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Abstract

Interferon protects mice from vesicular stomatitis virus (VSV) infection and pathogenesis; however, it is not known which of
the numerous interferon-stimulated genes (ISG) mediate the antiviral effect. A prominent family of ISGs is the interferon-
induced with tetratricopeptide repeats (Ifit) genes comprising three members in mice, Ifit1/ISG56, Ifit2/ISG54 and Ifit3/ISG49.
Intranasal infection with a low dose of VSV is not lethal to wild-type mice and all three Ifit genes are induced in the central
nervous system of the infected mice. We tested their potential contributions to the observed protection of wild-type mice
from VSV pathogenesis, by taking advantage of the newly generated knockout mice lacking either Ifit2 or Ifit1. We observed
that in Ifit2 knockout (Ifit22/2) mice, intranasal VSV infection was uniformly lethal and death was preceded by neurological
signs, such as ataxia and hind limb paralysis. In contrast, wild-type and Ifit12/2 mice were highly protected and survived
without developing such disease. However, when VSV was injected intracranially, virus replication and survival were not
significantly different between wild-type and Ifit22/2 mice. When administered intranasally, VSV entered the central nervous
system through the olfactory bulbs, where it replicated equivalently in wild-type and Ifit22/2 mice and induced interferon-b.
However, as the infection spread to other regions of the brain, VSV titers rose several hundred folds higher in Ifit22/2 mice
as compared to wild-type mice. This was not caused by a broadened cell tropism in the brains of Ifit22/2 mice, where VSV
still replicated selectively in neurons. Surprisingly, this advantage for VSV replication in the brains of Ifit22/2 mice was not
observed in other organs, such as lung and liver. Pathogenesis by another neurotropic RNA virus, encephalomyocarditis
virus, was not enhanced in the brains of Ifit22/2 mice. Our study provides a clear demonstration of tissue-, virus- and ISG-
specific antiviral action of interferon.
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Introduction

Virus infection of mammals induces the synthesis of type I

interferons (IFN), which, in turn, inhibit virus replication. The

high susceptibility of type I IFN receptor knockout (IFNAR2/2)

mice to infection by a variety of viruses [1–3] provides strong

evidence for the major role of the IFN system in protecting from

viral pathogenesis. In these mice, although IFN is induced by virus

infection, it cannot act on target cells. Similarly, in genetically

altered mice that are defective in IFN production due to the

absence of specific pathogen-associated pattern recognition

receptors, signaling proteins or specific transcription factors, viral

pathogenesis is enhanced [4–6]. Although the critical importance

of the IFN system in regulating viral pathogenesis is now well

established, in many cases it is still unclear how IFN inhibits the

replication and spread of a specific virus in vivo. In this context,

activation of different components of the immune system plays a

major role in controlling viral diseases that are relatively slow to

develop [7–9]. In contrast, in acute infection by viruses that cause

severe pathogenesis and death within a few days after infection,

protection is primarily provided by the intrinsic antiviral actions of

IFN-induced proteins encoded by the hundreds of IFN-stimulated

genes (ISGs) [10–12], several of which often contribute to the

overall effect of IFN against a given virus. Our knowledge of the

antiviral and the biochemical properties of individual ISG

products is mostly limited to a few intensively studied examples

such as PKR, OAS/RNase L or Mx [13]. However, recent

systematic investigation of the antiviral functions of the entire

family of ISGs has started producing exciting new information

[14].

In the above context, we have been investigating the

biochemical and biological functions of the members of the Ifit

family of ISGs, which are very strongly induced by IFN. There are

three members of this family of genes in mice: Ifit1/ISG56, Ifit2/

ISG54 and Ifit3/ISG49; all of the encoded proteins contain

multiple tetratricopeptide repeats (TPR), which mediate protein-

protein and protein-RNA interactions [15]. In vitro, P56 and P54,

the products of Ifit1 and Ifit2, respectively, bind to the translation

initiation factor eIF3 and inhibit protein synthesis [16]. The third

member, P49, the product of Ifit3, does not share this property
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[17]. Recently, it has been reported that Ifit proteins form a multi-

protein complex that can bind to the triphosphorylated 59 end of

RNAs, an RNA-species produced during the replication of some,

but not all, viruses [18]. In vivo, these genes are strongly induced in

brains of mice infected with West Nile virus (WNV) or

Lymphocytic choriomeningitis virus (LCMV); surprisingly, differ-

ent Ifit genes are differentially induced in different regions of the

brain, suggesting non-redundant functions [19]. To further

explore the antiviral properties of the Ifit proteins, we generated

Ifit1 knockout (Ifit12/2) mice and challenged them with different

viruses. We observed that Ifit12/2 mice were particularly sus-

ceptible to a WNV mutant that is defective in its mRNA cap 29-O

methylation; the mutant virus killed Ifit12/2 mice but not the

wild-type (wt) mice [20].

Here, we report on the antiviral properties of the newly

generated Ifit22/2 mice; these mice, but not Ifit12/2 mice, were

highly susceptible to neuropathogenesis after intranasal infection

with vesicular stomatitis virus (VSV), a negative sense, single-

stranded RNA rhabdovirus. VSV replication is highly sensitive to

the inhibitory action of IFN and is routinely used to assay the

antiviral activity of IFN in vitro [21]. As expected, IFNAR2/2 mice

are highly susceptible to VSV pathogenesis and the same is true

for mice that specifically lack expression of IFNAR on the cells of

their central nervous system (CNS) [1]. In spite of these

observations, little is known about how IFN inhibits VSV

replication in vivo. Our new results indicate that in the brain, but

not in other organs, Ifit2 is a major mediator of IFN’s protective

effect against VSV. In contrast, Ifit2 could not protect mice from

neuropathogenesis caused by encephalomyocarditis virus

(EMCV), a picornavirus. Thus, we have uncovered a virus-

specific, tissue-specific and ISG-specific antiviral effect of the IFN

system.

