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Abstract

Background: The cis-acting promoter element responsible for epigenetic silencing of retinoic acid receptor responder 1
(RARRES1) by methylation is unclear. Likewise, how aberrant methylation interplays effectors and thus affects breast
neoplastic features remains largely unknown.

Methodology/Principal Findings: We first compared methylation occurring at the sequences (2664,+420) flanking the
RARRES1 promoter in primary breast carcinomas to that in adjacent benign tissues. Surprisingly, tumor cores displayed
significantly elevated methylation occurring solely at the upstream region (2664,286), while the downstream element
(285,+420) proximal to the transcriptional start site (+1) remained largely unchanged. Yet, hypermethylation at the former
did not result in appreciable silencing effect. In contrast, the proximal sequence displayed full promoter activity and
methylation of which remarkably silenced RARRES1 transcription. This phenomenon was recapitulated in breast cancer cell
lines, in which methylation at the proximal region strikingly coincided with downregulation. We also discovered that CTCF
occupancy was enriched at the unmethylayed promoter bound with transcription-active histone markings. Furthermore,
knocking-down CTCF expression hampered RARRES1 expression, suggesting CTCF positively regulated RARRES1
transcription presumably by binding to unmethylated promoter poised at transcription-ready state. Moreover, RARRES1
restoration not only impeded cell invasion but also promoted death induced by chemotherapeutic agents, denoting its
tumor suppressive effect. Its role of attenuating invasion agreed with data generated from clinical specimens revealing that
RARRES1 was generally downregulated in metastatic lymph nodes compared to the tumor cores.

Conclusion/Significance: This report delineated silencing of RARRES1 by hypermethylation is occurring at a proximal
promoter element and is associated with a loss of binding to CTCF, an activator for RARRES1 expression. We also revealed
the tumor suppressive roles exerted by RARRES1 in part by promoting breast epithelial cell death and by impeding cell
invasion that is an important property for metastatic spread.
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Introduction

Retinoic acid receptor responder (Tazarotene-induced gene) 1

(RARRES1, alias TIG1), initially identified as a downstream target

of retinoic acid signaling [1], was demonstrated to be inactivated

in primary tumors and cell lines of human cancers. Other than

inhibiting tumorigenesis and hampering invasive properties of

prostate cancer [2], increasing lines of evidence have indicated

RARRES1 as an important tumor suppressor gene by regulating

versatile cellular processes like cell proliferation, differentiation,

and survival [3–5]. For instance, RARRES1 restoration in

leukemic K562 cells cooperated with all-trans retinoic acid to

induce cell apoptosis [3]. Likewise, RARRES1 impeded cell

proliferation and invasive features of nasopharyngeal carcinoma

cells mediated by Epstein-Barr virus [4]. Furthermore, RARRES1

modulated the differentiation of subcutaneous adipose tissue-

derived mesenchymal stem cell [5]. However, the tumor

suppressive effect of RARRES1 on breast carcinomas has not

been proven so far, but began to be illustrated in current report.

To date, promoter hypermethylation was shown to downreg-

ulate RARRES1 expression in a variety of cancers [3,6–8]. In

support of this notion, our group recently discovered that

hypermethylation at the RARRES1 promoter flanking sequences

can be induced by an exposure to breast cancer-associated

fibroblasts [9]. Yet, the past reports haven’t precisely defined the

crucial cis-element responsible for epigenetic silencing of

RARRES1 by methylation nor how various DNA segments interact

with each other and with transcription factors. This study,
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therefore, employed a high throughput technology with fine

resolution, namely MassARRAY, for quantifying the levels of

methylation occurring at either individual or at the clusters of

CpG dinucleotides [10]. We assessed the levels of methylation at

sequences flanking RARRES1 promoter in 18 pairs of breast tumor

cores plus adjacent benign tissues as well as in breast cancer cell

lines and have discovered methylation at two regions can exert

strikingly distinct epigenetic outcomes. While distal sequences

(2664,286) displayed negligible promoter activity and methyl-

ation of which conferred unnoticeable silencing effect, the

proximal region flanking sequences 285,+420 harbored remark-

able promoter function and methylation of which downregulated

gene expression. Perhaps, methylation at the former motif

preludes a methylation spread into the latter segment where

epigenetic silencing effect virtually takes place.

On the other hand, CCCTC-binding factor (CTCF) is a highly

conserved zinc finger protein with diverse functions involving not

only transcriptional regulation, but also DNA methylation as well

as organization of global chromosomal architecture through

boundary/insulator formation [11–13]. CTCF contains a central

DNA-binding domain consisting of 11 zinc fingers that confers its

ability to bind to a wide range of DNA sequences [11,12]. Inferred

by data generated from chromatin immunoprecipitation (ChIP)

coupled by microarray chip arrays (know as ChIP-chip), a putative

CTCF binding motif was predicted in sequences flanking

RARRES1 transcriptional start site (TSS) [14] (Figure S1). We

therefore investigated whether binding to CTCF was able to

regulate RARRES1 transcription experimentally. Our data re-

vealed that CTCF occupancy was not only enriched at the

unmethylated RARRES1 promoter harboring transcription-active

histone markings, but also positively correlated with RARRES1

expression such that knocking down CTCF was able to suppress

RARRES1 transcription. Together, this study redefined an

important promoter element responsible for epigenetic silencing

of RARRES1 by DNA methylation and by impeding the binding to

CTCF. Moreover, the roles RARRES1 plays in breast neoplasm

remain largely undiscovered to date. However, this report

demonstrated that RARRES1 acts as a breast tumor suppressor

in part by enhancing cell death after chemotherapeutic agent

treatments and by impeding metastatic spread. Silencing of

RARRES1by methylation and by a loss of CTCF binding possibly

augmented neoplastic properties associated with advanced breast

carcinomas.

