 nm [14, 28], and these measurements were anal-
ysed statistically. Reflectance measurements at the canopy
scale were also averaged to represent multispectral broad
wavebands (blue, B: 450–520 nm; green, G: 521–600 nm; red,
R: 630–690 nm; near-infrared, NIR: 760–900 nm), similar to
those available on the commercial satellite QuickBird. The
normalised difference vegetation index (NDVI = (NIR −
R)/(NIR + R)) [29], the ratio vegetation index (RVI =
NIR/R) [30], the R/B index [31] and other waveband ratios
such as B/G, R/G; NIR/B; NIR/G were also calculated from
the B, G, R, and NIR wavebands and analyzed.

2.2. Discriminant Analysis. Hyperspectral, multispectral,
and spectral vegetation indices data were subjected to dis-
criminant analysis (DISCRIM) using SPSS software (SPSS
13.0, Inc., Chicago; Microsoft Corp., Redmond, WA). The
basic problem in a discriminant analysis lies in assigning
an unknown subject to one of two or more groups on the
basis of a multivariate observation. The DISCRIM procedure
permits the setting up of a predictive model of group
membership based on characteristics observed in each case.
The procedure originated a discriminant function, since the
number generated corresponded to the number of groups
minus one, based on linear combinations of the independent
variables. The number of discriminant functions providing
a statistically significant among-group variation essentially
defined the dimensionality of the discriminant space. This
test also measured the difference between groups [32]. To
determine if the set of wavelengths (hyperspectral study) and
wavebands and spectral vegetation indices (multispec-
tral study) selected could be used to separate the three
plant groups, stepwise discriminant function analyses
(STEPDISC) were performed using SPSS. The STEPDISC
procedure combined forward selection and backward elim-
ination of the variables. Forward selection was employed for
the inclusion of a variable, and backward elimination was
used for the removal of variables no longer significant in
the model [24]. For this study, a Wilks’ lambda test was
performed to determine the significance of each discriminant
function. The Wilks’ lambda values were indicative of the
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separability or discriminatory power of spectral wavelengths
(i.e., the lower the Wilks’ lambda value, the greater the spec-
tral differentiation between groups [28]). At each step, the
variable that minimised the overall Wilks’ lambda was en-
tered. In addition, the minimum partial F to enter a variable
was 3.84, and the maximum partial F for removing a variable
was 2.71 (more details in [33]).

The STEPDISC model was calculated by considering
cruciferous weeds, wheat, and broad beans as different
classes. The functions were generated from a sample of
cases for which their group membership was known (count
data); these functions could subsequently be applied to new
cases with measurements for the predictor variables but an
unknown group membership. The suitability of the discrim-
inant functions for a given classification was compared using
a cross-validation method, which involves the calculation
of misclassification matrices by determining the number of
wrongly classified groups in any single class. The “one data
out” approach for cross-validation was selected from the
classification option of the STEPDISC analysis in order to
assess the accuracy of the model. In the development of
STEPDISC models, the data were divided into two parts.
The first was used to develop and construct the model, while
the second was used to validate its classification accuracy
[32]. This method was applied to both reflectance values
and spectral indices to construct a classification rule to
discriminate between wheat, broad beans, and cruciferous
weeds.

2.3. Neural Networks. Two neural networks, the multilayer
perceptron (MLP), and the radial basis function (RBF) were
used to identify weeds and crops. The main characteristic of
these models is their capacity for learning by example. This
property means that, when using a neural network, there is
no need to programme how the output is obtained given
certain input; rather, examples are shown of the relationship
between input and output, and the neural network will
learn the existing relationship between them by means of
a learning algorithm. Once the neural network has learnt
to carry out the desired function, the input values can be
entered and the neural network will calculate the output.

The MLP neural model is a fully connected multilayer
feed-forward supervised learning network trained by the
back-propagation algorithm to minimise a quadratic error
criterion. That property means that no values are fed back
to earlier layers. The size of the MLP is described as size
of input layer × size of hidden layer × size of output layer
[34, 35]. In our case, the input layer is the annual set of
spectral measurements taken from the spectroradiometer for
cruciferous weeds, wheat, and broad beans. One hidden layer
from 3 to 11 neurons was used for 2007, 2008, 2009, and
2010, and one output layer containing as many neurons as
classes to which the samples are classified was used for every
sampling year.