Results

Generation of Ifit2/ISG54 and Ifit1/ISG56 knockout mice
Ifit2 gene knockout (Ifit22/2) mice were generated by deleting

the entire protein-encoding region of the gene, which was

achieved by flanking exons 2 and 3 with frt recombinase sites in

C57BL/6 embryonic stem cells and excising the flanked region

with Flp recombinase (Figure 1A). Ifit22/2 mice were bred to

homozygosity (Figure 1B), and deficiency for induced expression of

Ifit2 protein was confirmed in lysates of IFN-b-treated primary

murine embryonic fibroblasts (MEF) (Figure 1C). Mice deficient

for Ifit1 (Ifit12/2) were derived from C57BL/6 embryonic stem

cells lacking the entire Ifit1 coding region (Figure 1A). Genotypic

homozygosity of the Ifit12/2 mice and deficiency for Ifit1 protein

induction were confirmed (Figure 1B and 1C). Both knockout

mouse lines were healthy and fertile. Moreover, deletion of one

gene within the Ifit locus did not alter the pattern of induction of

other adjacent gene family members, as compared to wild-type

(wt) mice (Figure 1C).

Ifit2 protects mice from lethal intranasal VSV infection
To determine the impact of Ifit2 on the outcome of viral

infections in vivo, we compared susceptibilities of Ifit22/2 and wt

mice to VSV infection, using IFNAR2/2 mice as positive controls

of enhanced susceptibility. Virus was administered at a low dose

[46102 plaque forming units (pfu)], intranasally, reflecting a

natural route of infection for VSV [22]. As seen previously, 100%

of IFNAR2/2 mice rapidly succumbed to VSV infection within 2

days (Figure 2A, and [1]), after suffering symptoms of lethargy. On

the other hand, 79% of wt mice survived, the remaining 21%

succumbed to VSV, and this occurred later, at 7–10 days post

infection (d.p.i.). In contrast, 100% of Ifit22/2 mice died by

7 d.p.i. (Figure 2A), with most succumbing by 6 d.p.i.; thus, we

observed uniform and more rapidly occurring death of Ifit22/2

compared to wt mice after VSV infection. Within 24 h before

death, both wt and Ifit22/2 mice developed neurological signs

including ataxia, hind limb paralysis, and hyper-excitability. Ifit2+/2

mice displayed an intermediate survival curve, demonstrating a

gene dosage effect (Figure 2B). Next, the role of a related gene, Ifit1,

in VSV pathogenesis was evaluated by infecting Ifit12/2 mice.

Unlike the results observed with Ifit22/2 mice, no statistically

significant increase in mortality was observed in Ifit12/2 mice

(Figure 2B, 21% death for wt versus 36% for Ifit12/2, respectively;

p.0.25). Consistent with this, survival kinetics of Ifit12/2 and wt

mice were similar. Increasing the virus dose by 10,000-fold (to

46106 pfu) did not appreciably change the survival curves of wt,

Ifit12/2, or Ifit22/2 mice (Figure 2C). These results demonstrate

functional differences between the two closely related proteins

encoded by Ifit1 and Ifit2. The virus-specificity of the antiviral action

of Ifit2 was evaluated by infecting Ifit22/2 mice with EMCV, an

unrelated neurovirulent positive-strand RNA virus of the picorna-

virus family (Figure 2D). IFNAR2/2 mice were highly susceptible to

EMCV infection with all mice succumbing within 2 d.p.i.; in

contrast, wt mice died with a slower kinetics and at a rate of only

80%. Notably, Ifit22/2 mice behaved similarly to the wt mice,

without enhanced or accelerated mortality (Figure 2D). The same

conclusion was true for a lower dose of EMCV (Figure S1). The

survival pattern of EMCV-infected Ifit12/2 mice also was similar to

that of the wt mice (Figure 2D). Mice of all genotypes either

succumbed after developing neurological symptoms, mainly hind

limb paralysis, or survived without symptoms. These results

demonstrate that the antiviral action of Ifit2 is both virus- and Ifit-

specific.

Ifit2 does not inhibit VSV entry and replication in
olfactory bulbs

The uniform penetrance of neuropathogenesis and lethality of

VSV-infected Ifit22/2 mice, even at a low virus dose, prompted us

to examine viral spread along its route from the nasal cavity into

the CNS (Figure 3A). After intranasal administration, VSV infects

Author Summary

In mammals, the first line of defense against virus infection
is the interferon system. Viruses induce synthesis of
interferon in the infected cells and its secretion to
circulation. Interferon acts upon the as yet uninfected
cells and protects them from oncoming infection by
inducing the synthesis of hundreds of new proteins, many
of which interfere with virus replication. Vesicular stoma-
titis virus (VSV), a virus similar to rabies virus, is very
sensitive to interferon but it is not known which
interferon-induced protein inhibits its replication. Here,
we have identified a single interferon-induced protein as
the protector of mice from death by VSV infection.
Knocking out the gene encoding this protein, Ifit2, made
mice very vulnerable to neuropathogenesis caused by VSV
infection; a related protein, Ifit1, did not share this
property. Moreover, Ifit2 failed to protect mice from
another neurotropic virus, encephalomyocarditis virus,
nor was it necessary for protecting organs other than
brain from infection by VSV. Our observation that a single
IFN-induced protein protects a specific organ from
infection by a specific virus revealed an unexpected
degree of specificity of the antiviral action of IFN.

Ifit2/ISG54 Protects from VSV Neuropathogenesis
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Figure 1. Generation of Ifit2/ISG54 and Ifit1/ISG56 knockout mice. A, gene targeting strategy for genomic deletion of complete protein-
encoding regions of Ifit2 = ISG54 or Ifit1 = ISG56 in embryonic stem cells; TAG/TGA, stop codons; grey boxes = exons. B, genotyping of deficiency for
Ifit2 or Ifit1 by PCR on mouse tail DNA. C, IFN-b-induced protein expression of Ifit2/P54, Ifit1/P56 and Ifit3/P49 in Ifit22/2 or Ifit12/2 primary MEFs.
doi:10.1371/journal.ppat.1002712.g001

Figure 2. Ifit2 protects mice from lethal intranasal VSV infection. A, survival of Ifit22/2, IFNAR2/2 and wt mice after intranasal infection with
46102 pfu of VSV Indiana. B, survival of Ifit12/2 and Ifit2-heterozygous (Ifit2+/2) mice after infection with 46102 pfu of VSV; experiments in A and B
shared wt mice (n = number of animals used). C, survival of Ifit22/2, Ifit12/2 and wt mice after intranasal infection with a higher dose of VSV
(46106 pfu). D, survival of Ifit22/2, Ifit12/2, IFNAR2/2 and wt mice after infection with 56102 pfu of EMCV. In A–D, data are cumulative from at least
two independent experiments (exceptions: Figure 2B, Ifit2+/2 mice and Figure 2D, Ifit12/2 mice infected in a single experiment). Statistical
significance of survival differences relative to wt mice is indicated by p-values; n.s., not significant; i.n., intranasal.
doi:10.1371/journal.ppat.1002712.g002
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the nasal epithelia including olfactory sensor neurons, which

project to the outer layer of the olfactory bulbs (OB) [23]. This

represents the entry step into the CNS, which we examined by

immunostaining of OB sections. In wt mice, VSV P protein was

detected exclusively within the glomeruli of the OB at 2 d.p.i.