Materials and Methods

Patients’ Specimens and Cell Lines
Fresh breast tumors and the matched adjacent benign tissues

were procured from the Department of Pathology of the Ohio

State University (OSU), in compliance with the institutional

review board of OSU with an approved protocol number

2008C0048. Patients’ clinical information can be found in the

Table S1. Immediately after procurement, tissues were macro-

dissected by our qualified pathologist and flash frozen at 280uC
until DNA and RNA extraction.

Normal human mammary epithelial cells derived from three

different women (designated as HMEC-1, -2 and -3) were

purchased from Lonza and from ScienceCell Research Labora-

tories (Carlsbad, CA). Cells were cultured in mammary epithelial

growth medium (MEGM) (Lonza). All breast cancer cell lines used

in this study were generous gifts from Dr. Max S. Wicha [15].

MCF10A cells were grown in DMEM/F12 medium supplemented

with 5% horse serum, Epidermal Growth Factor (EGF; 20 ng/ml),

insulin (10 mg/ml), hydrocortisone (500 ng/ml), and cholera toxin

(100 ng/ml). BrCa-MZ-01 and SK-BR-7 cells were proliferated in

RPMI1640 plus 10% Fetal Bovine Serum (FBS) whereas SUM149

and SUM159 cells were propagated in F12 medium with 5% FBS

and hydrocortisone (1 mg/ml). For inducing RARRES1 expres-

sion in SUM159 cells, tetracycline (Tet)-free FBS was employed in

lieu of regular FBS. Unless specified elsewhere, the remaining cells

were grown in DMEM with 10% FBS. Moreover, antibiotic-

antimycotic (Invitrogen) was routinely added to all culture media

for preventing microbial contamination.

Quantification of DNA Methylation by MassARRAY
Technology

To finely quantify the levels of methylation occurring at the

sequences flanking RARRES1 promoter, a high-throughput system

namely MassARRAY platform (Sequenom) was utilized as

described previously [9].

Retroviral Vectors and Infections
Retroviral plasmids, pRetroX-Tet-On Advanced and pRetroX-

Tight-Pur vectors, were purchased from Clontech. In principle, to

generate recombinant retroviruses, plasmids were respectively

transfected into packaging cells namely PhoenixTM Ampho

(Orbigen, Inc.; San Diego, CA) mediated by calcium phosphate.

24 hours later, medium was replenished and the resultant

supernatant, enriched with retroviruses, was collected at a 12-

hour interval twice, pooled, and then stored at 280uC. For

expressing RARRES1 under an inducible condition, the coding

region of RARRES1 was amplified by polymerase chain reactions

(PCR) and then cloned into pRetroX-Tight-Pur vector mediated

by BamHI and EcoRI restriction cleavages (New England Biolabs).

The resultant chimera (pRetroX-Tight-Pur-RARRES1) was af-

firmed to be mutation-free by DNA sequencing and then packed

into recombinant retrovirus. To ectopically express RARRES1 in

SUM159 cells, cells were maintained in Tet-free medium for at

least one passage and then infected by pRetroX-Tet-On Advanced

viruses followed by a drug selection. The G418 resistant cells were

subsequently infected with retrovirus encoding for pRetroX-Tight-

Pur-RARRES1 followed by a selection using two agents: G418

(500 mg/ml) and puromycin (2.5 mg/ml).

Downregulating CTCF by ShRNA
To knockdown CTCF in cells originally expressing high levels

of RARRES1, pSM2c-based retroviral vectors encoding either

scrambled or CTCF-specific shRNA (purchased from Open

Biosystems, Huntsville, AL) were transfected into cells to be tested

and followed by a selection with puromycin (2.5 mg/ml).

Subsequent experiments investigating the effect of CTCF silencing

on RARRES1 expression were carried out in cells derived from

3rd passages after drug selection.

Assessing the Effect of Methylation on Promoter Activity
by in Vitro Methylation Followed by Luciferase Assays

The pGL3-Basic plasmid (Promega) reporting firefly luciferase

activity was integrated with various fragments amplified from the

RARRES1 promoter flanked with XhoI and HindIII (New England

Biolabs) restriction sites. The inserts in the chimera were proven to

be free-of-mutation by sequencing.

In vitro methylation was performed as described previously [16].

Briefly, 20 mg of chimera pGL3-Basic plasmid was cleaved by XhoI

and HindIII to retrieve the fragments encompassing RARRES1

sequences. The resultant insert moiety was divided into two equal

fractions and then each was either untreated (namely mock) or

treated with CpG methyltransferase SssI (New England Biolabs).

Epigenetic Suppression of RARRES1 in Breast Cancer
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After affirming the methylation status by a digestion with

methylation-sensitive restriction enzymes AciI (New England

Biolabs), inserts were ligated back into the pGL3-Basic, and then

introduced into 293 cells by using Lipofectamine 2000 (Invitrogen)

for luciferase assays. Furthermore, to serve as a control for

normalization, same cells were concordantly transfected with

Renilla luciferase vector. 48 hours later, cells were lysed and

luminescence was measured by Dual-Luciferase Reporter Assay

kit (Promega). The diminished ratio of firefly to renilla values thus

indicates a loss of promoter activity due to methylation.

ChIP
ChIP was carried out as described previously [17]. Briefly, cells

were fixed with 1% formaldehyde and then the resultant DNA-

protein complexes were sonicated followed by immunoprecipita-

tion using antibodies against H3K4me2 (Millipore), H3K27me3

(Diagenode), CTCF (Millipore) as well as the control normal

rabbit IgG (Millipore). After dissociating the DNA-protein

complexes, pulled-down DNA along with the input DNA (devoid

of antibody) were subject to qPCR analysis using primers

specifically interrogating different portions of the RARRES1

promoter. Folds of enrichment were calculated by ratio of signals

derived from ChIP DNA to those from the original input.

Western Blot Analysis
Cells were lysed in RIPA lysis buffer (Cell signaling) supple-

mented with protease inhibitor cocktail tablet (Roche). Approx-

imately 30–50 mg of proteins were resolved by 8–10% SDS-PAGE

and immunoblotted with antibodies against RARRES1 (R&D

Systems), CTCF (Millipore) and GAPDH (Cell Signaling)

respectively.

