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Abstract
Purpose of Review—Tubulointerstitial injury in the kidney is complex, involving a number of
independent and overlapping cellular and molecular pathways, with renal interstitial fibrosis and
tubular atrophy (IF/TA) as the final common pathway. Furthermore, there are multiple ways to
assess IFTA.

Recent findings—Cells involved include tubular epithelial cells, fibroblasts, fibrocytes,
myofibroblasts, monocyte/macrophages, and mast cells with complex and still incompletely
characterized cell-molecular interactions. Molecular mediators involved are numerous and involve
pathways such as transforming growth factor (TGF-β), bone morphogenic protein (BMP), platelet-
derived growth factor (PDGF), and hepatocyte growth factor (HGF). Recent genomic approaches
have shed insight into some of these cellular and molecular pathways. Pathologic evaluation of
IFTA is central in assessing the severity of chronic disease; however, there are a variety of
methods used to assess IFTA. Most assessment of IFTA relies on pathologist assessment of
special stains such as trichrome, Sirius Red, and collagen III immunohistochemistry. Visual
pathologist assessment can be prone to inter- and interobserver variability, but some methods
employ computerized morphometery, without a clear consensus as to the best method.

Summary—IFTA results from on orchestration of cell types and molecular pathways. Opinions
vary on the optimal qualitative and quantitative assessment of IFTA.
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Introduction
Interstitial extracellular matrix (ECM) accumulation, common to many chronic kidney
diseases, contributes to functional loss. Kidney interstitial fibrosis (IF) can be defined as the
accumulation of collagen and related molecules in the interstitium. Interstitial collagen is
normally present in the kidney, particularly type I and III, which serve as structural
scaffolding.[1, 2] This review addresses mechanisms by which IF arises, shown through
animal experimentation and analysis of human kidneys. In addition, approaches to assess IF
are considered.
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IF patterns differ and probably do not have identical causes or consequences. Broad scars
with tubular loss are the sequelae of severe focal injury and parenchymal destruction, such
as in pyelonephritis and infarcts.[3] This pattern is no doubt a “wound healing” response to
repair integrity loss and prima facie beneficial to renal function. In contrast, a second pattern
(far more common in renal biopsies) is diffuse or patchy fine IF, surrounding either atrophic
or normal tubules and associated with either diffuse or focal disease of glomeruli, tubules, or
vessels.[4, 5] Many studies show a reciprocal correlation between kidney function and the IF
extent.[6–14]

Tubular atrophy (TA) is defined as loss of specialized transport and metabolic capacity and
typically manifested by small tubules with cells with pale cytoplasm or dilated, thin tubules.
TA is usually associated with IF (often abbreviated IFTA); but probably has distinct
mechanisms related to blood flow, glomerular filtration rate (GFR) or tubular continuity
loss. However, IF and TA are separable, as shown by the profound TA in renal artery
stenosis, which characteristically has little or no fibrosis (or inflammation).[3]

Cellular and Molecular Mediators
IFTA results from an orchestration of multiple cell types, as detailed below.

Fibroblasts and Myofibroblasts
Fibroblasts constitute a large proportion of renal interstitial cells and are the major cell
maintaining constituent ECM, which can be considered the kidney “skeleton”. Fibroblasts
lack a cell type-specific marker, making their study difficult.[1] Fibroblasts are distinguished
from other interstitial cells by their abundance of rough endoplasmic reticulum, prominent
F-actin cytoskeleton, and by ecto-5′-nucleotidase expression in their plasma membrane.
Fibroblasts interact with other cells, such as dendritic cells, through cell processes.[15]
Fibroblasts may acquire a myofibroblastic phenotype under paracrine signals after attaching
to injured tubular basement membranes (TBM),[16–19] eventually producing collagen type
III.[20] This hypothesized phenomenon is likely a crucial event in IF.[1, 21, 22]