(Figure 3B, upper right panel and [1]), whereas in IFNAR2/2 mice,

VSV antigen had spread into deeper layers of the OB (Figure 3B,

lower left panel). In Ifit22/2 mice OB, viral antigen was restricted to

the glomeruli, as seen in wt mice (Figure 3B, lower right panel). This

similar pattern of viral antigen expression between wt and Ifit22/2

mice was reflected in the equivalent levels of viral RNA in OB at

2 d.p.i. (Figure 3C). In contrast, ,10 times more VSV RNA was

present in OB of IFNAR2/2 mice (Figure 3C, right panel, p,0.05).

A comparison of the infectious viral burden between wt and Ifit22/2

mice in the OB confirmed these findings: at 2 d.p.i., ,106 pfu/g of

VSV was present in both wt and Ifit22/2 mice (Figure 3D, p = 1.0).

However, later in the course of infection, by day 6, viral OB titers in

Ifit22/2 mice were not significantly changed, whereas in wt mice

average titers of infectious VSV as well as viral RNA levels had

decreased by ,10-fold (Figure 3C and D, both p,0.05). These

results suggest that VSV initially enters and replicates with similar

efficiency in both wt and Ifit22/2 OB before spreading into the rest

of the brain.

Ifit2 suppresses replication of VSV in the brain after
intranasal infection

The efficiency of VSV replication in the brain, excluding the

OB, was examined by quantifying infectious VSV as well as viral

RNA. Early after infection, at 2 d.p.i., virus titers in brains were

low (,104 to 105 pfu/g) and roughly equivalent in wt and Ifit22/2

mice (Figure 4A, p.0.25). Similarly, viral RNA levels at the same

Figure 3. Ifit2 does not inhibit VSV entry and replication in olfactory bulbs. A, schematic entry route of VSV into the central nervous system
of wt mice after intranasal infection, and VSV spread within brain, as reported in the literature. OB, olfactory bulbs; CX, cortex; MB, midbrain; CB,
cerebellum; BS, brain stem; SC, spinal cord. B, VSV P protein in OB of VSV-infected wt, Ifit22/2 and IFNAR2/2 mice at 2 d.p.i., detected by
immunohistofluorescence. C, VSV RNA levels in OB of uninfected or VSV-infected wt, Ifit22/2 and IFNAR2/2 mice at 1, 2 or 6 d.p.i., plotted as
mean+SD on log scale; ND, none detected. D, infectious VSV titers in wt and Ifit22/2 OB at 2 and 6 d.p.i.; plotted as pfu/g with mean on log scale;
dashed line depicts threshold of detection. In C and D, n = 4–8 mice per infected group accumulated from three independent experiments; in B, n = 2
mice from two independent experiments. All infections were 46102 pfu of VSV administered intranasally. Asterisks indicate statistical significance: **
p = 0.006, * p,0.05; n.s.: not significant.
doi:10.1371/journal.ppat.1002712.g003
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time were low and comparable between wt and Ifit22/2

(Figure 4B, p.0.25). However, at the same time, levels of VSV

RNA (380-fold, p,0.05) were much higher in the brains of

IFNAR2/2 mice (Figure 4B, right panel). Later in the course of

infection (6 d.p.i.), brains of wt mice accumulated only ,5-fold

more infectious VSV, with occasional clearance of the virus. In

contrast, we detected markedly higher VSV titers in the brains of

Ifit22/2 mice (,350-fold higher compared to wt mice,

p = 0.0009), reaching ,108 pfu/g (Figure 4A); the high virus load

likely caused the pronounced lethality. Differences in viral RNA

levels in brains of wt and Ifit22/2 mice at 6 d.p.i. correlated well

with levels of infectious VSV (Figure 4B). To determine whether

Ifit2 selectively restricts replication of VSV in particular regions of

the brain, we measured viral RNA levels in cortex, midbrain,

cerebellum and brain stem at 6 d.p.i. In wt mice, VSV RNA was

present prominently in the cortex, midbrain and brainstem, but

not in the cerebellum (Figure 4C), which is consistent with

published results [24]. However, in Ifit22/2 mice, viral RNA was

200-fold or more (p,0.05) abundant in all regions of the brain

examined, including the cerebellum. The increase of VSV

replication in Ifit22/2 brains was not due to a broadened cell

tropism of the virus; immunostaining for viral P protein showed

exclusive localization to neurons and not other cell types, such as

astrocytes (Figure 4D). From the above observations, we conclude

that after intranasal infection by VSV, Ifit2 protects mice from

neuropathogenesis by suppressing replication or spread of the virus

in brain neurons.

Ifit2 and Ifit1 are induced in VSV-infected regions of OB
and brain

The protective effect of type I IFN signaling and in particular,

Ifit2, against VSV neuropathogenesis prompted us to confirm its

expression in OB and brain of wt mice, and whether it was

induced in a type I IFN-dependent manner. In wt OB, Ifit2, Ifit1,

and IFN-b mRNA was induced strongly by 2 d.p.i., and Ifit2 and

Ifit1 RNA remained abundant until day 6 d.p.i. (Figure 5A). The

induction of these genes was dependent on type I IFN receptor in

OB as well as in brain (Figure 5B and 5E, and data not shown).