Invasion Assay
SUM159 variant stably transduced with pRetroX-Tight-Pur-

RARRES1 retroviruses were either treated with vehicle DMSO or

with Doxycycline (500 ng/mL) for 24 hours. Single-cell mixture

was obtained by trypsinization followed by suspension in the

reduced-serum medium (2% FBS), in the absence or presence of

Doxycycline. 1.256104 of the resultant cells were loaded to

Matrigel-coated invasion chambers (8 mm pore size; BD Biosci-

ences) to quantify the invasive property. Invasion process lasted 24

hours and was triggered by the medium that was placed outside of

the invasion chamber and supplemented with 10% FBS (either

without or with Doxycycline). The nonmotile cells located at the

top of the filter were sweep off by cotton swabs while the motile

cells transversed to the bottom of the filter were fixed with 70%

ethanol and stained with 0.1% crystal violet for cell counting. The

average number of migrated cells was quantified by the counts

cumulated from 10 representative areas captured by a microscope

with 200-fold magnification.

Immunohistochemical (IHC) Staining
Six sets of formalin-fixed paraffin-embedded sections, each

comprises primary tumor, adjacent benign, and metastatic lymph

node, were obtained from the Department of Pathology in our

institution. Clinical information was provided in the Table S2.

IHC staining was performed using the Histostain-Plus kit

(Invitrogen) according to the manufacturer’s instruction. Briefly,

paraffin sections were deparaffinized with xylene and rehydrated

in a series of descending concentrations of ethanol. Antigen

retrieving was carried out by immersing the slide in sodium citrate

buffer (pH 6.0) at 95uC for 15 minutes, while quenching the

endogenous peroxidase activity was achieved by incubating with

3% hydrogen peroxide. Non-specific epitopes were blocked prior

to incubating with specific antibody against RARRES1 (Sigma)

overnight at 4uC. On the next day, sections were incubated with

biotin-conjugated secondary antibody. The resultant immuno-

complexes were visualized by streptavidin-conjugated enzyme

along with DAB chromogen, counter-stained with hematoxylin

(Invitrogen), dehydrated, preserved and then viewed under a

BX45 Clinical Microscope (Olympus).

Reverse Transcription Followed by Quantitative PCR
Analysis (RT-qPCR)

Total RNA was extracted from cells by using Trizol (Invitrogen)

and 1.0 mg of which served as templates for generating the

complementary DNA (cDNA) mediated by SuperScript III reverse

transcriptase (Invitrogen). The resultant cDNA products were

mixed with RT2 SYBR Green qPCR Master Mixes (Qiagen)

followed by quantitative PCR analysis on a 7500 fast real-time

PCR machine (Applied Biosystems). Gene expression was

normalized to the control transcript glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). Primer sequence used for qPCR is

available in the Table S3.

Survival Assay
SUM159 variant conditionally expressing RARRES1 was

treated with mock vehicle (DMSO) or with Doxycycline

(500 ng/mL) for 24 hours and then seeded in 96-well plates at a

density of 5,000 per well. On the next day, cells were either treated

with vehicle or with various concentrations of drugs (doxorubicin

or paclitaxel) for 2 days. Viability was quantified by using MTT

test (Sigma). Mock treated cells were set as 100% in relation to the

cells treated with drugs.

Statistical Analysis
The Student’s t test was conducted to analyze the significance of

variations between the control as well as experimental samples and

p,0.05 was regarded as significant.

Results

Methylation Occurring at the Region Upstream and Distal
from the RARRES1 Promoter Exerted Negligible Silencing
Effect in Primary Breast Tumors

To delineate how methylation at various regions flanking the

RARRES1 promoter interact with each other and with cofactors

for exerting ultimate silencing effect, we began to evaluate the

methylation occurring at sequences between 2664 and +420

(reference to TSS set as +1) in 18 pairs of primary breast tumors as

well as their matched benign tissues. In agreement with previous

findings [3], we observed that many tumors displayed higher

methylation levels than those obtained from the benign tissues

adjacent to the tumor cores (Figure 1A) with statistical significance

(p,0.001, Figure 1B). However, it is noteworthy that hypermethy-

lation solely occurred at the region far upstream from the TSS

(denoted as the distal region, spanning 2664,286; underlined

region in Figure 1A) while the downstream sequences (denoted as

the proximal region, flanking 285,+420) remained largely

unmethylated (Figure 1A). Since promoter methylation commonly

results in gene silencing, we next analyzed the correlation between

the levels of methylation and the degrees of RARRES1 expression.

Surprisingly enough, these two parameters were negligibly

correlated inferred by p value as being 0.147 (Figure 1C). To

substantiate this finding, IHC staining was performed to evaluate

RARRES1 in 6 independent cases. In a strong agreement, both

Epigenetic Suppression of RARRES1 in Breast Cancer
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geographic sections (tumor cores and benign tissues) expressed

comparable level of RARRES1 in all subjects examined (a

representative case is shown in Figure 1D).

Methylation of the Proximal Region of RARRES1 Promoter
was Necessary and Sufficient for Exerting Epigenetic
Repression Effect

