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Abstract
Background & Aims—Hepatocellular carcinoma (HCC) is a heterogeneous cancer in which
sorafenib is the only approved systemic therapy. Histone deacetylases (HDAC) are commonly
dysregulated in cancer and therefore represent promising targets for therapies, however their role
in HCC pathogenesis is still unknown. We analyzed the expression of 11 HDACs in human HCCs
and assessed the efficacy of the pan-HDAC inhibitor panobinostat alone and in combination with
sorafenib in preclinical models of liver cancer.

Methods—Gene expression and copy number changes were analyzed in a cohort of 334 human
HCCs, while the effects of panobinostat and sorafenib were evaluated in 3 liver cancer cell lines
and a murine xenograft model.

Results—Aberrant HDAC expression was identified and validated in 91 and 243 HCCs,
respectively. Upregulation of HDAC3 and 5 mRNAs were significantly correlated with DNA copy
number gains. Inhibiting HDACs with panobinostat led to strong anti-tumoral effects in vitro and
vivo, enhanced by the addition of sorafenib. Cell viability and proliferation declined, while
apoptosis and autophagy increased. Panobinostat increased Histone H3 and HSP90 acetylation,
downregulated BIRC5 (survivin) and upregulated CDH1. Combination therapy with panobinostat
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and sorafenib significantly decreased vessel density, and most significantly decreased tumor
volume and increased survival in HCC xenografts.

Conclusions—Aberrant expression of several HDACs and copy number gains of HDAC3 and
HDAC5 occur in HCC. Treatment with panobinostat combined with sorafenib demonstrated the
highest preclinical efficacy in HCC models, providing the rationale for clinical studies with this
novel combination.
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Hepatocellular carcinoma (HCC) remains a major health problem worldwide as the third
cause of cancer-related mortality and the primary cause of death among cirrhotic patients
[1]. Hepatitis B and C, alcohol and aflatoxin have been identified as major risk factors
leading to the development of HCC [2, 3]. Resection and transplantation are the only
curative treatments available but are greatly hampered by high recurrence rates [3].
Currently, the multi-kinase inhibitor sorafenib is the only FDA-approved treatment for
patients with advanced disease, necessitating the development of novel compounds that are
effective against this devastating disease [4, 5]. A new class of histone deacetylase (HDAC)
inhibitors is currently considered to be among the most promising anticancer agents in drug
development, most likely due to their potent anti-tumoral effects demonstrated in preclinical
studies of hematological malignancies and solid tumors and their promising therapeutic
potential in early-phase clinical trials [6]. Vorinostat and Romidepsin are HDAC inhibitors
(HDACi) that recently received FDA approval for the treatment of cutaneous T cell
lymphoma [7].

HDAC inhibitors execute their anti-tumoral activities through hyperacetylation of histone
and non-histone proteins, such as the molecular chaperone heat shock protein 90 (HSP90).
Histone acetylation leads to decreased affinity for DNA and increased access of
transcription factors, while HSP90 acetylation blocks its chaperone function and causes
destabilization of client proteins implicated in several important signaling pathways [8]. In
addition, HDACi can repress transcriptional activity directly or through destabilization and
accelerated decay of mature transcripts. These different mechanisms of action lead to
various anti-tumoral effects including the induction of apoptosis, autophagy and
differentiation, cell cycle arrest and inhibition of tumor vascularization [9]. Although several
key factors in cancer-related signaling pathways have been identified to be regulated by the
HDAC family, no exclusive targets have been reported so far. HDACs are known to regulate
the expression of some of the pivotal players of hepatocarcinogenesis including the
apoptosis inhibitor BIRC5 (survivin), the tumor suppressor gene and Wnt-pathway regulator
CDH1 (E-Cadherin), and the cyclin-dependent kinase inhibitor CDKN1A (p21) known to be
implicated in growth arrest, senescence and apoptosis [10–14].

Panobinostat (LBH589) is a novel pan-HDAC-inhibitor with high efficacy in several
preclinical models of cancer [15] and synergistic anti-tumoral activity when administered in
combination with chemotherapy or molecular targeted therapies [14, 16]. Early clinical trials
recently reported promising results with feasible tolerance and side effects, even indicating
anti-tumoral activity in patients with Lymphoma [17].