Figure 4. Ifit2 suppresses VSV replication in the brain after intranasal infection. A, infectious VSV titers in wt and Ifit22/2 brains at 2 and 6
days after intranasal infection, plotted as pfu/g with mean on log scale; dashed line depicts threshold of detection. B, VSV RNA levels in brains of
uninfected or VSV-infected wt, Ifit22/2 and IFNAR2/2 mice at 2 or 6 d.p.i., plotted as mean+SD on log scale. C, VSV RNA levels in different regions of
the brains of uninfected or VSV-infected wt and Ifit22/2 mice at 6 d.p.i., plotted as mean+SD on log scale. D, VSV P protein in midbrain neurons of
Ifit22/2 mice at 6 d.p.i.; detection by immunohistofluorescence-labeling of VSV-P (red) and neuron (NeuN) or astrocyte (GFAP) markers (green); in A
and B: n = 4–8 mice per infected group accumulated from three independent experiments; in C: n = 4 mice per infected group; in D: n = 2 mice per
infected group; all infections in A–D were intranasal with 46102 pfu of VSV. ND, none detected. Brains in A and B were separated from OBs assayed in
Figure 3D and 3C, respectively. Asterisks indicate statistical significance: *** p#0.0009; n.s.: not significant.
doi:10.1371/journal.ppat.1002712.g004
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Furthermore, expression of Ifit2 mRNA in wt OB coincided with

the presence of detectable levels of the encoded Ifit2 protein

( = P54) at 2 d.p.i. and 6 d.p.i., as seen by immunohistochemistry

(Figure 5C, and data not shown). Ifit2 protein staining was

observed in VSV-infected cells within OB glomeruli as well as in

surrounding and distant viral antigen-free cells, consistent with a

remote IFN-dependent induction of Ifit2 expression (Figure 5C,

arrowheads in magnified images of right panel). Ifit1 and IFN-b mRNAs

were induced as strongly in OB of Ifit22/2 as in wt mice, which

correlated well with similar abundance of VSV RNA in wt and

Ifit22/2 OB (Figure 5A compared to Figure 3C). In brains, at

6 d.p.i., in contrast to OB, induction of Ifit1 and IFN-b mRNAs

was considerably stronger in Ifit22/2 mice compared to wt mice

(Figure 5D, 5-fold and 27-fold, respectively, both p,0.005). The

enhanced gene induction in VSV-infected Ifit22/2 mice was not

restricted to specific regions of the brain (Figure S2). Enhanced

cellular gene expression also was observed for several virus-

induced cytokine and chemokine genes, as measured by quanti-

tative RT-PCR (Figure S3A). Gene expression profiling of brain

tissue at day 6 d.p.i., using microarray analysis, revealed that

many other genes, including ISGs, were also more strongly

induced (Table S1). These results demonstrated that enhanced

virus replication in the brains of Ifit22/2 mice led to enhanced

type I IFN, other cytokines and ISG induction, which nevertheless

failed to restrict VSV replication in the absence of Ifit2.

Wt mice are as susceptible as Ifit22/2 mice to intracranial
VSV infection

Our results from intranasal VSV infection indicated that Ifit2

induction in the brain was mediated by type I IFN that was, in all

likelihood, produced by infected cells in the OB (Figure 5A). Virus

replication and resultant IFN induction at 2 d.p.i. were similar in

the OBs of wt and Ifit22/2 mice (Figs. 3C, 3D and 5A);

presumably, the newly produced IFN diffused into the rest of the

brain and induced local Ifit2 expression in the wt mouse brains,

prior to the arrival of the infectious virus. If this were the case, one

would anticipate that direct infection of the brain, without prior

action of IFN produced in infected OB, would minimize the

difference between the phenotypes of wt and Ifit22/2 mice. To

test this idea, we injected a very low dose (10 pfu) of VSV

intracranially. As hypothesized, wt and Ifit22/2 mice were now

equally susceptible; almost all mice died by 3 d.p.i. even at this low

dose (Figure 6A) and there were equally high virus titers and viral

RNA levels in the brains of mice of both genotypes (Figure 6B

and 6C). Concomitant with virus replication, there was similar

induction of Ifit1 and IFN-b (Figure 6C) and other cytokines and

chemokines (Figure S3B). These results indicate that in the

absence of prior induction of Ifit2 by IFN, brain neurons are highly

susceptible to VSV infection.

Unlike the brain, other organs of Ifit22/2 mice are not
more susceptible to intranasal VSV infection

IFNAR2/2 mice succumbed within two days after VSV

infection without accumulating very high VSV RNA levels in

the brain (Figure 4B). These mice did not develop CNS-related

signs of disease, but showed severe lethargy before death,

suggesting that death was due to efficient replication of the virus

in peripheral organs, due to the absence of an otherwise effective

type I IFN-mediated antiviral protection of the same organs in wt

mice. To test this, we assessed the kinetics of VSV accumulation in

brains, livers and lungs of wt, IFNAR2/2 and Ifit22/2 mice

(Figure 7). At 2 d.p.i., VSV titers were very high in the liver of

IFNAR2/2 mice, reaching 109 pfu/g (Figure 7A). In contrast, no

or little infectious virus was detected in the liver of wt mice at 2 or

6 d.p.i., indicating efficient IFN-dependent suppression of VSV

replication; intriguingly, this was also observed in Ifit22/2 mice,

demonstrating that Ifit2 did not mediate the anti-VSV effects of

type I IFN in the liver. In lungs, which directly received a part of

the virus inoculum from intranasal inhalation of VSV, the virus

also replicated efficiently in IFNAR2/2 mice, reaching 108 pfu/g

before death (Figure 7B). In comparison, lungs of wt and Ifit22/2

mice exhibited much lower levels of VSV at 2 and 4 d.p.i. (3,000

to 10,000-fold lower for wt and Ifit22/2 compared to IFNAR2/2

mice, all p,0.05). By days 5 and 6 d.p.i., the virus was cleared

from the lungs of a subset of wt and Ifit22/2 mice. In contrast, in

brains from the same animals, 10 to 100-fold higher average titers

(p,0.05) of VSV accumulated in Ifit22/2 compared to wt mice at

all time points between 2 and 6 d.p.i. (Figure 7C). As expected, in

wt mice, both Ifit1 and Ifit2 were induced not only in brains

(Figure 5D), but also in livers (Figure 7D) and lungs (Figure 7E);

IFN-b was also induced in lungs, but not livers. Ifit1, Ifit2 and

IFN-b mRNAs were also induced in the brains of EMCV-infected

wt mice (Figure S3C). These findings demonstrate an unexpected

brain-restricted and virus-restricted function of Ifit2 in the context

of the type I IFN-mediated antiviral response to VSV infection.

They also indicate that in Ifit22/2 mice, other ISGs, which

presumably protect the peripheral organs of VSV-infected wt

mice, are either not induced in neurons or insufficient to protect

them.

Discussion

IFNs are defined by their antiviral activities. They inhibit the

replication of many, if not all, viruses mostly by direct inhibition of

replication in the infected cells but also by promoting the ability of

immune cells to recognize and eliminate the virus-infected cells

[25]. The direct effects are mediated by ISGs, which number in

the hundreds, and different ISGs are thought to have more potent

antiviral activities toward different families of viruses [13].