To investigate the above paradoxical finding that hypermethy-

lation of RARRES1 at upstream distal sequences failed to exert

noticeable inhibitory effect on gene expression, we further

unraveled elsewhere regions that might possess intrinsic promoter

activity. As shown in Figure 2A, RARRES1 promoter and flanking

sequences were arbitrarily divided into a distal (denoted as D,

2664,273) and proximal (labeled as P, 291,+576) segments

(Figure 2A). Interestingly enough, region P, but not D, displayed

apparent promoter activity (,20 folds higher than that of basic

control) and was similar to the one from the combined region

(D+P) (Figure 2B). Our data thus indicated that region P alone is

sufficient to exhibit the vast majority of promoter activity. To

further investigate whether region P is susceptible to silence by

methylation, in vitro methylation assay was employed. Importantly,

methylation resulted in a dramatic decline of promoter activity

intrinsic to the P and D+P regions (Figure 2C). In contrast, the

same treatment negligibly lowered activity associated with region

D (Figure 2C). Assay reliance was inferred by the data showing

that mock treated (i.e. unmethylated) P and D+P regions still

displayed significantly higher promoter activity than the D region

(Figure 2C). Furthermore, promoter swap test was carried out by

cutting off the region linking D and P regions via NcoI followed by a

re-ligation of exchanged fragments. It was apparent that epigenetic

silencing was largely ascribed to methylation at the P region,

regardless in the context of methylated or unmethylated D (first 2

columns in Figure 2D). It is noteworthy to mention that

methylated D plus unmethylated P regions somewhat recapitulat-

Figure 1. Methylation occurring at sequences upstream and distal to the RARRES1 promoter exerted a negligible silencing effect in
primary breast tumors. (A) Primary breast tumors along with their matched adjacent benign tissues (total 18 cases examined) were analyzed for
DNA methylation by MassARRAY assay. Within the schema flanking RARRES1 promoter, each vertical line represented a single CpG site, while each
circle at the lower panel indicated various methylation level of a CpG unit that contained either single or multiple CpG sites. Sample names were
outlined at the left, while the average methylation levels occurring at the underlined region (2664,286) were denoted at the right. T, tumor core; N,
adjacent benign. (B) Dot plot revealed a significant gain of methylation at the underlined region in tumor cores compared to the ones in adjacent
benign tissues (p,0.001). (C) Scatter plot inferred expression of RARRES1 was unrelated to level of methylation at the same underlined sequences. (D)
Similar levels of RARRES1 expression between the breast tumor cores and the adjacent benign tissues were demonstrated by immunohistochemical
staining. A representative image was captured from case 1 (Table S2).
doi:10.1371/journal.pone.0036891.g001
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ed the physiological mosaic at the RARRES1 promoter observed in

primary breast tumors (Figure 1A) and is in a strong agreement

with a lack of silencing effect (Figures 1C and 1D).

Methylation at the Proximal Region of RARRES1 Promoter
Rendered Silencing Effect in Breast Cancer Cell Lines

In order to seek a proof that methylated region P indeed

silenced RARRES1 expression, we correlated the methylation of

RARRES1 promoter with expression of transcript in not only

breast cancer cell lines classified into 3 different subtypes, i.e.

luminal, basal and mesenchymal [15,18], but also in the non-

neoplastic breast cell line (MCF10A) and primary normal human

mammary epithelial cells derived from different women (HMEC-

1, -2, and -3). As shown in Figure 3A, 5 out of 9 breast cancer cell

lines, i.e. SK-BR-3, BrCa-MZ-01, MCF7, SUM159, and BT-20

exhibited dramatic methylation (.80%), regardless of origins of

subtypes. SK-BR-7 and MDA-MB-231 cells showed moderate

methylation (30%–60%), while MDA-MB-453 and SUM149 as

well as the remaining nonmalignant breast epithelial cells

displayed low methylation (,10%). Despite that various breast

cancer cell lines displayed differential methylation levels at the

RARRES1 promoter (Figure 3A), they all retained similar degrees

of methylation at the constitutive hypermethylated locus know as

LINE-1 (Long Interspersed Nucleotide Element 1) serving as a

positive control for global methylation [19] (Figure S1). Never-

theless, the finding that all (100%) of nonmalignant breast

epithelial cells harbored negligible methylation (top 4 specimens

in Figure 3A) has supported our aforementioned notion that

methylation at sequences flanking RARRES1 promoter is highly

associated with breast carcinomas. Notably, methylation uniformly

spanned between regions D and P and displayed a pattern

strikingly distinct from that of primary tumors (compare Figure 3A

to Figure 1A). As cancer cell lines harboring elevated methylation

were predominantly originated from metastatic or effusion sites

(MCF7, MDA-MB-231, SK-BR-3 and SK-BR-7), it is reasoned

that metastastatic spread is correlated with methylation in region

P, despite that region D might have been methylated during the

preceding non-metastatic state. In supporting of this notion, all

cells (100%) displaying methylated region P concordantly

harbored methylated region D, suggesting the latter incidence

prelude the former. Alternatively, it might be reasonable to

speculate that the discrepancy of methylation patterns between the

cultured cell lines and the primary tumors might be ascribed to

either an outgrowth followed by a clonal enrichment (during cell

culture) of the sub-population that already acquired hypermethy-

lated region P or an induction of hypermethylation at region P

following in vitro cell culture. Nevertheless, the 5 cell lines

harboring remarkably elevated methylation (.80%), particularly

at region P, have dramatically lost RARRES1 transcript (Figure 3B)

and the reduction of expression correlated with the degrees of

methylation occurring at the P region-containing segments (D+P

or P) (p,0.001, Figure 3C). This finding agreed with the data

denoting methylation at region P, but unlikely region D, is

important for exerting epigenetic silencing effect (Figures 2C and

2D).

To affirm that DNA methylation indeed plays a role in silencing

of RARRES1, SUM159 and SK-BR-3 cells were treated with

epigenetic drugs (DAC or TSA or both) to partly reverse

epigenetic effect. DAC alone enabled restoration of RARRES1

expression in both cell lines originally silenced by methylation,

affirming that methylation was one of the critical causes rendering

silencing effect (Figure 3D). Of note, DAC synergized with TSA to

reactivate RARRES1 expression in SUM159 but not in SK-BR-3,

indicating that dual mechanisms (methylation in conjunction with

histone de-acetylation) played far critical roles in the former

whereas methylation alone was sufficient to exert a silencing

impact on the later cell line (Figure 3D).