The RBF is also a fully connected feed-forward neural
network with an input layer, a hidden layer, and an output
layer. The variables of the input and output layers were the
same as for the MLP method. One hidden layer from 2 to 10

neurons was used for 2007, 2008, 2009, and 2010. The main
differences between these two neural networks are that, in the
RBF, the connections between the input and output layers
are not weighted, and the transfer functions on the hidden
layer nodes are radially symmetric [36]. The main difference
between the STEPDISC and both neural networks is that
the latter present a fitted function in an analytical form,
where parameters are weights, biases, and network typology,
whereas the STEPDISC produces a discriminant function (or
a set of them) based on linear combinations of independent
variables (i.e., spectral readings).

The fitness of MLP and RBF for every classification
model was determined by a hold-out cross-validation pro-
cedure, where the size of the training dataset was 3n/4
and n/4 for the test set, n being the full dataset in every
sampling year. Consequently, the full dataset was randomly
split into two datasets, and, after learning, the MLP or RBF
model is run on the test set that provides an unbiased
estimate of the generalisation error. SPSS application was
used for STEPDISC, MLP, and RBF, and the classification
performance of every method was evaluated.

3. Results

Mean hyperspectral and multispectral curves of cruciferous
weeds, winter wheat, and broad bean crops obtained over
four years are shown in Figures 1 and 2. Both graphs
exhibited the characteristic peak in the green region of
the spectrum at 550 nm (Figure 1) and green waveband
(Figure 2) and the highest reflectance values in the near-
infrared domain (from 760 to 900 nm) typical of green
vegetation. There were apparent reflectance differences in all
the wavelengths or multispectral bands for weeds and crops
every year, suggesting potential for distinguishing weeds
and crops on this basis. Figure 2 also shows that it might
occasionally be helpful to use spectral vegetation indices
to enhance these small spectral differences when they are
not consistent. These results are in agreement with data
obtained previously by other researchers [14, 16, 37, 38],
who studied late-season weed discrimination when spectral
differences between crop and weeds prevail, for example,
when a flowering or still-green weed is present in a vegetative
growth stage or early senescent crop.

The classification results given in Table 2 were obtained
from the STEPDISC analysis model for a different set of
wavelengths (hyperspectral study) and wavebands or spectral
vegetation indices (multispectral study) that were chosen on
the basis of their order of entry into the STEPDISC pro-
cedure selection to discriminate between crops and weeds.
The correct classification percentage for hyperspectral and
multispectral analyses was 100% for 2008, being higher than
97.6% for the rest of years. A number of wavelengths ranging
from 3 to 12 and along with the four multispectral bands and
all of the spectral vegetation indices with a different order of
entry were selected to develop every discriminant function
for separating the spectra in the different years considered.

The most frequently selected wavelengths were in the
blue (405, 410, and 430 nm) and near-infrared (705 nm)
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Figure 1: Mean hyperspectral curves for cruciferous weeds, and wheat and broad bean crops for every sampling year.

Table 2: Hyperspectral and multispectral classification of cruciferous weeds, and wheat and broad bean crops using STEPDISC analysis
according to the different sampling years.

Sampling
years

Spectral input data
Wavelengths (nm), multispectral

bands, and spectral vegetation
indices selected

Wilks’
Lambda

Exact-F
Overall

classification
(%)

Cross
validation

(%)

2007 Hyperspectral wavelengths
480, 405, 460, 705, 440, 680, 655,

595, 690, 515, 430, 445
0,000 244,5 99,3 98,0

Multispectral bands and
spectral vegetation indices

B, B/G, R/G, RVI, NIR, NIR/B, R/B 0,004 187,5 98,0 98,0

2008 Hyperspectral wavelengths 605, 690, 410 0,008 7387,5 100 100

Multispectral bands and
spectral vegetation indices

NIR/G, RVI, B/G, R/B 0,000 218990,5 100 100

2009 Hyperspectral wavelengths
725, 825, 815, 470, 430, 420, 410,

650, 665, 775, 540
0.131 517,8 99,2 99,2

Multispectral bands and
spectral vegetation indices

G, B/G, NIR/B, B, NIR/G, NDVI,
R/B, R, RVI, R/G

0,111 681,9 99,3 99,1

2010 Hyperspectral wavelengths
735, 575, 485, 885, 410, 705, 525,

560, 750, 460, 405, 420
0,036 555,3 98,7 98,5

Multispectral bands and
spectral vegetation indices

B/G, R/G, NDVI, R/B, NIR/G, RVI,
NIR/B, G, B, NIR, R

0,032 645,6 97,8 97,6

parts of the spectrum. Wavelengths higher than 825 nm were
not chosen for any of the discrimination models or years.
While B/G, R/B, and RVI spectral indices were selected in
every discriminant function for every year, B/G proved to
be especially important: it was the first, second, or third

variable entered into the discriminant functions in all years,
indicating that it was crucial in classifying weeds and crops.
The B band, the R/G ratio, and the ratios created from
the combination of the NIR band with others (i.e., NIR/B
and NIR/G spectral indices) also showed great potential