However, in most cases, it is not known which ISG inhibits the

replication of a given virus; the rare exception is the Mx-mediated

inhibition of influenza viruses, the underlying effect which allowed

for the discovery of IFNs [26]. The task of connecting a specific

IFN-induced protein to a specific antiviral action is compounded

by the fact that often several IFN-induced proteins act in concert

to inhibit the same virus at different stages of its life cycle.

Moreover, a specific IFN-induced protein may be more relevant

for inhibiting a virus in one specific cell-type than another. Recent

systematic investigation of the specific antiviral effects of different

ISGs has started providing significant insight into this problem

[14]. Such findings are complemented by the analyses of the

spectra of the antiviral effects of a specific ISG or a family of ISGs

[27]. We have undertaken an investigation of the Ifit family of

mouse ISGs. The corresponding human proteins are known to

have antiviral activities against human papillomavirus (HPV) and

hepatitis C virus (HCV), neither of which replicate in mouse cells.

The anti-HPV activity of human IFIT1 ( = P56) has been

attributed to its ability to bind HPV E1 protein and to inhibit its

helicase activity, which is essential for HPV DNA replication

[28,29]. The antiviral effect on HCV, on the other hand, is

manifested at the level of inhibiting viral protein synthesis as a

consequence of the ability of IFIT1 to bind the translation

initiation factor eIF3 and inhibit its various actions in translation

initiation [30]. It has been reported recently that the IFIT1 protein

can form a complex and bind to RNAs with triphosphorylated 59

ends, presumably providing another means to inhibit specific

viruses that produce such RNAs [18].
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The Ifit genes are clustered at a single locus in both human and

mouse. In the latter species, two alleles of Ifit3 genes are flanked on

two sides by one allele of Ifit2 and one allele of Ifit1 [15]. To

identify their physiological functions, we have separately deleted

the entire coding regions of Ifit1 or Ifit2 genes. The Ifit12/2 mice

exhibited an interesting phenotype in allowing the replication of

and resultant pathogenesis by a WNV mutant, which failed to

replicate in wt mice [20]. Because this mutant is defective in 29-O

methylation of the cap structure of viral mRNAs, its rescue in the

Ifit12/2 mouse indicates that this antiviral protein recognizes the

59 ends of mRNAs, a conclusion that is consistent with the

observation that, in vitro, it can bind to RNAs having specific

structures at the 59 ends [18]. It remains to be seen whether the

proposed property of Ifit proteins to recognize 59 ends of RNA is

Figure 5. Ifit2 and Ifit1 are induced in VSV-infected regions of OB and brain. A/B, D/E, Ifit2, Ifit1 and IFN-b mRNA levels in OB (A, B) and
separated brains (D, E) of uninfected or intranasally VSV-infected wt, Ifit22/2 and IFNAR2/2 mice at 2 or 6 d.p.i., plotted as mean+SD. The same OB
and brains were also assayed in Figure 3C and 4B for VSV RNA levels. In A/B/D/E: n = 4–8 mice per infected group accumulated from three
independent experiments; ND, none detected. C, Ifit2 ( = P54) protein in wt OB sections, uninfected or 2 d.p.i., with parallel detection of VSV P protein
in adjacent sections, detected by immunohistochemistry; arrowheads indicate Ifit2-positive, VSV-negative cells surrounding the glomeruli; n = 2 mice.
All infections were intranasal with 46102 pfu of VSV. Asterisks indicate statistical significance: ** p,0.005, *** p,0.0005; n.s.: not significant.
doi:10.1371/journal.ppat.1002712.g005
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connected in any way to their ability to inhibit the functions of

eIF3 [16], which participates in several steps of translation

initiation taking place at or near the 59 ends of mRNAs.

Replication of VSV is highly sensitive to the antiviral activity of

IFNs, and VSV is widely used to determine the specific activities of

IFN preparations quantitatively [21]. In spite of this strong

connection, it is unclear how IFN inhibits VSV replication. An

early report indicated that viral primary transcription is inhibited

by IFN, but it is not known which IFN-induced protein mediates

this inhibition [31]. The observed sensitivity of VSV replication in

vitro is reflected in vivo. IFNAR2/2 mice are extremely susceptible

to VSV infection; they rapidly die within 2 days after infection and

the virus replicates to very high titers in many organs of the

infected mice. The extreme sensitivity of IFNAR2/2 mice to VSV

infection suggests that type I IFN provides the majority, if not all,

of the protective innate immune defense. Eventually, protection

may be facilitated by immune cell-mediated antiviral actions, but

this is a slow process that does not appear to function before 6–10

days post-infection [32,33]. Thus, it is likely that one or more ISGs

directly inhibit VSV replication in vivo. In this context, it has been

reported that mice lacking PKR, a well-studied ISG, display

higher susceptibility to VSV pathogenesis [34]. However, detailed

investigation of the underlying mechanism revealed that PKR did

not execute IFN’s antiviral action; rather, it was required for

efficient induction of IFN-a/b in the infected mice [35]. In vivo

VSV-infection induces IFN synthesis in many cell types, using

either the cytoplasmic RIG-I pathway or the endosomal TLR7

pathway [4,36]; however, it is unclear how PKR aids this process.

Our results show that Ifit22/2 mice are highly susceptible to

intranasal VSV infection and the effect is gene dosage-dependent:

Ifit2+/2 mice had an intermediate susceptibility phenotype.

Infected Ifit22/2 mice displayed symptoms of severe neuropatho-

genesis late after VSV infection accompanied by efficient

replication of the virus in many regions of the brain. However,

virus replication was restricted to neurons and did not spread to

other types of cells in the brain, such as astrocytes. Our results are

consistent with the hypothesis that prior, IFN-induced, Ifit2

expression in the brain restricts VSV replication. Supporting

genetic evidence for the requirement of IFN action is provided by

the high susceptibility of the IFNAR2/2 mice, which possess the

functional Ifit2 gene but Ifit2 is not induced by VSV infection

because these mice cannot respond to type I IFN. Additional

evidence comes from a previous study using brain-specific

IFNAR2/2 mice, which displayed a pattern of susceptibility to

intranasal VSV infection similar to that of our Ifit22/2 mice [1].

