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Abstract
We applied compressed sensing (CS) to spectral domain optical coherence tomography (SD-
OCT). Namely, CS was applied to the spectral data in reconstructing A-mode images. This would
eliminate the need for a large amount of spectral data for image reconstruction and processing. We
tested the CS method by randomly undersampling k-space SD-OCT signal. OCT images are
reconstructed by solving an optimization problem that minimizes the l1 norm to enforce sparsity,
subject to data consistency constraints. Variable density random sampling and uniform density
random sampling were studied and compared, which shows the former undersampling scheme can
achieve accurate signal recovery using less data.
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1. INTRODUCTION
Compressed sensing (CS) theory stipulates that exact signal reconstruct can be obtained
from highly undersampled data, given that the signal has a sparse representation [1]. After
CS first demonstrated its feasibility in MRI [2], it has been adopted by various imaging
modalities including optical imaging modalities, such as optical holography [3], diffuse
optical tomography [4], and optical coherence tomography (OCT) [5, 6].

As a high-resolution high-speed cross-sectional imaging technique, OCT has been used
widely in medical diagnostics and imaging [7–12]. In recent years, Fourier domain OCT
(FD OCT) has supplanted conventional time domain OCT (TD OCT) in many applications
[13–16], due to a better sensitivity and imaging speed compared to TD OCT. Particularly,
spectral domain OCT (SD OCT), one type of FD OCT, uses an array detector such as a CCD
or CMOS camera to sample the interference spectrum called interferogram. The measured
interferogram, and the object, the axial profile of a sample, are simply a Fourier pair, which
makes the image construction straightforward. However, according to Nyquist theorem, to
achieve a larger imaging depth with a given axial resolution, it requires more sampling
points, i.e., more pixels in the array detector to capture the spectral interferogram, which
limits the imaging speed. Moreover, the massive data acquired becomes a heavy burden for
data processing and storage. In this study, we explored the potential of using compressed
sensing in SD OCT (CS SD OCT), to reduce the amount of spectral data acquisition
required for high-resolution image reconstruction. In this study, we use an OCT system
described in detail in [5].
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2. SD OCT AND CS
In SD OCT, measurements are taken in Fourier domain. Denoting the sample as a vector x
and denoting k-space measurements as a vector y, we can relate x and y using Fourier
transformation (F):

(1)

Conventional FD OCT reconstruction relies on inverse Fourier transformation, as shown in
Eq. (2).

(2)

Under conventional reconstruction, the total number of samples in Fourier domain is
determined by the spectral range of the spectrometer and the imaging depth required.

CS takes a significantly different approach from conventional reconstruction. According to
the CS theory, measuring a small number of random linear combinations of an object x can
lead to accurate object reconstruction. In applying CS, one has to make sure that the
following three conditions hold:

Sparsity
Assume an object x∈RN and there exists an orthonormal basis (ψi : i=1,…N) for RN. x can
be projected to the basis and represented by transform coefficients θi= x·ψi. Here · indicates
inner product. The presentation of x in RN can be considered as sparse if θi satisfies the
following inequality [15]:

(3)

In Eq. (3), 0<p<2 and R>0. In practice, p usually takes the value of 1. As a result, algorithms
for CS promote sparsity by minimizing l1 norm of an image in a given presentation. More
concretely, x can be considered as sparse when it has only a few non-zero coefficients in the
representation domain Ψ.

Incoherence
CS requires an undersampling scheme that results in noise like aliasing artifact. As to CS
OCT, Fourier domain (Φ) and pixel domain (Ψ) are concerned when the image is sparse in
pixel domain. Fortunately, the incoherence between these two domains has been
elaboratively studied in literature [2, 5].

Non-linear reconstruction
In order to recover x from randomly undersampled measurements, CS solves the following
constrained optimization problem:

(4)
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In Eq. (4), Fu is the operator for incomplete Fourier measurement; ε controls the data
consistency; the objective function of this optimization problem is the ℓ1 norm of the image
in Ψ, which essentially promotes sparsity. In this study, we solved Eq.(4) iteratively, using
non-linear conjugate gradients (CG) and backtracking line-search [2, 5].