6 The Scientific World Journal

Wheat
Broad bean
Cruciferous weeds

Wheat
Cruciferous weeds

R
efl

ec
ta

n
ce

 (
%

)

Wheat
WheatBroad bean

Cruciferous weeds

Cruciferous weeds

100
90
80
70
60
50
40

30
20
10
0

R
efl

ec
ta

n
ce

 (
%

)

100

90
80

70
60
50
40

30
20

10
0

R
efl

ec
ta

n
ce

 (
%

)

100

90
80

70
60
50
40

30
20

10
0

R
efl

ec
ta

n
ce

 (
%

)

100
90
80
70
60
50
40

30
20
10
0

Blue Green Red NIR

Blue Green Red NIR Blue Green Red NIR

Wavelength (nm)

Blue Green Red NIR

Wavelength (nm)

20102009

20082007

Figure 2: Mean multispectral curves for cruciferous weeds, and wheat and broad bean crops for every sampling year.

for discrimination, as they were preferentially selected in
2007, 2009, and 2010. In each of the years studied, a small
Wilks’ lambda (near 0) was obtained, indicating the high
discriminatory power of every set of selected wavelengths,
wavebands, and vegetation indices or ratios.

The correct classification percentage was 100% in 2007,
2008, and 2009 for MLP and higher than 98.1% for 2010,
and, for RBF, was 100% in 2008 and higher than 80.4% for
the rest years, when including input data from hyperspectral,
and multispectral and spectral vegetation indices (Table 3).
According to these findings, classification accuracy from
hyperspectral signatures was similar to that from multispec-
tral and spectral indices. Due to the fact that multispectral
remotely sensed imagery from QuickBird satellite is cheap,
covers a large amount of surface area, and is available
worldwide, we present Table 4 to list the percentage of correct
classifications for STEPDISC and MLP and RBF models for
multispectral data from cruciferous weeds and winter crops
for both the whole interval and selected indices as well as
for every waveband and individual vegetation index. We
found that MLP was the best method to distinguish crops

and cruciferous weeds, with STEPDISC being second best;
classification results from STEPDISC were more accurate
than those from RBF for all years. MLP exhibited 100%
classification accuracy for the NIR band and for most of the
vegetation indices tested. All three models exhibited the best
classification accuracy in 2008, followed by 2009 when only
cruciferous weeds and winter wheat were included in the
classification set.

For clarity in the results, and because discriminant
functions and MLP models were the most accurate,
only a classification matrix using cross-validation for the
STEPDISC analysis and the MLP model showing both
classification accuracies lower than 100% is presented in
Table 5. The values in the table provide the percentage of
both correctly classified classes (accuracy) and misclassified
classes (error percentage). Using the STEPDISC analysis,
cruciferous weeds were always correctly classified in 2007,
while 1% and 3% of cruciferous weeds spectral signatures
were misclassified as wheat in 2009 and as wheat and broad
bean in 2010. The lowest accuracy was for wheat in 2006,
for which 3% and 5% of spectra were misclassified as broad
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Table 3: Hyperspectral and multispectral classification for cruciferous weeds, and wheat and broad bean crops using MLP and RBF neural
networks according to the different sampling years.