In our experimental system, the source of the IFN production was

Figure 6. Wt mice are as susceptible as Ifit22/2 mice to intracranial VSV infection. A, survival of wt and Ifit22/2 mice after intracranial
injection of 10 pfu of VSV; cumulative data from three independent experiments. B, infectious VSV titers in wt and Ifit22/2 brains at 24 and 48 hours
after intracranial injection of 10 pfu of VSV; plotted as pfu/g with mean on log scale; dashed line depicts threshold of detection; n = 7 mice per
infected group from two independent experiments; n.s.: not significant. C, Ifit2, Ifit1, IFN-b and VSV-N RNA levels in brains of intracranially VSV-
infected or PBS-injected wt and Ifit22/2 mice at 24 hours p.i., plotted as mean+SD, VSV RNA levels plotted on log scale; n = 3 mice per infected group;
ND, none detected.
doi:10.1371/journal.ppat.1002712.g006
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most likely the OBs; abundant IFN was induced there early

(2 d.p.i.) after infection (Figure 5A) causing the induction of Ifit2 in

wt mice (Figure 5C). Ifit2 was also induced at this time in the rest

of the brain, without any induction of IFN mRNA (Figure 5D)

suggesting that the source of IFN was the OB. In accord with the

well-established concept of IFN action, pre-induction of Ifit2 in

neurons, before the onset of infection, was essential for the

antiviral effect. In comparison, induction of IFN and Ifit2 that was

concomitant with VSV infection failed to have an appreciable

antiviral effect, as manifested by robust virus replication at directly

infected sites, such as the OBs of wt mice infected intranasally

(Figure 3D) or the brain of wt mice infected intracranially

(Figure 6B). High mortality of the infected mice correlated with

high virus titers in the brains of intranasally infected Ifit22/2 mice

or intracranially infected wt and Ifit22/2 mice. In the intranasally

infected Ifit22/2 mice, death was not preceded by widespread

apoptosis in the brain (Figure S4). However, as expected with high

viral loads, IFN and other cytokines and chemokines were strongly

induced (Figures 5D, S2 and S3A); consequently, many ISGs,

except Ifit2, were also induced (Table S1).

Pre-induced Ifit2 prevents efficient VSV replication in the brain,

most probably by blocking one or more essential step of the viral

life cycle including viral entry, uncoating, primary transcription,

viral protein synthesis, RNA replication, virion assembly or egress.

It also might block trans-synaptic spread of the virus, although

unlike another rhabdovirus, rabies virus, VSV is not known to

depend on transit from neuron to neuron. In this context, it is

important to note the observations made by Iannacone et al. [37]

Figure 7. Unlike the brain, other organs of Ifit22/2 mice are not more susceptible to intranasal VSV infection. A–C, infectious VSV titers
in organs of wt, Ifit22/2 or IFNAR2/2 mice (n = 4–10 mice per group accumulated from three independent experiments) at 2, 4, 5 and 6 days after
intranasal infection; livers (A), lungs (B) and brains (C, incl. OB) of the same mice were assayed and plotted as pfu/g with mean; not all available livers
were titered. Dashed line depicts threshold of detection. D/E, Ifit2, Ifit1, IFN-b mRNA levels in livers (D) and lungs (E) of uninfected or VSV-infected wt
mice at 2 d.p.i., plotted as mean+SD; n = 4 mice per infected group; ND, none detected. All infections were intranasal with 46102 pfu of VSV. Asterisks
indicate statistical significance: * p,0.05, ** p,0.005.
doi:10.1371/journal.ppat.1002712.g007
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using a footpad VSV infection model. They concluded that type I

IFN, produced by infected macrophages and plasmacytoid

dendritic cells in infected mice, blocked infection of peripheral

neurons resulting in lowered infection of the CNS and prevention

of neuropathogenesis. It is worth noting that in our studies, the

absence of Ifit2 did not affect IFN induction by VSV (Figures 5A

and 6C). Further investigation of the biochemical mechanism

behind the observed in vivo effect of Ifit22/2 is hampered by the

absence of a suitable cell culture model of the phenomenon. For

example, Ifit2 was not required for mediating the anti-VSV effect

of IFN in mouse embryonic fibroblasts (Figure S5), in primary

fetal neurons or in Ifit2-ablated neuroblastoma cells (data not

shown), results that are not surprising given the strong tissue-

specificity of Ifit2 action observed in vivo (Figure 7). Specific RNA-

binding properties of Ifit proteins have been recently reported

[18]. Following this lead, we examined the RNA-binding

properties of recombinant murine Ifit1 and Ifit2 using VSV

leader RNA as the probe in an electrophoretic mobility shift

assay: Ifit1 bound RNA with a 59-ppp end but not with a 59-OH

end; however, Ifit2 bound neither (Figure S6). To obtain

meaningful leads, future investigation of this kind may require

using brain extracts from infected mice to detect protein-viral

RNA complexes that may contain Ifit2 along with adult neuron-

specific proteins.

Our results revealed several layers of specificity of IFN action,

some of which were not anticipated. First, compared to Ifit22/2

mice, Ifit12/2 mice were much less susceptible to intranasal VSV

infection; this was true for both low and high doses of virus. This

finding was surprising in view of a recent report on VSV

susceptibility of Ifit12/2 mice [18] and the observation that Ifit1,

but not Ifit2, could bind VSV leader RNA in vitro (Figure S6). The

above results demonstrate that different Ifit proteins have non-

redundant functions in vivo. The second layer of specificity was

directed toward the nature of the infecting virus. Although both

VSV and EMCV caused neuroinvasive disease, induced IFN-b,

Ifit1 and Ifit2 in the brain and type I IFN action was required for

protection against both viruses, Ifit2 was critical only for protection

against VSV; the absence of either Ifit1 or Ifit2 did not exacerbate

susceptibility to EMCV. The third layer of specificity was revealed

by the organ-specific action of Ifit2. In the complete absence of

type I IFN action in the IFNAR2/2 mice, intranasally infected

VSV replicated vigorously not only in brains, but also in livers and

lungs (Figure 7A–C). In contrast, in Ifit22/2 mice, efficient VSV

replication was restricted to the brain suggesting that Ifit2 does not

act as an anti-VSV ISG in the liver or the lung because its absence

did not impact virus titers, even though Ifit2 was induced in these

organs of infected wt mice (Figure 7D and 7E). The efficient VSV

replication in livers and lungs of IFNAR2/2 mice, but not wt and

Ifit22/2 mice, indicates that other ISGs must have anti-VSV

effects in those organs. Further investigation is needed to

determine the basis of neuronal specificity of Ifit2 action and the

identities of other ISGs that inhibit VSV replication in other

organs.