3. UNIFORM AND VARIABLE DENSITY RANDOM SAMPLING
Incoherent random undersampling was achieved by applying a random mask to the array
detector that continuously samples the spectrum. A more practical and realistic
implementation would involve randomly acquiring only a certain fraction of the pixels
within the array. The mask determines whether a pixel of the array will be selected or not,
depending on a certain probability distribution function. The design of the mask will affect
the accuracy of CS reconstruction and the algorithm’s efficiency. The most straightforward
incoherent undersampling scheme is a uniform density random sampling (UDRS), in which
every pixel has the same probability of being sampled or dropped out. However, UDRS
clearly is not an optimized sampling scheme, because the spectrum of the OCT light source
is not constant. The source spectrum is almost zero at some pixels and those pixels do not
contribute much to the A-scan reconstructed. As a result, it is rational to take a variable
density random sampling (VDRS), which samples less where the source’s spectral intensity
is small and samples more where the source’s spectral intensity is large.

UDRS and VDRS are illustrated in Fig. 1. The interferometric spectrum obtained when a
mirror is used as an object is shown in Fig. 1(a). Seen from Fig. 1(a), the source spectrum is
maximized at the center of the CCD array and is almost zero at left and right ends of the
array. We designed masks for UDRS and VDRS to sample 50% of the pixels. UDRS
samples pixels in the whole array detector with the same probability, as shown in Fig 1(b) –
(f) which clearly exhibits the drawback of UDRS. A lot of data points are sampled when the
spectral intensity is almost zero, as shown in Fig. 1(b) and (f). On the other hand, we
generate a mask for VDRS and the probability of selecting a pixel is proportional to the
source spectral intensity at that pixel, as shown in Fig. 1(g) – (k). VDRS does not sample
any data points in Fig. 1(g) and (f), because the spectral intensity is almost zero at the edge
of the array detector. Moreover, VDRS samples almost every data point in Fig 1(i), because
the source has largest spectral intensity in the center of the camera.

To show that VDRS will allow CS reconstruction using less data, we reconstructed OCT A-
scans using CS approach based on UDRS shown in Fig.1(b) – (f), and VDRS shown in Fig.
1(g) – (k). We use signal to noise ratio (SNR) to evaluate the performance of different
sampling schemes. SNR is defined as SNR=10log10(xmax

2/σ2), in which xmax and σ are the
peak value and standard deviation of OCT signal, respectively. The noise in the
reconstructed image contains real noise which is due to the random nature of physical
parameters. The measured “noise” also includes noise like aliasing that originates from
random undersampling. Such aliasing gets completely removed after an ideal CS
reconstruction. However, a practical CS reconstruction algorithm maximizes sparsity under
the constraint of data consistency. Therefore, noise due to aliasing cannot be completely
removed, and SNR can be used as a way to measure and to evaluate a sampling scheme. A
large SNR indicates a good “mask” and vice versa. SNRs obtained under UDRS and VDRS
at different undersampling rate are summarized in Fig 2, which shows that VDRS
outperforms UDRS. To achieve a given SNR, VDRS requires less sampling rate than
UDRS.

We also studied the performance of UDRS and VDRS in term of image resolution. We
measured the FWHM resolution of OCT signal obtained from spectral data shown in Fig.
1(a) by CS reconstruction based on UDRS and VDRS. Results are shown in Fig. 3. Note that
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the axial resolution obtained from a conventional reconstruction using complete spectral
data is measured to be 3.2μm. Seen from Fig. 3, both UDRS and VDRS can achieve an axial
resolution close to the conventional reconstruction, and the resolution is well preserved even
at extremely low sampling rate

Our preliminary result suggests that VDRS allows CS reconstruction using less data, and
will potentially result in a significantly reduced data acquisition time. However, the
probability distribution function that we used to generate the VDRS mask is not necessarily
optimized. Therefore, in the future study, we will study various ways to achieve random
undersampling and compare their performance.

4. CONCLUSION AND DISCUSSION
In this work we applied compressed sensing techniques in SD OCT. Variable density
random sampling and uniform density random sampling are compared. We demonstrated
and verified the effectiveness of CS in phase sensitive OCT, which shows that CS has great
potential in OCT’s application as a sensor to capture fast dynamic processes.
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Fig. 1.
(a) Interference spectrum of high resolution OCT; (b)–(f), sections of interference spectrum
sampled using UDRS at different parts of the detector; (g)–(k), sections of interference
spectrum sampled using UDRS at different parts of the detector
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Fig. 2.
SNRs obtained using VDRS and UDRS, at different under sampling rate
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Fig. 3.
spatial resolution obtained using different sampling schemes.
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