Neuronal networks Sampling years Input data
Importance of

variables
Neurons of
hidden layer

Neurons of
output layer

Overall
classification

(%)

MLP

2007 Hyperspectral wavelengths (nm) 725, 720, 690 11 3 100,0

Multispectral bands and spectral
vegetation indices

B/G, R/B, B, R/G 4 3 100,0

2008 Hyperspectral wavelengths 520, 585, 565 1 2 100,0

Multispectral bands and spectral
vegetation indices

NIR, G, NIR/B 6 2 100,0

2009 Hyperspectral wavelengths 730, 595, 590 3 2 100,0

Multispectral bands and spectral
vegetation indices

B/G, G, NIR/B 5 2 99,4

2010 Hyperspectral wavelengths 480, 490, 485 5 3 98,7

Multispectral bands and spectral
vegetation indices

B/G, R/G, RVI 8 3 98,1

RBF

2007 Hyperspectral wavelengths 705, 400, 710 10 3 88,7

Multispectral bands and spectral
vegetation indices

NIR/B, RVI, NIR/B 7 3 92,1

2008 Hyperspectral wavelengths 620, 630, 605 4 2 100,0

Multispectral bands and spectral
vegetation indices

G 10 2 100,0

2009 Hyperspectral wavelengths 610, 615, 655 9 2 94,8

Multispectral bands and spectral
vegetation indices

B/G, R/G, NIR/B 10 2 98,9

2010 Hyperspectral wavelengths 415, 410, 420 10 3 80,4

Multispectral bands and spectral
vegetation indices

R/G, B/G, NIR/B 10 3 94,4

bean and cruciferous weeds, respectively. Using the MLP
model, in 2010, 2% and 1% of cruciferous weed spectra were
misclassified as wheat and broad bean, respectively.

4. Discussion

Cruciferous weeds can considerably reduce the yield of wheat
and legume crops. Because these weeds and crops are abun-
dant in temperate regions of the world, more information
about the distribution of weed patches is needed in order
to carefully target herbicide use or other control strategies.
The main objective of this research was to develop techniques
to distinguish on-ground hyperspectral and multispectral
field signatures of wheat, broad bean, and cruciferous weeds.
The use of field data from different years and locations
usually entails complications, due to exogenous factors.
However, we aimed to analyse real field spectroradiometry
data for further application of the results obtained in this
study with the goal of using remotely sensed data to obtain
cruciferous weed maps for site-specific control strategies
at large scales (farming states or districts). Our results
show that there are sufficient spectral differences between
cruciferous weeds and crops to allow correct classification
using both hyperspectral and multispectral measurements.
The best overall classification was achieved with MLP for all
years, followed by STEPDISC analysis and RBF. These

findings are in close agreement with previous results from
[35, 39] for weed and irrigated crops classification and
when comparing two neural models and the discriminant
statistical model. These authors showed that MLP achieved
higher classification performance than STEPDISC analysis
and RBF. The superior performance of MLP could be because
the discriminant functions are based on linear combinations
of the independent variables, whereas the neural network
functions have network typology and their parameters
include weights and biases. The RBF model is simple in
typology and provided relatively high accuracy, although
it required significantly more computations for a feed-
forward output compared with the back-propagation MLP
network. By contrast, the MLP function showed the highest
classification accuracy with less computational requirements.
Thus, MLP surpasses both STEPDISC and RBF in terms
of accuracy, and it is also preferable to RBF in terms of
computational demands.

Our hyperspectral results suggest opportunities for the
use of airborne hyperspectral sensors, such as CASI, which
is user-programmable and capable of acquiring spectral data
at up to 288 wavelengths, whereas our multispectral results
indicate the possibility for use of multispectral satellites,
such as QuickBird. STEPDISC analysis and the MLP neural
network, when applied to spectral data collected from
the ground, appear to be promising approaches for the
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Table 5: Classification matrix obtained from STEPDISC analysis (from 2007 to 2010), and from MLP neural network (for 2010) considering
cross-validation and using multispectral wavebands and spectral vegetation indices for cruciferous weeds, and wheat and broad bean crops.

Sampling years Classification methods
Observed Predicted spectra

spectra Broad bean Wheat
Cruciferous

weeds

(% of correct classification)

2007
STEPDISC Broad bean 100 0 0

Wheat 3 92 5

Cruciferous
weeds

0 0 100

2008
Broad bean —∗ — —

Wheat — 100 0

Cruciferous
weeds

— 0 100

2009
Broad bean — — —

Wheat — 99 1

Cruciferous
weeds

— 1 99

2010
Broad bean 99 0 1

Wheat 2 96 2

Cruciferous
weeds

2 1 97

2010
MLP Broad bean 97 1 2

Wheat 0 100 0

Cruciferous
weeds

1 2 97

∗
Data not sampled.

classification of spectral signatures of cruciferous weeds,
wheat, and broad bean crops. Future investigations will be
essential to determine the potential of these techniques to
distinguish and map this vegetation using CASI and Quick-
Bird imagery taken when weeds and crops are at the specified
phenological stages.