Materials and Methods

Ethics statement
All animal experiments were performed in strict accordance

with all provisions of the Animal Welfare Act, the Guide for the

Care and Use of Laboratory Animals, and the PHS Policy on

Humane Care and Use of Laboratory Animals. The protocol was

approved by the Cleveland Clinic Institutional Animal Care and

Use Committee (IACUC), PHS Assurance number A3047-01. All

experimental manipulations or intranasal instillations of mice were

performed under anesthesia induced by pentobarbital sodium or

isofluorane, respectively, and all efforts were made to minimize

suffering.

Mice
All mice used were of C57BL/6 background and of both sexes;

Ifit22/2 mice were custom-generated by Taconic Farms, Inc. by

flanking exons 2 and 3 of Ifit2, encompassing the complete

protein-encoding region, with frt sites in C57BL/6 embryonic

stem (ES) cells, and deleting the flanked region by transfection

of Flp recombinase. ES cell clones were injected into BL/6

blastocysts, and heterozygous offspring mice were crossed to

homozygosity. Ifit12/2 mice were generated from C57BL/6 ES

cells lacking the whole coding region of Ifit1 (20); ES cells were

obtained from the NIH Knockout mouse project (KOMP, allele

Ifit1tm1(KOMP)Vlcg). The same ES cell line was independently used

to generate mice in another study [18]. IFNAR2/2 mice (lacking

Ifnar1) were a gift of Murali-Krishna Kaja (Emory University,

Atlanta, GA). Congenic wild-type mice were obtained from

Taconic Farms.

Viruses and infections
Vesicular stomatitis virus (VSV) Indiana was a gift from Amiya

K. Banerjee, Lerner Research Institute, Cleveland, Ohio. For

intranasal infections, between 46102 and 46106 pfu of VSV in

35 ml of endotoxin-free PBS were inhaled by isofluorane-anesthe-

tized 8–12 week-old mice, with PBS-only as control. For

intracranial infections, 10 pfu of VSV in 30 ml of endotoxin-free

PBS were injected into the brains of 6–7 week-old mice, with PBS-

only as control. Thereafter, mice were monitored daily (twice daily

after i.c. injection) for weight loss and symptoms of disease.

Encephalomyocarditis virus (EMCV) K strain was a gift from

Robert H. Silverman, Lerner Research Institute, Cleveland, Ohio.

For intraperitoneal infections, between 25 and 56102 pfu of

EMCV in 500 ml of PBS were injected into the peritoneal cavity of

mice. Mice were monitored daily for weight loss and symptoms of

disease.

Immunohistochemistry and TUNEL assay
Mice were anesthetized with pentobarbital (150 mg/kg) and

blood was removed from organs by cardiac perfusion with 10 ml

of PBS, followed by perfusion with 10 ml of 4% paraformalde-

hyde/PBS for fixation. Brains were placed in 4% paraformalde-

hyde overnight for complete fixation, submerged in 30% sucrose/

PBS overnight for cryoprotection, and frozen in O.C.T.

compound (Sakura Finetek USA, Torrance, CA, USA). 10 mm

sagittal sections were cut at 220uC in a Leica CM1900 cryostat,

mounted on coated slides (Superfrost Plus, Fisherbrand, Fisher

Scientific); membranes were permeabilized by 0.2% Triton X-

100/PBS treatment for 15 min. For immunohistochemistry, the

Envision+ DAB kit (Dako, Carpinteria, CA) was used with anti-

mouse Ifit2/P54 [38] or anti-VSV-P protein (a gift from Amiya K.

Banerjee, Lerner Research Institute, Cleveland, Ohio) as primary

antibodies. For immunohistofluorescence, anti-VSV-P or anti-

NeuN (Chemicon Intl./Millipore, Billerica, MA) or anti-GFAP

(Sigma-Aldrich, St. Louis, MO) were used; labeled brain sections

were stained with AlexaFluor-594 secondary antibody (Invitro-

gen/Molecular Probes, Carlsbad, CA). For detection of apoptotic

cells in brain sections, the DeadEnd fluorometric TUNEL system

(Promega) was used according to manufacturer’s instructions. All

objects were then mounted with VectaShield (with DAPI, Vector

Labs, Burlingame, CA), and examined with a Leica DRM

fluorescence microscope.
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Quantitative RT-PCR and microarray analysis
Mice were anesthetized with pentobarbital (150 mg/kg) and

blood was removed from organs after cardiac perfusion with 10 ml

of PBS. Brains were separated into olfactory bulbs and the

remainder of the brain, snap-frozen in liquid nitrogen (as well as

livers and lungs) and RNA was extracted using TRIzol reagent

(Invitrogen). DNase I treatment (DNAfree, Applied Biosystems/

Ambion) and reverse transcription with random hexamers

(ImProm-II, Promega) were performed according to manufactur-

er’s instructions. 0.5 ng of RNA was used in 384 well-format

realtime PCRs in a Roche LightCycler 480 II using Applied

Biosystem’s SYBR Green PCR core reagents. PCR primers for

murine ISG49/Ifit3, ISG54/Ifit2, ISG56/Ifit1 and 18S rRNA have

been published previously [17]; primers targeting murine Ifnb1 [59-

CTTCTCCGTCATCTCCATAGGG-39 [39], with the alterna-

tive reverse primer: 59-CACAGCCCTCTCCATCAACT-39],

VSV N RNA [40] or EMCV 3D polymerase genomic region [41]

were described previously. Primers for Ccl2, Il1b, Il6, Tnf, Il12b

and Nos2 have been described previously [42,43]. Average ex-

pression levels, relative to 18S rRNA and normalized by use of

calibrator samples, were graphed with Prism 5.02 software. For

analysis of different regions of the brain, brains without OB of

perfused mice were separated into cortex, cerebellum, brain

stem and remaining ‘‘midbrain’’, and tissue was submerged into

RNAlater stabilizing reagent (Qiagen) overnight and frozen. RNA

was then extracted via TRIzol and further processed and assayed

by realtime RT-PCR as described above. For microarray analysis,

TRIzol-extracted and DNase I-treated RNA was additionally

purified using spin columns (RNeasy Mini kit, Qiagen) before

subjection to mRNA expression microarray analysis via Illumina

Mouse Ref-8 V2 beadchip and GenomeStudio software V2010.2

(Illumina, Inc.); RNA hybridization to chips was performed by the

Lerner Research Institute Genomics Core at the Cleveland Clinic.

Microarray raw data were deposited in the NCBI Gene

Expression Omnibus (GEO), accession number GSE33678.