Figure 2. Flanking sequences proximal to the RARRES1 promoter displayed a full promoter activity that can be suppressed by DNA
methylation. (A) Fragments (D, P and D+P) flanking the RARRES1 promoter were inserted to pGL3-Basic luciferase vector. (B) The resultant
constructs were transfected into 293T cells followed by luciferase assays for assessing promoter activity. While activity from pGL3-Basic was set as 1,
the one from Renilla luciferase vector served as an internal control for normalization. (C) D, P, or D+P regions were either mockly treated
(Unmethylated, U) or methylated in vitro (M). The resultant fragments were further ligated to the luciferase vector backbone (pGL3-Basic) and subject
to luciferase analysis. Significance of difference (if p,0.01) was denoted by comparing unmethylated P and D+P to that of D (marked by *) or
methylated (M) to those of unmethylated counterparts (U) in samples P and D+P (denoted as #). (D) Various promoter activities were associated with
swap constructs (D and P), respectively derived from either the unmethylated (U) or methylated (M) state. The full activity was obtained from
unmethylated D(U)+P(U) set as 1, while * depicted a significant loss ascribed to methylation (p,0.01).
doi:10.1371/journal.pone.0036891.g002
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CTCF was Associated with Active, but Not Silenced,
RARRES1 Promoter and thereby Regulated its Expression

Recently, multifunctional protein CTCF was reported to

epigenetically regulate expression of various tumor suppressors

including p16, BRCA1, Rb, PUMA and p53, possibly through

insulating chromatin boundaries such that prevented the spread of

upstream repressive chromatin [20–24]. ChIP-chip assay impli-

cated a putative CTCF binding motif existed in sequences flanking

283 bp to 239 bp upstream of TSS of RARRES1 [14] that

displayed sequence conservation with the one identified in the H19

promoter [25] (Figure S2A). We further reasoned that CTCF

occupancy perhaps acts as an insulator by prohibiting methylation

to further invade into region P and subsequently prevented

epigenetic silencing. Under this notion, binding to CTCF may be

influenced by surrounding histone markings. Herein, ChIP-qPCR

was carried out to analyze the occupancy of histone molecules

histone 3 lysine 4 dimethylation (H3K4me2) and histone 3 lysine

27 trimethylation (H3K27me3), two common histone variants

respectively indicative of transcriptionally-active and -repressed

chromatins [26]. In RARRES1-expressing (MCF10A) and -

silenced (SUM159) cells, we observed significantly elevated

occupancy of H3K4me2 in the former whereas increased

association of H3K27me3 in the latter, suggesting that a

pronounced chromatin remodeling has occurred in cells situated

at opposing expression states (Figure 4B). Interestingly, occupancy

of CTCF was predominantly correlated with coexistence of

H3K4me2 at the same promoter region (R4, a region flanking

sequences 2154,273 bp upstream of TSS) in MCF10A cells,

suggesting that this region might comprise a part of the ‘‘core’’

promoter element mediated by binding to CTCF and to

H3K4me2 (upper panels in Figure 4B and 4C). In support of

this notion, binding of CTCF and H3K4me2 at the RARRES1

promoter was similarly observed in RARRES1-expressing

SUM149 but not in silenced SK-BR-3 cells (data not shown). As

ChIP-qPCR indicated that the enrichment of CTCF binding

peaked at the R4 (Figure 4C), we theorize this region might be

involved in blocking methylation spread into region P exemplified

in the primary tumors (Figure 1A). This issue might be delineated

in the future studies, by assessing the effect of mutated the CTCF

core binding motif (flanking the RARRES1 promoter) on abrogat-

ing the ‘‘insulating’’ effect.

To further prove that the binding of CTCF played a key role in

regulating RARRES1 expression, shRNA was implemented to

down-regulate CTCF in MCF10A cells (Figure 5A). Interestingly,

knocking down CTCF not only resulted in a loss of its binding to

RARRES1 promoter (Figure 5B), but also reduced RARRES1

Figure 3. Methylation at the region proximal to the RARRES1 promoter rendered silencing effect in breast cancer cell lines. (A)
Degrees of methylation occurring at the sequence flanking the RARRES1 promoter (D+P) in normal breast epithelia and in cancer cell lines were
ranked in an ascending order. Names of breast cancer cell lines were color-coded as: blue for luminal (N = 3), red for basal (N = 3) and green for
mesenchymal (N = 3). (B) Relative RARRES1 expression in the indicated cells was evaluated by RT-qPCR and compared to that of MCF10A set as 1. ND,
too low to be detected. (C) Scatter plot depicted an inverse correlation between RARRES1 expression and methylation occurring at either overall
(2664,+420, upper panel) or merely at the proximal region (285,+420, lower panel) in the aforementioned cell lines. (D) Treatment of SUM149 and
SK-BR-3 cells with epigenetic drugs reversed the silencing effect and re-stored expression inferred by increased transcripts assessed by RT-PCR.
doi:10.1371/journal.pone.0036891.g003
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expression by .5-fold (Figure 5C). Taken together, our data

supported that binding of CTCF to the RARRES1 promoter is

important for sustaining the promoter at the transcription-prone

state.

Re-expression of RARRES1 Impeded Cell Invasion and
Promoted Apoptosis

To investigate how silenced RARRES1 contributed to breast

neoplastic phenotypes, we engineered a Tet-On system in

SUM159 cells in which RARRES1 expression was originally

silenced but can be later induced upon the addition of doxycycline.

As shown in Figure 6A, both mRNA and protein levels of

RARRES1 increased drastically at 12 hours and peaked at 24

hours after the addition of doxycycline (Figure 6A). In concurrence

with previous reports examining various human cancers [2–4,6–

8,27], we observed that re-expression of RARRES1 not only

augmented cell death induced by cytotoxic agents Paclitaxel and

Doxorubicin (Figure 6B), but also impeded cell invasion (upper

panel of Figure 6C).

To gain clinical insight regarding how RARRES1 silencing

influences the dissemination of malignant cells, expression was

quantified between primary breast tumors and their corresponding

metastatic lymph nodes (total 6 cases examined, Tables S2 and S4)

by employing IHC staining using a RARRES1-specific antibody.