Myofibroblasts express smooth muscle actin (SMA), contain microfilaments with focal
densities (stress fibers), peripheral myofilament condensations known as fibronexi
connecting actin microfilaments with extracellular fibronectin, round nuclei, and frequent
attachments to basement membranes.[15, 23, 24] Myofibroblasts also contain vimentin,
fibronectin with the splice variant containing ectodomain A [15, 18], and S100A4 [also
known as FSP-1];[15, 20] S100A4, once considered myofibroblast specific, also colocalizes
with some leukocytes.[15, 20] Interstitial myofibroblasts have multiple potential origins
with candidates being fibroblasts, pericytes, perivascular cells.[20, 25–30], and endothelial
cells.[31, 32]

Fibrocytes
Fibrocytes, thought to be distinct from fibroblasts, are spindle-shaped, ECM-producing cells
derived from peripheral blood leukocytes.[33] Both hematopoietic (e.g., CD45) and stromal
cell (e.g., type I collagen) markers can be detected on fibrocytes; and furthermore, these
cells also express chemokine receptors. Fibrocytes are found in injured kidneys, possibly
through in situ differentiation or infiltration through chemokine gradients.[34–36] T-
helper-2-type (TH2) cytokines appear to be profibrotic, inducing differentiation of human
fibrocytes; and in contrast, T-helper-1-type (TH1) cytokines can inhibit differentiation of
fibrocytes.[34, 37, 38] Fibrocytes may be affected by drugs such as cyclosporine which
induces type I collagen, possibly explaining IFTA attributed to chronic calcineurin inhibitor
toxicity.[34] Fibrocytes are present in systemic nephrogenic fibrosis, related to gadolinium
administration.[39]
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Extracellular matrix
Multiple ECM components besides collagen have a crucial role in IF.[40–44] Tissue
transglutaminase (tTG) expression is increased in animal and human renal disease models,
correlating with IF severity; and tTG crosslinks proteins, stabilizing ECM and conferring
resistance to protease degradation.[45–47] Matrix metalloproteinase (MMP) enzymes are
comprised of proteolytic enzymes that can degrade all matrix protein components.[48]
Tissue plasminogen activator (tPA), although proteolytic, increases IF development by
inducing MMP-9 gene expression, leading to TBM disruption and EMP promotion.[49]
Mice without the MMP-9 gene have less IFTA in obstructive nephropathy.[48] Plasmin, a
serine protease, can activate MMPs, leading to ECM degradation and reduced IF.[50–52]
Decreased laminin, a component of glomerular and PTC basement membranes, leads to
more IFTA.[53, 54] ECM production is also affected by the renin/angiotensin system.[55–
62]

Tubular Epithelial Cells
Tubular epithelial cells (TECs) are postulated to contribute to increased ECM through the
process of epithelial-to-mesenchymal transition (EMT), defined as the stepwise loss of
epithelial markers, such as E-cadherin, and the acquisition of mesenchymal markers, such as
vimentin and SMA.[1, 63, 64] As an ultimate step in EMT, cells acquire increased motility
and traverse basement membranes into the interstitium.[65] Convincing experimental
evidence for epithelial cell migration into the interstitium has been acquired in IF in mouse
kidneys, where the origin of the cells can be followed with indelible genetic markers.[2, 65]
A similar in situ change in tubular epithelial phenotype occurs in humans, but emigration of
TECs into the interstitium has not been demonstrated. Therefore, many question the
migration feature of EMT.[66–68] A recent Banff Conference symposium on EMT
concluded that the in situ epithelial response exists but needs a name that does not imply
emigration of tubular cells to the interstitium,[69] which we will here term “epithelial
mesenchymal phenotype” (EMP).