Further evidence of the importance of the HDAC machinery in cancer is their observed
dysregulation in tumoral tissues and their close correlation with aggressive tumoral
behaviour. In cancer, aberrant expression of several of the 11 known classical HDAC family
members (HDAC1–11, class I, II, IV) often correlates with disease progression and patient’s
outcomes [18]. Overexpression of HDAC1 and 2 has been described in gastric and
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colorectal cancer [19, 20], and HDAC3 has recently been proposed as a potential biomarker
for recurrence following liver transplantation in hepatits B (HBV)-associated HCC [21].

Herein, we show that several HDAC-family members are aberrantly expressed in HCC with
significant correlation of HDAC3 and 5 upregulation to DNA copy number gains. In
addition, we provide evidence that panobinostat has consistent anti-tumoral efficacy in
preclinical models of HCC, which is further enhanced when combined with sorafenib.
Significantly decreased tumor volume and increased survival in vivo in response to this
combination establish a rationale for clinical studies with this novel combination.

Material and Methods
Human samples, mRNA expression array and SNP analysis

A total of 230 human samples were obtained from patients with HCC treated with resection
or liver transplantation within the HCC Genomic Consortium (Mount Sinai School of
Medicine, New York; Hospital Clinic, Barcelona; Istituto Nazionale dei Tumori in Milan) as
previously reported [22–25]. After patient’s informed consent and Institutional Review
Board approvals were obtained, samples were collected and gene expression and SNP array
studies were performed as described elsewhere [22]. The training set included 91 fresh
frozen HCCs, along with 10 normal, 13 cirrhotic and 18 dysplastic liver samples for gene
expression analysis (GSE9843). For SNP array, 101 HCC samples and 101 matching
cirrhotic tissues (GSE9829) wre analyzed. The validation set included a publicly available
dataset of 243 HCCs and paired non-tumoral liver tissue, and 2 pooled, normal liver samples
(GSE14520). These patients had predominantly chronic HBV infection [26], while patients
within the training set had HCV–related HCC.

Cell lines and in vitro drug treatments
Huh7 (Riken Bioresource Center), Hep3B and HepG2 (ATCC, Manassa, VA) cells were
cultured as previously described. [22–24] Panobinostat was provided by Novartis Pharma
AG (Basel, Switzerland) following a MTA agreement; sorafenib was purchased from LC
Laboratories, Woburn, MA. Both compounds were diluted in DMSO and added 1, 2 and 3
days before cells were processed for further analyses. Final DMSO in all experiments was
<0.05%.

Cell viability, proliferation assays, cell cycle analyses, western blot and real time PCR
MTT-, 3H-Thymidine Incorporation-, and fluorescent-activated cell sorting (FACS) assays
were performed as previously reported [24]. Detailed information on western blot and real
time PCR is given in the Supplementary Material.

HCC xenograft model and immunohistochemistry
All animal experiments were done following Mount Sinai School of Medicine Institutional
Animal Care and Use Committee (IACUC) approval of protocols. Generation of the
experimental model followed previously reported protocols [24]. A detailed description of
the xenograft model, the treatment arms and the immunohistochemistry procedures can be
found in the Supplementary Material.

Statistical Analysis
Bars represent the mean + standard error or standard deviation as explained in each figure’s
legend. Two-tailed t-test or U-test for continuous variables were used for comparisons
between groups and correlations were calculated with the non-parametric Spearman’s
Coefficient (SC). SNP-array data and gene expression microarray analyses were performed
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as previously described [22]. Calculations were done by the SPSS package (SPSS 15.0,
Chicago, IL).