In agreement with our data that re-expression of RARRES1

inhibited cell invasion (upper panel, Figure 6C), RARRES1 was

generally down-regulated in metastatic lymph nodes compared to

those in the primary tumors (lower panel of Figure 6C) in all cases

examined (Table S4). Though metastasis property correlated with

a gain of tumor-initiating cells enriched in the ALDEFLUOR-

positive subfraction [28–31], RARRES1-restoration didn’t render

a loss of breast cancer-initiating cells (data not shown), excluding

the likelihood that RARRES1 regulates this activity. Taken

together, our data supported RARRES1 to be a tumor suppressor

gene in breast cancer and its downregulation, by DNA methyl-

ation, CTCF binding, or by histone remodeling, might favor

dissemination and survival of breast carcinoma. However, our

current data cannot delineate the chronological sequences

between these perturbations.

Discussion

Field cancerization was recently theorized [32], although

aberrant epigenetic silencing by methylation via a step-wise

manner hasn’t been extensively exemplified nor been correlated

with the cancer progression. For the first time, our preceding

report [9], as well as current study, depicted a likelihood that

tumor suppressor locus, RARRES1, was progressively methylated

prior to undergoing epigenetic silencing. Subsequently, downreg-

Figure 4. RARRES1 promoter was poised by active histone marking (H3K4me2) and co-occupied with CTCF in the expressing cells
(MCF10A), as opposed to the occupancy of repressive histone H3K27me3 with depleted CTCF binding in the non-expressing cells
(SUM159). (A) A schematic map revealed RARRES1 promoter as well as its flanking sequences (denoted as R1,R6) that were interrogated by ChIP-
qPCR assay. (B) RARRES1-expressing MCF10A and -silenced SUM159 cells were subjected to ChIP-qPCR analysis for assessing the abundance of
histone modifications. (C) CTCF occupancy was enriched in regions R4 in MCF10A but was absent in SUM159. Quality reliance is assured by a
negligible binding to normal IgG.
doi:10.1371/journal.pone.0036891.g004
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ulated RARRES1 triggered various malignant properties and was

associated with advanced neoplastic states in various cancer types

[2–4,6–8,27] and in breast carcinomas (current report).

The nonmalignant breast epithelia MCF10A cells initially

harbored negligible methylation at sequences flanking RARRES1

promoter (Figure 3A), but later gained remarkable methylation

occurring at region D (or perhaps region P as well) after an

exposure to the tumor microenvironment provoked from breast

cancer-associated fibroblasts [9]. Gain of methylation was

demonstrated to be related to geographic distance that is inferred

from our data obtained from primary tumor cores versus the

matched adjacent benign tissues (Figure 1A) and is consistent with

the methylation spread theory [32,33]. Surprisingly enough, the

suppressing effect was not prominent until methylation was

extended to the neighboring element: region P (Figure 3A-C).

Despite that the upstream factors rendering aberrant methyl-

ation of region D was likely the tumor-environment via contacting

cancer-associated fibroblasts [9], the etiologic cause(s) rendering

region P methylation remains largely unknown. Presumably,

methylation at the region D acts as a catalyst to (A) recruit the

methylation machinery or histone modifications or (B) interact

between the two, or (C) synergize with additional effector

molecules like CTCF and H3K27me3. Notably, continuous

presence of methylated region D might be important for

expanding methylation into region P and leading to ultimate

silencing. The methylation profiles of regions D and P from the

Figure 5. Knocking down CTCF resulted in a significant loss of RARRES1 expression. (A) MCF10A cells were transduced with recombinant
viruses to express either control or CTCF shRNA, followed by a Western blot analysis to capture the expression of CTCF (upper) or GAPDH (lower,
served as a loading control). (B) Same cells were subjected to ChIP-qPCR analysis for assessing CTCF occupancy at regions R1-R6. (C) Knocking down
CTCF resulted in silencing of RARRES1 that can be inferred by RT-qPCR analysis. Significant loss of transcript was denoted by * if p,0.01.
doi:10.1371/journal.pone.0036891.g005

Figure 6. RARRES1 restoration impeded invasion and promoted cell death. (A) Re-expression of RARRES1 was induced in SUM159 variants
after been incubated with Doxycycline (Dox) for various durations. Expression level was assessed by RT-qPCR (upper) and by Western blot analysis
(lower), in comparison with an internal control GAPDH. (B) The same RARRES1-expressing SUM159 variant was either untreated or treated with Dox
for 24 hours. The resultant cells were then challenged with various doses of Paclitaxel and Doxorubicin for two days and the survival cells were
quantified by MTT assays. * inferred a significant change of cell viability (p,0.05). (C) Upper, a significant loss of invasive ability occurred in SUM159
variant re-expressing RARRES1. *, p,0.05. Lower, representative IHC images indicated a reduced RARRES1 expression in metastatic lymph nodes
compared to primary breast tumors of the same patient (cases 2 shown in Tables S2 and S4).
doi:10.1371/journal.pone.0036891.g006
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non-malignant breast epithelial cells and from cancer cell lines

studied in this report revealed a ‘‘none-and-all’’ pattern but not an

‘‘either-or’’ fashion (Figure 3A).

Our data suggested a notion that ‘‘methylation seed’’ perhaps

existed in region D. This phenomenon agreed with published

findings that scattered CpG sites within a CpG island originally

acted as ‘‘catalysts’’ without necessarily exerting noticeable

silencing effect under normal circumstances, but later gained

methylation when cells progressed to malignant states. For

example, in gastric cancer cell lines, ‘‘methylated seeds’’ were

abnormally elevated that subsequently augmented methylation of

CpG island prior to conducting a permanent repression of

downstream genes [34,35]. Likewise, triggered by downregulated

SP1 transcription factor, random seeds of methylation acted as a

catalyst for the spread of methylation across the CpG island of the

Glutathione S-transferase promoter [36]. The seeds of DNA

methylation can also trigger histone deacetylation followed by

histone methylation, denoting a temporal relationship between

gene expression, DNA hypermethylation, and chromatin remod-

eling in cancer cells, particularly in prostate carcinomas [33].