TECs clearly undergo marked phenotypic changes in acute injury[70] and appear to provide
key signals to provide IF.[1] Intratubular stretch, fluid shear stress, and biomechanical forces
modify intracellular signaling and gene expression, contributing to IF.[16] EMP is supported
by the finding of increased intermediate filaments (e.g., vimentin and nestin) in injured
tubular epithelium,[71, 72] an association with increased collagen type I and III expression
in TECs,[73] and altered E-Cadherin expression.[74] Transcription factors such as the zinc-
finger transcription factor snail homolog 1 (Snai1)[75], which interacts with the notch
signaling pathway[76], appear to be important to EMP. An important component in the
regulation of genes in EMP and IF may include micro(mi)RNAs[77–86], some
antifibrotic[87] and others profibrotic.[88] Autophagy, the process whereby cells undergo
“self digestion”,[1, 89, 90] and endoplasmic reticulum stress are important to IFTA.[91–97]
TECs may undergo damage through the increased action of lipids in a “lipid nephrotoxicity”
process, mediated in part by peroxisome proliferator-activated receptor (PPAR) expression.
[98–104]

VEGF-A overexpression in tubular cells can result in increased serum VEGF levels, leading
to increased capillary number and size, type IV collagen deposition, and fibroblast and
myofibroblast numbers.[105] However, other studies show that VEGF administration may
decrease IF.[106] Hypoxia promotes fibrosis through multiple mediators including hypoxia-
induced factor-1α (HIF-1α).[107–110]

Epigenetic modification through methyltransferase Dnmt1 hypermethylation of the Ras
oncogene inhibitor RASAL1 decreases IF.[1, 111, 112] Another chromatin structure
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modifier, histone deacetylase (HDAC), modulates proinflammatory and fibrotic changes in
tubulointerstitial injury,[113, 114] and histone methylation may also be important in fibrotic
gene expression.[115] Growth arrest may lead to renal injury through increased fibrosis,
characterized by an increased proportion of TECs in phase G2/M, which gives the cells a
profibrotic phenotype, in large part mediated by JNK signaling. Pharmacologic induction of
growth arrest can promote fibrosis.[116]

Inflammatory cells
Numerous inflammatory cell types contribute to IFTA, as discussed below.

Lymphocytes—Lymphocytes appear to have important roles in the genesis of IFTA.[117–
119] CD4+ T cells are considered particularly crucial to this process, since CD4+ but not
CD8+ lymphocyte reconstitution increased IF in RAG knockout mice and CD4+ depletion
decreased IF.[117] A recent microarray analysis of renal allografts showed increased T-cell
and natural killer gene sets in IFTA development.[120] High T cell and macrophage but not
B cell infiltration is associated with low IL-10 expression, which conferred susceptibility to
IFTA.[121]

Monocyte/Macrophages—Monocyte/macrophages are heterogeneous, and some are
profibrotic,[122, 123] particularly CD11b+ cells.[124, 125] Galectin-3 (Gal-3) is a
profibrotic mediator comprised of a β-galactosidase-binding lectin released from
macrophages.[125] Gal-3 may protect renal tubules from chronic injury by enhancing ECM
remodeling and attenuating fibrosis.[126] The macrophage growth factor, CSF-1, is released
by renal tubular cells, leading to repair and reduced IF.[127] Models constructed to
investigate the role of macrophages in IF include: adriamycin-induced nephropathy,[128]
cyclophosphamide depletion of macrophages,[129] and adoptive transfer of bone marrow-
derived macrophages.[129, 130] The role of macrophages in IF is clearly complex, since
some subsets of bone marrow derived monocytes may actually attenuate fibrosis.[130]

Dendritic cells—Dendritic cells are present in substantial numbers in the renal
interstitium,[15] and recent studies have shown their importance in IF. Dendritic cell
depletion through injection of diphtheria toxin in transgenic mice with a CD11c/diptheria
toxin receptor may ameliorate IF.[131, 132] Other studies show that dendritic cells act
indirectly, activating T cells to produce fibrosis.[119]

Mast cells—Mast cells are a component of the primary innate immune system and are
typically infrequent in normal kidneys, often congregating around vessels and epithelium.
Increased mast cell numbers have been associated with profibrotic roles.[133–137],
inversely correlating with renal function.[135, 137, 138] Mast cell deficiency has been
associated with decreased fibrosis.[135] Mast cells have also been associated with
antifibrotic actions.[139]