Virus quantification
For quantification of infectious VSV in organs, mice were

anesthetized with pentobarbital (150 mg/kg) and blood was

removed from organs by cardiac perfusion with 10 ml of PBS.

Organs were snap-frozen in liquid nitrogen, weighed, pestle/tube-

homogenized (Kimble/Kontes) in 1 ml of PBS per brain or

peripheral organ or 0.1 ml per pair of olfactory bulbs, and virus

was titered in 10-fold serial dilutions on Vero cells by plaque assay.

Results are expressed as plaque-forming units (pfu) per gram of

tissue. For quantification of infectious VSV yields in MEF, cells

(2/+IFN-b pretreatment as indicated) were infected with VSV

inoculum for 1 h, and after another 12 h, cells were freeze/

thawed, and cleared supernatants of lysates were assayed for VSV

by plaque assay on Vero cells.

Immunoblot
Primary murine embryonic fibroblasts (MEFs) were stimulated

with 1000 U/ml murine IFN-b (PBL, Inc., Piscataway, NJ) for

16 h and lysed in lysis buffer [50 mM Tris pH 7.6, 150 mM

NaCl, 0.5% Triton X-100, 1 mM sodium orthovanadate, 10 mM

sodium fluoride, 5 mM sodium pyrophosphate, 10 mM b-

glycerophosphate and 16 complete EDTA-free protease inhibitor

(Roche, Indianapolis, IN)]. 10 mg of whole cell extract were

separated via 10% SDS-PAGE, transferred to PVDF membranes,

blocked with 5% dry milk in Tris-buffered saline/0.05% Tween-

20 overnight and labeled with anti-Ifit3/P49, anti-Ifit2/P54 or

anti-Ifit1/P56 polyclonal rabbit sera [17,38].

Electrophoretic mobility shift assay
Single-stranded VSV leader RNA (nucleotides 1–18) was T7

polymerase-transcribed in presence of [a-32P]-CTP, yielding

radiolabeled 59-triphosphorylated (ppp-) RNA, followed by

alkaline phosphatase treatment for generation of 59-hydroxyl

(HO-) RNA. ppp-RNA or HO-RNA were added to bacterially

expressed and purified 6xHis-tagged Ifit1 or Ifit2 protein in

reaction buffer (50 mM Tris pH 8.0, 100 mM NaCl, 1 mM

EDTA, 2 mM DTT, 0.05% Triton X-100, 10% glycerol) and

incubated for 30 min on ice. Reaction products were separated by

6% native polyacrylamide gel electrophoresis followed by expo-

sure to film.

Statistical analysis
Statistical significance of mouse survival differences was

calculated by Mantel-Cox log rank test. To assess significance of

differences in gene expressions or virus titers, the two-tailed Mann-

Whitney test was used. All calculations were performed using

GraphPad Prism 5.02 software.

Gene accession numbers
Previously published transcript sequences in the NCBI Entrez

Nucleotide database: Ifit2, NM_008332; Ifit1, NM_008331; Ifit3,

NM_010501; Ifnb1, NM_010510; Ifnar1, NM_010508.

Supporting Information

Figure S1 Survival of wt and Ifit22/2 mice after infection
with low EMCV dose (25 pfu). Statistical significance of

survival differences is indicated by p-value; n.s., not significant.

(PDF)

Figure S2 Enhanced ISG and IFN-b induction in intra-
nasally VSV-infected Ifit22/2 brain regions. IFN-b-, and

Ifit3/2/1 mRNA levels in different regions of brains of uninfected

or VSV-infected wt and Ifit22/2 mice at 6 d.p.i., plotted as

mean+SD. n = 4 mice per infected group; ND, not done.

Infections were intranasal with 46102 pfu of VSV.

(PDF)

Figure S3 Gene induction in brains after VSV or EMCV
infections. A, mRNA levels of select genes in brains (without

OBs) of uninfected or intranasally VSV-infected wt and Ifit22/2

mice at 6 d.p.i., plotted as mean+SD; n = 3 mice per infected

group; infection was intranasal with 46102 pfu of VSV. B, mRNA

levels of select genes in brains (without OBs) of uninfected or

intracranially VSV-infected wt and Ifit22/2 mice at 24 h post

injection, plotted as mean+SD; n = 4 mice per infected group;

infection was intracranial injection with 10 pfu of VSV. C, Ifit2,

Ifit1, IFN-b and EMCV RNA levels in brains 4 days after EMCV

infection (56102 pfu, n = 3 mice per infected group).

(PDF)

Figure S4 Region-selective induction of apoptosis in
brains of intranasally VSV-infected Ifit22/2 mice. Ifit22/2

mice were i.n. infected with 46102 pfu of VSV; at 6 d.p.i.,

adjacent sections of fixed brains were labeled to detect apoptotic

cells (TUNEL) or VSV P protein (immunohistofluorescence), n = 2

mice; only few regions such as striatum show positive TUNEL;

infected wt brains and uninfected control brains of either genotype

did not show appreciable signals, hence data not shown).

(PDF)

Figure S5 VSV yields from infected wt and Ifit22/2

MEF. Immortalized MEF were treated for 16 h with 10 U/ml

IFN-b and infected with VSV at moi 10. 12 hours after infection,
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virus yields were determined by plaque assay. Results are plotted

as mean+SD on log scale, representing one of two independent

experiments.

(PDF)

Figure S6 Murine Ifit2 protein does not bind ppp-RNA.
Single-stranded radiolabeled VSV leader RNAs (nt 1–18) with

either 59-triphosphorylated or free 59-hydroxyl-ends (ppp-RNA or

HO-RNA) were in vitro incubated with purified murine Ifit1

( = P56) or Ifit2 ( = P54) proteins; formation of protein/RNA

complex was detected by electrophoretic mobility shift assay.

(PDF)

Table S1 Enhanced gene expression in brains incl. OBs
of intranasally VSV-infected Ifit22/2 versus wt mice at
6 d.p.i. Wt or Ifit22/2 mice were intranasally VSV-infected with

46102 pfu, and at 2 or 6 d.p.i., brain (incl. OB) RNA expression

profiles were obtained by microarray. Genes are ranked by their

‘‘fold expression level in Ifit22/2 over wt at 6 d.p.i.’’. Only genes

with at least 3-fold higher expression level in Ifit22/2 are included.

Note: The Ifit1/ISG56 probe of the Illumina mouse Ref-8 chip is

defective and therefore the gene is not included in this list.

(PDF)
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