CASI should be programmed with 30 or 12 wavelengths,
rather than with the 288 available wavelengths in the cases
of further use of STEPDISC or MLP models, respectively, in
the visible and NIR spectral range. Our multispectral results
show that the wavebands corresponding to QuickBird satel-
lite imagery and to several spectral vegetation indices were
capable of correctly classifying cruciferous weeds and crops.
However, because classification accuracy from hyperspectral
data (dozens of narrow wavelengths) was only slightly better
than that from multispectral data (four wavebands and
seven spectral vegetation indices) and because hyperspectral
sensing is generally more expensive and covers a smaller
surface area, we suggest that cruciferous weeds might be
most efficiently distinguished using high-spatial-resolution
QuickBird imagery. This approach could be an economi-
cal method for mapping broad-scale weed infestations to
develop in-season postemergence site-specific management.
This map-based approach would consider not only the ap-
propriate spectral and spatial resolution for weed data

acquisition but also the development of robust methods for
analysis and delineation of management zones for further
use.

In addition, our results can also inform the potential
use of image analysis for real-time site-specific weed man-
agement. Real-time monitoring and spraying consists of a
weed control system that can simultaneously detect and
control weeds on finer spatial scales using digital cameras
or spectral or optical sensor systems (nonimaging sensors)
from ground-based platforms. This strategy requires robust
monitoring, processing techniques, decisionmaking, and
spraying, while the vehicle is moving forward at a constant
speed. Therefore, an algorithm classifying weeds and crops
has to be powerful and flexible in a number of field situations
to improve the decision making process. Some studies have
applied fuzzy logic algorithms and artificial neural network
classifiers to discriminate weed species in maize at the two-
to five-leaf stage [40] and in sunflower at the four-leaf stage
[41]. The success of their results is related to the performance
of the image analysis process.

Research to improve the potential of remote or prox-
imal sensing for mapping weeds can greatly contribute to
decisionmaking in SSWM, which is one of the essential
goals of current European policy on the sustainable use
of pesticides [42]. This policy includes such elements as



10 The Scientific World Journal

reductions in pesticide applications and the utilisation of
adequate pesticide doses, both of which are core tenets of
SSWM.

5. Conclusions

Our results show that hyperspectral and multispectral signa-
tures (spectral range of 400–900 nm) of cruciferous weeds,
wheat, and broad beans taken under field conditions for 4
years can be classified with varying success using STEPDISC
analysis and MLP and RBF networks. The MLP model was
the most accurate, achieving 100% or nearly 100% correct
classifications for all the years of our study. This model
selected twelve wavelengths (480, 485, 490, 520, 565, 585,
590, 595, 690, 720, 725, 730 nm), three wavebands (B, G,
NIR), and five spectral vegetation indices (B/G, R/B, R/G,
NIR/B, RVI). The MLP neural network function could be
considered for a future classification of hyperspectral or
multispectral remotely sensed data for a map-based
approach or for on-ground sensed data in the case of real-
time-based site-specific weed management. However, differ-
ences in hyperspectral and multispectral classification results
indicated that little advantage would be obtained using the
more expensive airborne hyperspectral imagery. Therefore,
multispectral high-spatial-resolution satellite imagery, such
as QuickBird, or multispectral sensor systems from ground-
based platforms (tractors, harvesters, robots) will be a useful
next step to explore whether these kinds of imagery can
potentially distinguish these weeds and crops. Successful
spectral discrimination of weeds from crops would have
several economical and environmental advantages: herbicide
application on winter wheat could be reduced, thereby re-
ducing costs, and tillage or hand-weeding in broad bean
could be limited only to infested areas. This would improve
the decision-making process for in-season postemergence
herbicides (or other control strategies) according to current
European agricultural and environmental policy.
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[10] M. Jurado-Expósito, F. López-Granados, J. M. Peña-Barragán,
and L. Garcı́a-Torres, “A digital elevation model to aid
geostatistical mapping of weeds in sunflower crops,” Agronomy
for Sustainable Development, vol. 29, no. 2, pp. 391–400, 2009.

[11] K. R. Thorp and L. F. Tian, “A review on remote sensing of
weeds in agriculture,” Precision Agriculture, vol. 5, no. 5, pp.
477–508, 2004.
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