Endothelial cells, Peritubular Capillaries, and Vascular Supply
Experimental evidence supports the view that endothelial cells contribute to interstitial
fibroblasts, possibly through a process of endothelial-to-mesenchymal transition.[21, 29, 31,
33, 140–143] PTCs decrease with time in allografts and are inversely related to renal
function; decreased PTC density at 3 months predicts later loss of function at one year.[144]

Kidney lymphatic vessels are important in facilitating inflammatory cell emigration. IF is
associated with increased lymphangiogenesis, partly driven by VEGF-C.[145] Angiogenesis
and inflammation inhibition with sirolimus can prevent IF.[146] Newly formed lymphatics
may be found close to glomeruli with tuft adhesions,[145] perhaps participating in the
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misdirection of urine filtrates in these areas.[147] Other studies have found a connection
between lymphangiogenesis, tissue remodeling, and differential proteoglycan expression.
[148] Lymphangiogenesis occurs as early as 72 hours after transplantation and tends to
correlate with inflammation.[149]

Molecular Mediators and Signaling Pathways(Table 1)
Transforming growth factor-β (TGF β) is regarded as a central mediator of IF.[1, 45, 150–
155] TGF-β upregulation occurs in nearly every chronic kidney disease [both human and
animal]. TGF-β, possibly one of the most widely studied regulators of ECM production, is
produced in a latent form, TGF-β1, bound to latency-associated peptide (LAP), which
inhibits TGF-β receptor binding. Latent TGF-β binding protein (LTBP) binds this complex
and inhibits binding to the ECM.[156, 157]

TGF-β acts through Smad for downstream signaling,[158–160] which is amplified if Smad
antagonists [e.g., SnoN and Ski corepressors] are lost.[161–163] Resulting fibrogenic
signals stimulate fibroblasts, presumably initiating tubular EMP. TGF-β also works through
the jagged/notch pathway, which may be inhibited to decrease fibrosis,[164–166] and
Crim1, which binds and regulates TGFβ-2, VEGF, and PDGF-β, to decrease fibrosis. [167]

Bone morphogenic protein (BMP), particularly BMP-7, acts as a natural TGF-β antagonist;
and due to this, BMP may have renoprotective effects and may possibly reverse IF.[161,
168–170] Sclerostin domain-containing protein 1 (also known as uterine sensitization-
associated gene 1 [USAG-1]) is an endogenous inhibitor of BMP-7[1, 45, 171, 172].
Inhibiting the circulating proteolytic enzyme BMP1–3 [a tolloid-like proteinase] reduces IF.
[173, 174]

Toll-like receptors (TLRs) participate in IFTA.[175, 176] TLR4 modulates IFTA
susceptibility through the BAMBI (BMP and Activin Membrane Bound Inhibitor), a
negative regulator of TGF-β, attenuating tubular injury but promoting IF;[176] however,
other studies fail to show TLR influence.[177, 178]

TGF-β activation blockade can be accomplished with decorin antisense TGF-β expression
inhibition, neutralizing TGF-β antibodies and soluble TGF-β receptors.[179] Small
molecule inhibitors to TGF-β are being developed.[180] However, it is difficult to ascertain
whether TGF-β inhibition will be universally useful in inhibiting fibrosis. TGF-β also has
anti-inflammatory properties; and there is concern that TGF-β inhibition could lead to
increased inflammation and thus fibrosis.[180] TGF-β action may also be mediated by
reactive oxygen species and oxidative damage.[181]

The TGF-β-inducible integrin αVβ6 appears to be restricted to epithelial cells where it is
normally expressed in renal tubules at low levels and elevated during injury, development,
and neoplasia. This integrin appears to have a role in increasing IF and inflammation.[182]
Integrin-linked kinases have associated with increased IFTA, corresponding with increases
in collagen IV and TGF-β.[183]