Results
HDAC alterations in human hepatocellular carcinoma

Aberrant HDAC expression—Gene expression levels of all 11 classic HDACs were
analyzed by microarray in a training set of 91 HCC samples, 18 dysplastic nodules, 10
normal and 13 cirrhotic liver samples (Fig. 1A). A subset of HDAC mRNAs (HDAC1, 2, 4,
5, and 11) was significantly upregulated compared to normal liver, cirrhosis and dysplastic
nodules, with the highest expression levels for HDAC2, 4 and 11 (Fig. 1B). HDAC3 was
significantly upregulated in HCC compared to cirrhosis. In the contrast, HDAC6 and
HDAC7 were significantly downregulated in HCC compared to normal liver (Suppl. Table
1). To validate these results in an independent set of HCC samples, we analyzed expression
levels by independent microarray analysis in 243 paired HCC-cirrhotic samples and 2
pooled normal liver samples. Significant overexpression of 4 HDACs (1, 2, 4 and 5) and
downregulation of HDAC6 and HDAC7 were confirmed (Suppl. Figure 1, Suppl. Table 2).
Data for HDAC8 and HDAC10 was not available.

Frequent copy number gains of HDAC3 and HDAC5 are associated to high
gene expression levels—We used SNP array technology to evaluate DNA copy number
alterations of all 11 HDAC-family members. Although no high-level amplifications were
detected (cut-off: copy number value 3.4), HDAC3 and HDAC5 showed significant DNA
gains (Fig. 1C, D). As expected, samples with increased copy numbers in HDAC3 and
HDAC5 had significantly higher expression of HDAC3 and HDAC5 mRNA levels (p<0.001
and p=0.005, respectively) (Fig. 1C, D) and showed a significant correlation of
amplification and gene expression (p<0.001 and p=0.0027, respectively) (Fig. 1C, D).

Expression of CDH1 and BIRC5 mRNA correlates with gene expression of
multiple HDACs in human HCC—We next analyzed the mRNA expression of 2
previously described HDAC target-genes, CDH1 and BIRC5, in our cohort of samples.
CDH1 was significantly downregulated in human HCC samples of our training set when
compared to normal liver (p=0.001), cirrhotic liver (p<0.001) and to dysplastic nodules
(p<0.001) (Suppl. Fig. 2A). BIRC5 mRNA was significantly upregulated in human HCC
samples compared to normal liver, cirrhotic and dysplastic nodule samples (p<0.001)
(Suppl. Fig. 3A). MRNA levels of both genes were correlated to gene expression of multiple
HDACs, most significantly CDH1 to HDAC4 and 5 (Suppl. Fig. 2B) and BIRC5 to
HDAC1, 2, and 11 (Suppl. Fig. 3B).

Effect of panobinostat alone or in combination with sorafenib in liver cancer cell lines
Panobinostat affects cell viability and proliferation alone and in combination
with sorafenib in culture—On the basis of the data obtained in human HCC analyses,
we investigated the effects of panobinostat (Novartis Pharma AG, Basel, Switzerland) in
experimental models of HCC. Panobinostat significantly decreased cell viability compared
to control in a dose and time dependent manner at 25, 50 and 100 nM concentrations in
Hep3B and HepG2 cells at 1, 2 and 3 days after treatment (12.1–77.7% decline, p<0.05)
(Fig. 2A and Suppl. Fig. 4A, respectively). In Huh7 cells, cell viability significantly declined
by 47.7% and 23%, respectively, 2 and 3 days after the administration of 50 and 100 nM
concentrations compared to control (p<0.001) (Suppl. Fig. 4B). Interestingly, panobinostat
50 and 100 nM significantly decreased cell viability by 15.7–41.8% compared to sorafenib
alone (p<0.004) 3 days after treatment in all 3 cell lines (Fig. 2A, Suppl. Fig. 4A, B).
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Combination therapy enhanced this effect on cell viability compared to single treatment in
Hep3B and HepG2 cells at all time-points analyzed (Fig. 2A, Suppl. Fig 4C).

Twenty-five nM panobinostat also significantly decreased proliferation by up to 88.9% in
Huh7 and Hep3B cells and completely blocked proliferation in HepG2 cells 2 and 3 days
after administration (Fig. 2B, Suppl. Fig. 5). It is noteworthy that panobinostat led to greater
decrease of proliferation than sorafenib treatment alone after 2 and 3 days of treatment (Fig.
2B, Suppl. Fig. 5). Nevertheless, combination treatment did not further enhance the effect on
proliferation (Fig. 2B, Suppl. Fig. 5).