The spread of methylation from the ‘‘seed’’ to the adjacent

sequences was worthwhile to mention. Methylation spread across

biparental origins was manifested in patients with Prader–Willi

syndrome-like features displaying hypo-pigmentation symptoms.

The maternal X-chromosome was not only inactivated by

methylation, but its aberrant methylation was also furthered into

the paternal chromosome 15 leading to the abnormal hyper-

methylation and silencing of downstream targets SNRPN and

OCA2 [37]. Similarly, selective ‘‘seed’’ methylation occurring at

the large tandem repeats becomes important for the subsequent

extension of the critically methylated region that resulted in stable

silencing of a locus namely FWA and thus prevented late flowering

in Arabidopsis thaliana [38]. On the other hand, demethylation of

both CpG and non-CpG methylation can be similarly expanded

and thus re-activate the myogenin transcript during muscle

differentiation [39], suggesting an epigenetic mechanism by

‘‘spreading’’ stretches of methylcytosines might be a common

occurrence in both CpG and non-CpG context.

Alternative mechanisms other than methylation ‘‘seed’’ are

worthy to be speculated. Instead of exerting direct impact,

methylated region D might indirectly interplay with other co-

factors or transcription factors or CpG-island shores that

subsequently augment local hypermethylation at region P. In

mouse methylome, CTCF binding was shown to be necessary and

sufficient to create a low-methylated regions and this effect was

partly ascribed to localized demethylation function associated with

CTCF [13]. In our study, by serving as a cis-acting element,

methlayted region D perhaps abrogated the occupancy of CTCF

at RARRES1 promoter (R4 region, 2154,272 upstream of TSS,

Figures 4A and 4C) and thus impaired CTCF’s ‘‘insulation’’ effect

as well as loss of de-methylation followed by a again of methylation

in the neighboring region P. Alternatively, methylated region D

might convey aberrant methylation at un-identified distal CpG

island shores [40] and this perturbation may subsequently

augment methylation of P-region, perhaps via a chromosome-

looping mechanism [41,42]. It is noteworthy to point out that the

influence of aberrantly methylated CpG island shores on

epigenetic silencing was recently denoted in human carcinomas.

By comparing colon tumors with patient-matched normal tissue,

Feinberg laboratory identified cancer-associated differentially

methylated regions were not only involved in transcriptional

silencing but were also located at CpG island shores rather than

the classical CpG islands or promoters [43].

Since CTCF appeared to be important for sustaining RARRES1

promoter at a transcription-prone state, it is of interest to speculate

how CTCF might become dysfunctional in RARRES1–silenced

cells. First of all, posttranslational modifications such as poly(ADP-

ribosyl)ation (PARylation) of CTCF might be involved in regulating

transcription activities as well as influencing DNA methylation of

target genes [20,44,45]. However, in current study, CTCF-180

(highly PARylated) and CTCF-130 (scantly PARylated) isoforms

[44] were similarly shown in RARRES1-expressing (MCF10A) and

–silenced (SUM159) cell lines, despite that CTCF-180 was

negligibly detected in both cell lines (Figure S3). This finding

excluded the likelihood that PARylation of CTCF plays a key role

influencing the binding to RARRES1 promoter in our study.

Alternatively, aberrant DNA methylation occurring at region D

might abrogate CTCF binding to its cognate sequence within region

P, as exemplified in the control of imprinted Igfr2/H19 loci [25].

Thus far, our findings cannot clearly evolve the mechanistic

sequence deciphering how CTCF binding influences methylation

and regulates expression of RARRES1. During the progression of

breast carcinomas, perhaps, the non-malignant stage would sustain

region D at the unmethylated state and thus facilitate the binding of

CTCF to R4 region of RARRES1 promoter by which methylation at

region P can be prevented. Later carcinogenic insults or exposure to

breast cancer-associated fibroblasts [9] might augment hypermethy-

lation at region D and thus impaired its binding to transcription-

prone histone markings, cofactors, as well as to CTCF. Perhaps, loss

of CTCF occupancy abrogates demethylation activities intrinsically

associated with CTCF and thereby leads to methylation spread

moving towards region P. This perturbation thus results in silencing

of RARRES1 expression seen in the metastatic cultured cell lines

(Figure 3C) as well as in the primary lymph nodes manifesting the

advanced stages of breast neoplasm (Figure 6C).

Not only step-wise methylation flanking RARRES1 promoter

depicted a proof-of-principle, but also how it’s silencing impacts

malignant phenotypes is of great interest. Five lines tested in this

report (MCF7, MDA-MB-231, SK-BR-3, and SK-BR-7) harboring

silenced RARRES1 were virtually isolated from metastatic or

effusion sites, substantiating the notion that RARRES1 is a negative

regulator for invasion and metastasis and that its silencing was a

common perturbation associated with lymph node metastasis

(Figure 6C). However, exceptional cases in cell lines harboring

prominent metastatic features but retained full RARRES1 transcript

might be ascribed to additional undiscovered perturbations (other

than RARRES1 suppression) that are also important for augment-

ing invasion and promoting metastasis properties.

Furthermore, the outcome ascribed to RARRES1 silencing

coincided with its clinical applications for treating human cancers.

For example, in conjunction with imatinib, all-trans retinoid acid

was used to treat gastrointestinal stromal tumors by impeding cell

proliferation and inducing apoptosis mediated through down-

regulated survivin as well as up-regulated Bax protein [46].

Moreover, the in vitro and in vivo effects of retinoids either alone or

in combination with cisplatin and 5-fluorouracil on tumor

development and metastasis of melanoma were assessed. Retinoids

not only showed significant anti-proliferation and anti-invasion

effects on murine melanoma B16-F10 cells, but also augmented the

antitumor activity of cisplatin in vivo [47].

Collectively, our findings delineated multiple molecular pertur-

bations are responsible for epigenetic silencing of RARRES1, in the

light of the tumor microenvironmental effect, DNA methylation,

CTCF binding, as well as histone modifications. Identifying the

etiologic factor leading to methylation expansion (into region P) is

apparently important for developing therapeutic strategies. Future

treatment regimen by abrogating this trigger and thus blocking
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region P methylation followed by sustaining RARRES1 expression

could potentially improve disease prognosis via hampering metas-

tasis, the common cause of death in a wide range of human

carcinomas including breast cancer.