Hepatocyte growth factor (HGF) is considered to be an antifibrotic factor with effects
opposite TGF-β, blocking Smad2/3 nuclear translocation in interstitial fibroblasts, inhibiting
tubular EMP. Administration of HGF or its gene can decrease IF observed in animal models.
[184–186] However, long-term proteinuria has been demonstrated with HGF administration.
[187]

Platelet-Derived Growth Factor (PDGF), comprising four isoforms (PDGF-A,-B,-C, and -D)
and two receptor chains (PDGFR-α and -β), appears to have an important role in IF.[23,
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188] PDGF-C,-α, and -CC are noteworthy contributors to the renal cortical interstitium.[1,
23, 189] Data indicates that PDGF-CC directly induces fibroblast proliferation and enhances
leukocyte infiltration;[189] but some studies have only demonstrated PDGF-CC in the
peritubular capillary (PTC) endothelium.[190]

The janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway
appears to be important in IFTA development, and STAT inhibition may be useful
therapeutically.[191] Fibrinogen acts as a fibroblast mitogen, promoting IFTA.[192]

Complement inhibition or lack of complement components appears to be antifibrotic.[193,
194] Proteomic data indicates contributions from the alternative rather than the classic
complement pathway to IFTA.[195]

Evaluation of Interstitial Fibrosis
IF extent is predictive of renal allograft outcome and may be considered a surrogate marker.
[196–200] Several applications require accurate IF measurement (Table 2)[6–14, 24, 169,
200–211] including research focused on therapeutic inhibition of IF and comparison of renal
allograft protocol biopsies.[45, 180, 212, 213] Visual assessment of trichrome-stained slides
is often standard institutional practice,[214] but studies have shown this approach may have
poor reproducibility.[215, 216] Several morphometry techniques are used to assess IF
(Figure 3), including morphometry of slides stained with trichrome;[10, 202] Sirius Red,
specific for collagen types I and III under polarized light;[24, 206, 217] and collagen
immunohistochemistry, particularly type III collagen.[12, 218, 219] Computer-assisted
morphometry has shown utility in the analysis of studies employing trichrome, Sirius Red,
and collagen III immunohistochemistry; and analysis in some of these studies have shown
correlation with GFR.[6, 8, 11, 12, 24, 169, 202, 206, 217–222] (Table 2)

There are intrinsic limitations in the measurement of IF, some of which are due to sampling.
For example, one study estimated that repeat biopsies show a decrease in the measured level
of fibrosis, presumably due to sampling, in 12% of cases.[223] In addition, not all fibrosis is
“equal” or the “same” in quality and thus aggregate quantity. For example, “active” or
“young” IF may have greater potential for remodeling. Broad scars may have different
consequences than diffuse, fine IF. Inflammation in areas of IF has also been noted in
several studies to be an adverse risk factor for progression of renal disease.[18, 200, 223–
227]

Overall, there is no consensus regarding the best way to assess IF. Efforts to reach a
consensus or at least provide recommendations are currently underway under the auspices of
the Banff Conference of Allograft Pathology.[228]

Conclusion
Molecular mechanisms leading to IFTA are complex and typically interrelated with the
primary processes leading to renal injury. Further elucidation of these mechanisms could
lead to targeted inhibitors to alleviate terminal scarring. Furthermore, there are number of
ways to assess fibrosis; and efforts are underway to improve these methods.
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Abbreviations

ACE angiotensin converting enzyme

AT1/2R[B] angiotensin type 1/2 receptor [blockade]