Panobinostat induces apoptosis, acetylation of Histone H3 and HSP90, and
promotes autophagy in culture—We then analyzed the effects of panobinostat and the
combination of panobinostat with sorafenib on the cell cycle by FACS analysis.
Panobinostat alone increased the percentage of necrotic/apoptotic cells in sub-G1 to 8.5%
compared to 1% in the control group. Combination with sorafenib significantly enhanced
this effect to 23% in the combination group vs. sorafenib (p=0.002) and control (p=0.003),
suggesting apoptosis as the main cause of cell death (Fig. 2C).

In order to confirm the previously described mechanism of action of panobinostat, we
analyzed the acetylation status of the 2 known HDAC targets Histone H3 and the molecular
chaperone HSP90. Panobinostat alone and in combination with sorafenib led to a significant
hyperacetylation of Histone H3 and HSP90 in Huh7 cells 1 day after treatment (Fig. 2D).

We also observed a significant induction of the known HDAC target p21 at the protein level
in the panobinostat treated cells 1 day after administration (Fig. 2D, Suppl. Fig. 6).

We finally aimed to assess autophagy activation in panobinostat and sorafenib treated Huh7
cells by analyzing the protein expression of LC3 and p62, two well-known autophagy
markers [27]. Panobinostat administration, but not treatment with sorafenib, led to a
significant decrease of p62 along with increased LC3 II levels, indicating that panobinostat
might induce autophagy in Huh7 cells (Fig. 2D, Suppl. Fig. 6).

Panobinostat changes gene expression levels of CDH1 and BIRC5 in vitro—
We further analyzed mRNA levels of CDH1 in Huh7 cells after treatment with sorafenib,
panobinostat and their combination. Although both compounds increased CDH1 gene
expression, only the combination therapy led to a statistically significant rise (p=0.02, Fig.
2E). Western Blot analysis showed up-regulation of CDH1 protein expression after
panobinostat therapy for 1 day following treatment (Fig. 2E, Suppl. Fig. 6). The expression
levels of BIRC5 mRNA were slightly decreased after treatment with panobinostat, but not
with sorafenib, in Huh7 cells (Fig. 2E).

Effect of panobinostat alone or in combination with sorafenib in HCC xenografts
Panobinostat and sorafenib additively reduce tumor volume and increase
survival in vivo—Treatment with panobinostat as single agent, and as expected with
sorafenib, led to a significant delay in tumor growth compared to control mice (p<0.02, day
4–12) (Fig. 3A). After 12 days of treatment the median tumor volume was 987.3 mm3 for
control, 288.2 mm3 for panobinostat and 464.9 mm3 for sorafenib treated mice. Tumor
volume was further reduced to 225.7 mm3 in the group that received combination therapy
(p<0.05, Fig. 3A). After 20 days of treatment this additive effect was still evident with a
median tumor volume of 227 mm3 in the combination group, 531 mm3 in the panobinostat
group and 806 mm3 in mice receiving sorafenib (Fig. 3A, p=0.04 for panobinostat vs.
sorafenib, p=0.0002 for combination vs. sorafenib, and p=0.005 for combination vs.
panobinostat). To assess the response rate for each group, we analyzed the tumor growth
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rate less than 20% at day 12 (Fig. 3B). This effective delay in tumor growth was evident for
7/12 (58.3%) mice of the combination group, compared with 6/14 (42.9%) in the
panobinostat, 1/10 (10%) in the sorafenib and 1/12 (8.3%) in the control group. This low
growth rate was maintained in 6/12 (50%) panobinostat treated mice until the study
endpoints were reached (data not shown). As an example, Fig. 3C shows xenograft tumors 5
minutes before euthanization: while in the panobinostat group 2 intratumoral hematomas
occurred, not interfering with continuation of the therapy, no adverse events could be
observed in the other treatment arms. Nevertheless, panobinostat treatment at 15 mg/kg per
day induced weight loss of up to 20% of the body weight in 5/14 (35.7%) animals, and this
toxicity led us to use a dose of 7.5 mg/kg in the combination arm. Overall survival increased
in the single treatment groups (median 22 days for sorafenib, 23 days for panobinostat)
compared to control (median survival 12 days, p<0.001), while combination treatment
further enhanced the median survival to 34 days in comparison to control and single
treatments (p<0.001, Fig. 3D).