Supporting Information

Figure S1 All breast cancer cell lines examined in this
report retained hypermethylation at the constitutive
methylated locus named LINE-1. To provide a methylation

control across cell lines studied in this report, we further

investigated the methylation degree of a globally methylated locus

know as LINE-1 (Long Interspersed Nucleotide Element 1) [1] by a

semi-quantitative assay known as combined bisulfite restriction

analysis (COBRA) [2]. DNA was extracted from the respective cell

lines and treated with sodium bisulfite followed by a PCR

amplification using the primers that do not contain CpG

dinucleotides so that the amplification step would not be

influenced by their original methylation status. The amplified

products were further subjected to restriction digestions to discern

methylated from the unmethylated DNA of interest. Briefly, the

combination of bisulfite treatment and PCR amplification results

in the sustenance of methylated cytosines thereby retains the

susceptible to BstUI digestion (inferred from the production of

restricted fragments). Under the same treatment, unmethylated

cytosines are converted to thymines and thus become resistant to

BstUI cleavage (denoted by a lack of restriction fragment). The

DNA template used in the positive control (denoted as Meth) was

the CpGenome Universal Methylated DNA (Millipore #S7821).

For generating a negative control (labeled as Un-Meth), the same

template was subjected to an extra step of PCR amplification prior

to bisulfite conversion such that methylated moieties can be

erased. Nevertheless, COBRA assay revealed that all cell lines

retained similar magnitudes of methylation at LINE-1 promoter,

disregard differential methylation degrees have occurred at

RARRES-1 promoter.

1. Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P

(2010) Somatic expression of LINE-1 elements in human

tissues. Nucleic Acids Res 38: 3909–3922.

2. Xiong Z, Laird PW (1997) COBRA: a sensitive and

quantitative DNA methylation assay. Nucleic Acids Res 25:

2532–2534.

(PPTX)

Figure S2 The putative CTCF binding motif flanking
RARRES1 promoter displays sequence homology with
the one in the B1 region of H19. A. The potential CTCF

binding motif located between 283 bp and 239 bp upstream of

transcriptional start site (TSS) of RARRES1 [3] was compared to

the H19 B1 CTCF binding segment [4]. Conserved bases were

revealed by the MAFFT method as previously described [5] and

shown in gray shades. B. Scheme of binding motifs flanking the

promoter region 2200 bp upstream of RARRES1 TSS. Boxes

denote locations of potential CTCF binding sites evolved from our

current study (denoted as Peng et al.) as well as from a previous

report [3] (labeled as Kim et al.). The various transcription factor

binding sites [6] flanking RARRES1 promoter were illustrated by

an on-line software http://www.cbrc.jp/research/db/

TFSEARCH.htm. Abbreviations for the transcription factors

are: Sp1: Specificity Protein 1; GATA1: GATA binding factor

1; GATA1/2, GATA binding factor 1 and GATA binding factor

2; E2F: Adenoviral E2 promoter binding factor; and MZF1:

myeloid zinc finger 1.

3. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI,

et al. (2007) Analysis of the vertebrate insulator protein CTCF-

binding sites in the human genome. Cell 128: 1231–1245.

4. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, et

al. (2000) CTCF mediates methylation-sensitive enhancer-

blocking activity at the H19/Igf2 locus. Nature 405: 486–489.

5. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a

novel method for rapid multiple sequence alignment based on

fast Fourier transform. Nucleic Acids Res 30: 3059–3066.

6. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel

AE, et al. (1998) Databases on transcriptional regulation:

TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26:

362–367.

(PPT)

Figure S3 CTCF isolated from RARRES1-expressing
(MCF10A) and –silenced cells (SUM159) displayed
similar degree of poly(ADP-ribosyl)ation (PARylation).
Detection of PARylation (denoted as PAR) by mmunoprecipita-

tion (IP) followed by western blotting was performed as previously

described [7]. In brief, semi-confluent culture of MCF10A or

SUM159 cells grown on 10-cm dishes were lyzed in 1000 ?l of IP

buffer (Pierce IP kit #26146) supplemented with protease inhibitor

cocktail (Roche). The lysate were incubated for 16 hours with

either anti-PAR-10H mouse monoclonal antibody (Enzo Life

Technology # ALX-804-220) or with anti-PAR rabbit polyclonal

antibody (EMD Millipore #528815) and then incubated respec-

tively with Protein A/G Agarose (Pierce #20422) or with HRP-

Protein A Agarose bead (BD#610438) for 2 hours. Immunopre-

cipitated products were analyzed by western blotting using anti-

CTCF polyclonal antibodies (Millipore #07-729). As both

RARRES1-expressing (MCF10A) and –silenced (SUM159) cells

harbor CTCF with similar levels of poly(ADP-ribosyl)ation

(PARylation), it is unlikely that a loss of CTCF binding in the

latter cell lines (Figure 4C) was ascribed to a decreased

PARylation.

7. Farrar D, Rai S, Chernukhin I, Jagodic M, Ito Y, et al. (2010)

Mutational analysis of the poly(ADP-ribosyl)ation sites of the

transcription factor CTCF provides an insight into the

mechanism of its regulation by poly(ADP-ribosyl)ation. Mol

Cell Biol 30: 1199–1216.

(PPTX)

Table S1 Clinicopathological information of breast tumors

assessed for DNA methylation by MassARRAY analysis. DCIS,

ductal carcinoma in situ; IDC, invasive ductal carcinoma; ILC,

invasive lobular carcinoma; LCIS, lobular carcinoma in situ.

(DOCX)

Table S2 Clinicopathological information of breast tissues for

IHC staining.

(DOCX)

Table S3 DNA sequences of primers used in this study.

(DOCX)

Table S4 Summary of RARRES1 IHC (immunohistochemical)

staining.

(DOCX)
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