BMP Bone morphogenic protein

CAV1 caveolin-1

CTI chronic tubulointerstitial injury

CYP cytochrome P450

ECM extracellular matrix

EMP epithelial to mesenchymal phenotype

EMT epithelial to mesenchymal transition

Gal-3 Galectin-3

GFP green fluorescent protein

GFR glomerular filtration rate

HGF hepatocyte growth factor

HIF hypoxia-induced factor

IF/TA interstitial fibrosis/tubular atrophy

ILK integrin-linked kinase

JAK/STAT janus kinase/signal transducer and activator of transcription

LTBP latent TGF-β binding protein

miRNAs microRNA

MMP matrix metalloproteinase

PPAR peroxisome proliferator-activated receptor

PDGF platelet-derived growth factor

PTC peritubular capillary

RAG recombinase activator gene

SMA smooth muscle actin

tPA tissue plasminogen activator

TEC tubular epithelial cell

TGF Transforming growth factor

TLR Toll-like receptor

UUO unilateral ureteral obstruction

USAG-1 uterine sensitization-associated gene 1 [also known as sclerostin domain-
containing protein 1]

VEGF vascular endothelial growth factor
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Bullet Point Summary

• Interstitial fibrosis and tubular atrophy formation results from a complex cellular
and molecular milieu participating in extracellular matrix formation.

• Molecular mediators involved are numerous and involve pathways such as
transforming growth factor (TGF-β), bone morphogenic protein (BMP),
platelet-derived growth factor (PDGF), and hepatocyte growth factor (HGF);
and important cells include epithelial cells, fibroblasts, myofibroblasts,
fibrocytes, endothelial cells, lymphocytes, monocyte/macrophages, dendritic
cells, and mast cells.

• Epithelial and endothelial cells may undergo transitional to mesenchymal cells;
however, this research may simply indicate transition to a phenotype rather than
an actual cell type transition.

• Recent genomic approaches have revealed the interplay of molecular and
cellular factors, including the role of lymphocytes, in fibrosis formation

• The assessment of fibrosis involves a number of visual and morphometric
methods, many of which correlate with renal function; but there is no clear
consensus regarding the best method.
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Figure 1. Cellular mediators of fibrosis
Cells involved in fibrosis include the renal tubules, the renal vasculature, and inflammatory
cells, including lymphocytes, monocyte/macrophages, mast cells, and dendritic cells. The
renal tubules at least undergo changes that impart them with a epithelial-mesenchymal
phenotype (EMP) and are possibly involved in a process of epithelial-mesenchymal
transition (EMT). The endothelium is possibly involved in a process of endothelial-
mesenchymal transition (EndoMT). Evidence shows that the inflammatory cells participate
in both the process of EMT/EMP and EndoMT. Fibroblasts/mesenchymal cells mediate the
production of fibrosis and extracellular matrix (ECM) deposition and also may undergo a
transition to a myofibroblastic phenotype, further leading to the production of fibrosis and
ECM deposition.
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Figure 2. Important molecular mediators of fibrosis
Transforming growth factor (TGF-β) is released through interactions with the extracellular
matrix (ECM) and matrix metalloproteinases (MMPs), plasmin, and integrin; and when
released from inhibition by latent TGF-β binding protein (LTBP) and latency-associated
peptide (LAP), TGF-β binds the transforming growth factor receptor (TGFR), activating
intracellular signals such as the Smad, jagged/notch, Akt, Bcl-2, and NF-κB pathways.
These lead to nuclear transcription, ultimately culminating in collagen and ECM production
and possibly leading to epithelial to mesenchymal transition (EMT). Smads also act on the
integrin-linked kinase (ILK), which acts through glycogen synthase kinase (GSK) to
produce β-catenin, which traverses into the nucleus to also induce transcription. The
integrins (typically with α and β components [e.g., α5β6 integrin]) also act through ILK in a
similar manner. Bone morphogenic protein (BMP), when binding to the BMP receptor
(BMPR) also works through Smad, a process inhibited by sclerostin domain-containing
protein 1 (also known as uterine sensitization-associated gene 1 [USAG-1]).[Figure adapted
from [1, 229, 230].]
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Figure 3. Fibrosis morphometry
Stains used to assess fibrosis are shown, including: Trichrome, Collagen III
immunohistochemistry, and Sirius Red [on the left] with their corresponding quantitation
markup images shown [on right].
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Table 1