Panobinostat induces apoptosis, decreases proliferation and reduces vessel
density in HCC xenografts—To further assess proliferation and apoptosis in vivo, Ki-67
and TUNEL immunohistochemistry was performed. We observed a significant decrease in
the proliferation index (stained nuclei per field) from 72.1±7% in control animals to
48.1±13.8% in sorafenib treated mice, 20.5±9.3% in the panobinostat and 17±8.9% in the
combination group (p<0.007) (Fig. 4A). Panobinostat and combination therapy led to a
significantly lower proliferation index than sorafenib treatment alone (p<0.03) (Fig. 4A), but
no synergism could be detected. TUNEL staining revealed a significant increase of apoptotic
cells in the panobinostat treated mice compared to the control and sorafenib group (p<0.04).
Although combination treatment increased apoptosis compared to sorafenib, the difference
was not statistically significant (Fig. 4B). Finally, we analyzed neoangiogenesis in vivo by
assessing the vessel density in each tumor. Panobinostat treatment alone led to a significant
decrease of vessel density compared to control animals, which could be enhanced by
combination with sorafenib leading to a significantly lower vessel density compared to
control and sorafenib treated mice (p<0.007) (Fig. 4C). We also confirmed the activity of
panobinostat in HCC xenografts with a significant increase of acetylated Histone H3 in all
analyzed tumors (Fig. 4D).

Panobinostat suppresses BIRC5 and induces CDH1 gene expression in
combination with sorafenib in vivo—Finally, we analyzed the gene expression of
CDH1 and BIRC5 in HCC xenografts collected from mice treated with panobinostat,
sorafenib and their combination. Although sorafenib and panobinostat alone increased
CDH1 expression levels, only the combination led to a statistically significant increase of
CDH1 mRNA in vivo (p=0.02) (Fig. 4E). BIRC5 gene expression levels significantly
declined after treatment with panobinostat alone (p=0.01) and after treatment with
combination (p=0.04). Although sorafenib led to a mild decrease of BIRC5 levels, no
synergistic effect could be observed (Fig. 4E).

Discussion
After sorafenib approval in advanced HCC, the scientific community aimed to further
enhance the survival benefit with combination therapies and/or novel drugs [28, 29].
Combination therapies are currently tested in one phase III study (sorafenib with erlotinib)
and in several phase II studies [5]. Nonetheless, none of them is testing the efficacy of an
HDAC inhibitor in this difficult-to-treat cancer, a family of drugs already approved in other
malignancies [6].
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This study provides compelling data supporting the role of HDACs as novel targets for the
treatment of HCC. We report aberrant expression of most HDACs and identify HDAC3 and
HDAC5 overexpression to be associated with copy number gains in human HCC. In
addition, we show that treatment with the HDAC inhibitor panobinostat is highly efficient in
preclinical models of HCC, boosted by the combination with sorafenib.

Recently, dysregulation of several HDACs has been reported for gastric, prostate, breast and
liver cancer [19, 30]. These aberrant expression profiles are believed to contribute to
carcinogenesis by disturbing the balance of histone acetylation and non-acetylation needed
for normal cell growth and proliferation. In accordance with this data, we detected and
confirmed several significantly dysregulated HDACs in 2 large datasets of human HCC.

Up to now only very limited data about transcriptional regulation of HDACs has been
available. Mutation, methylation and copy number analyses of different HDAC isoforms
need to be performed in order to confirm our observed gains in HDAC3 and 5 and to detect
additional mechanisms of regulation. HDACs themselves act as transcriptional regulators,
either through inhibiting transcription by histone deacetylation or through activating
expression by functioning as transcriptional coactivators [31]. It has previously been shown
that CDH1 is silenced by a repressor complex containing HDAC1 and 2 in pancreatic cancer
cells, and that it can be reexpressed after treatment with the HDACi Trichostatin A or
HDAC2 specific siRNA knockdown [11]. In accordance with this report from in vitro data,
we observed highly significant correlations of several HDACs with CDH1 gene expression
in human HCC. The other reported HDAC target BIRC5 is frequently downregulated by
HDAC inhibition in many cancer models including HCC [10, 32]. Nonetheless, no human
data had shown correlation between HDACs and BIRC5 gene expression. Even though a
vast number of putative HDAC target genes have been reported, we chose CDH1 and
BIRC5 as 2 pivotal players with recently reported contributions to the development of HCC
as part of a molecular signature discriminating dysplastic nodules from early HCC [25, 33].