Mediators of Interstitial Fibrosis and Selected Interaction Partners

Mediator Primary role Interaction

Fibrinogen Profibrotic Acts as a fibroblast mitogen

G2/M arrest Profibrotic Increase of cells in the G2/M phase gives the cells a profibrotic phenotype

Galectin-3 Profibrotic Released from macrophages

Integrins Profibrotic TGF-β-inducible integrins (e.g. αVβ6) act through integrin-linked kinases to produce collagen

Jagged/notch Profibrotic Downstream of TGF-β; may be inhibited to decrease fibrosis

JAK/STAT Profibrotic May be a useful therapeutic target to decrease IF

MMP Profibrotic Can degrade ECM but also disrupts basement membranes

PDGF Profibrotic Induces fibroblast proliferation and leukocyte infiltration; inhibited by Crim1

Smad Profibrotic Downstream of TGF-β

TGF-β Profibrotic Downstream: Smad, jagged/notch; Smad antagonist corepressors such as SnoN and Ski; latency-
associated peptide (LAP) binds TGF-β1, inhibiting binding to the TGF-β receptor; latent TGF-β
binding protein (LTBP) binds the complex and inhibits binding to the ECM; Inhibited by Crim1

TLRs Profibrotic Acts through BAMBI (BMP and Activin Membrane Bound Inhibitor) [negative regulator of TGF-
β] to attenuate tubular injury but promote IF

tPA Profibrotic Induces MMP-9 gene expression, leading to TBM disruption and increased IF

tTG Profibrotic Crosslinks proteins, Stabilizes ECM

VEGF Profibrotic Increased capillaries and lymphatics, fibroblasts/myofibroblasts, and collagen deposition; Inhibited
by Crim1

miRNA Antifibrotic/Profibrotic Some are antifibrotic and some are profibrotic; some may be therapeutic targets

BMP Antifibrotic Antagonist of TGF-β; inhibited by sclerostin domain-containing protein 1 (also known as uterine
sensitization-associated gene 1 [USAG-1])

Crim1 Antifibrotic Binds TGF-β, VEGF, and PDGF-â to decrease fibrosis

CSF-1 Antifibrotic Macrophage growth factor released by renal tubular cells leads to repair and reduced IF

HGF Antifibrotic blocks Smad (e.g., Smad 2/3)

Plasmin Antifibrotic Activates MMPs, leading to matrix degradation and reduced IF

RASAL1 Antifibrotic Ras oncogene inhibitor hypermethylated by methyltransferase Dnmt1 decreases IF

BMP: Bone morphogenic protein, ECM: extracellular matrix, HGF: hepatocyte growth factor, IF: interstitial fibrosis, JAK/STAT: janus kinase/
signal transducer and activator of transcription, miRNAs: microRNA, MMP: Matrix metalloproteinase, PPAR: peroxisome proliferator-activated
receptor, TBM: tubular basement membrane, tPA: tissue plasminogen activator, TGF: Transforming growth factor, TLRs: Toll-like receptors, tTG:
tissue transglutaminase, VEGF: vascular endothelial growth factor
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Table 2

Interstitial Fibrosis Evaluation

Method Description Measure Ref.(s)

VA; “routine” IF, inflammation, and glomerulopathy
correlated with poor allograft outcome

By multivariate analysis, IF and inflammation lead to
poorer survival (HR = 8.5, p < 0.0001); IF alone had
less effect (HR = 4.8, p = not significant)

[200]

IA; TC (Masson),
SR, and SMA IHC

IA and semi-quantitative assessments
(VA) were performed on late allograft
biopsies

IF by VA predicted Banff ’97 ci scores (p < 0.0001)
and correlated with GFR, Cr, and urine total protein (r
= − 0.48, p = 0.0007; r = 0.46, p = 0.0009; r= 0.51,
0.0009, respectively). Of IA methods, only SR-
nonpolarized score correlated with GFR and urine total
protein (r = −0.29, p = 0.05; r = 0.29, p = 0.05,
respectively)

[14]

IA; TC (Masson) IF IA correlates with serum Cr in IgA
nephropathy and MPGN

IF occupied > 10% of the interstitium in all 10 cases
and > 20% in 6 and IF IA correlated with serum Cr

[201]

IA; TC (Masson) IA of IF in patients receiving
cyclosporine

IF grade by IA correlated with worsened Cr clearance
between 1 and 3 years

[10]

IA; TC (Light Green) IF IA in patients randomized to
cyclosporine or conversion to
sirolimus

No difference in groups with respect to fibrosis but
GFR improved significantly in the conversion group

[202]

IA; TC (Light green) Quantitative IF in sequential renal
biopsies

IF evolution correlated with eGFR [11]

IA; SR and collagen Renal IF correlates with presence of
TGF-β, decorin, SMA, and interstitial
collagens

In all samples with IF, TGF-β up-regulation was
observed in combination with reduced decorin
expression

[169, 203– 205]

IA; SR SR IA predicted long-term renal
allograft function

Cortical IF correlated with time to graft failure (r =
0.64, P < 0.001) at 6 months post transplant

[24]

IA; SR SR IA predicted long-term renal
allograft function

Positive correlation (r = 0.62, P<0.001) between SR
fibrosis and decreased GFR

[7]

IA; SR SR IA corresponded to light
microscopic semiquantitative
measurements (r = 0.439, P = 0.0003
overall and r = 0.704, P < 0.0001 for
just baseline specimens) in kidney
allografts

Semiquantitative methods correlated best with long-
term graft function (serum Cr at 8 – 10 years (P =
0.010) and late graft loss (P = 0.0445)

[206]

IA; SR IF in non-heart-beating donor kidneys
and conventional heart-beating donor
kidneys

No significant difference in IF between the two groups [207]

IA; SR IF scoring predicts survival in lupus
nephritis

Fibrillary collagen was predictive of Cr doubling (P =
0.01) and relapse (P = 0.06)

[208]

IA; SR IA-based application (Fibrosis HR) for
IF and glomerular morphometry

Intra- and interoperator variability was present in
manual segmentation of IF, mesangial matrix, and
glomerular areas but interactive identification didn’t
have this variability

[209]

IA; SR IF measurements using digital imaging
coupled with point counting correlated
with GFR

Direct relationship between interstitial volume fraction
and renal function (r2 = 0.54)

[8]

IA; SR SR IF measurement combined with
ultrasound measurements of renal
artery resistance index helped predict
“chronic allograft nephropathy”

Positive correlation (r = 0.62, P <0.001) between
picroSR-stained cortical fractional IF volume and
decreased GFR

[9]

IA; CIII IHC IF measurements by a semiautomatic
system correlate with GFR in protocol
renal transplant biopsy specimens

Area fraction of collagen III IHC of > 40% @ 6 months
associated with decreased GFR @ 24 months compared
with ≤ 40% (r=−0.32, P=0.03)

[12]

IA; CIII IHC IF measurements by a semiautomatic
system correlate with GFR in protocol
renal transplant biopsies

GFR correlated negatively with interstitial volume
fraction @ 6 months (P = 0.05)

[13]
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Method Description Measure Ref.(s)

IA and VA; TC
(Masson)

Cyclosporine (CsA) therapy effects on
fibrosis IA

IF measured by IA was significantly higher in the CsA
group only in renal allografts 6 months posttransplant
(P < 0.04)

[210, 211]

IA and VA; CII IHC,
TC, and SR

Comparison of CII IHC, TC, and SR
IA

Collagen III IHC and VA of TC-stained slides
correlated best with each other and with GFR

[6]

CIII: Collagen III, Cr: creatinine, eGFR: estimated GFR, GFR: glomerular filtration rate, IHC: immunohistochemistry, IF: interstitial fibrosis, IA:
Image analysis, MPGN: membranoproliferative glomerulonephritis, SMA: smooth muscle actin, SR: Sirius red, Ref(s): References, TC:
Trichrome, TGF-β: transforming growth factor, VA: visual analysis.
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