HDACis are currently among the most promising anti-tumoral drugs in both preclinical and
clinical development. Preliminary results suggest high anti-tumoral efficacy also in solid
tumors, particularly when administered in combination with chemotherapy, radiotherapy or
molecular targeted agents [18]. The pan-HDACi panobinostat demonstrated high anti-
tumoral activity in preclinical models of solid tumors and seemed to be well tolerated after
oral administration in clinical studies [34]. We observed that combining panobinostat with
sorafenib strongly potentiated individual treatment efficacy in vitro and in vivo. Similar
effects have been reported with lapatinib, a dual EGFR/HER2 inhibitor, in colon cancer cells
[14], irradiation in non-small lung cancer cells [35] and doxorubicin in multiple myeloma
cells [16].

Although combination treatment led to several significant additive effects in vitro (e.g. cell
viability, apoptosis, CDH1 expression), the underlying mechanism could not be elucidated.
Recent reports showed that sorafenib increases CDH1 levels through the Raf-MAPK-
pathway and that HDACs directly suppress CDH1 expression and this might partially
explain the observed additive effect on CDH1 expression in our study [36]. Assumed
additive effects on cell viability still require further investigation, since our hypothesis of
panobinostat further altering the RAS/MAPK- and PI3K/Akt/mTOR pathway along with
sorafenib was not confirmed (data not shown).

The fact that panobinostat alone led to 85–100% decrease in proliferation depending on the
cell line analyzed might be related to the status of p53 activity in different cell lines and also
to the panobinostat-specific inhibition of BIRC5 [37]. This might result in the observed p21
up-regulation together with a possible direct p21 induction through inhibition of a HDAC
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cofactor. Other authors have thoroughly explored the mechanisms of induction of apoptosis
by HDACi both by p53-dependent and p53-independent pathways [38]. Panobinostat, but
not sorafenib, is also able to induce autophagy in liver cancer cells, a mechanism already
observed in lymphoma cells [37]. Nonetheless, we were unable to confirm that this occurs
through alteration of the Akt/mTOR pathway [39]. Autophagy activation might indeed be a
separate mechanism by which panobinostat modulates cell viability in HCC, but this
definitely requires further investigation.

Translated into our xenograft model, the combination of panobinostat with sorafenib led to
the highest decrease of tumor volume and the most significantly improved survival rates in
treated mice along with a significant decrease of vessel density in HCC xenografts. While
sorafenib targets neo-angiogenesis through the VEGF pathway [4], it has been demonstrated
that panobinostat reduces angiogenesis by inhibition of endothelial cell formation [40]. In
this setting, the additive effect of both compounds reported in this study compellingly
warrants further investigation.

Concerns over the toxicity of amplified drug toxicity in combination treatment trials have
been the current bottleneck to translating positive preclinical experiments into clinical trials
in HCC. This has been the case with some combinations of molecular targeted therapies in
HCC and recent reports suggest that combining sorafenib and everolimus appears difficult to
manage [41], Thus, the combination of sorafenib and panobinostat should be explored in the
setting of phase I–II studies, particularly assessing a potential synergistic anti-angiogenic
toxicity.

In conclusion, dysregulation of the HDAC-family might play a significant role in
hepatocarcinogenesis. While copy number changes lead to aberrant HDAC gene expression
in HCC, additional mechanisms need to be explored. Inhibition of all classical HDACs
certainly leads to high anti-tumoral efficacy in preclinical models of HCC. Combining
panobinostat with the standard of care sorafenib greatly enhanced its anti-tumoral activity,
supporting the rationale for clinical studies with this combination.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FACS fluorescent-activated cell sorting

Lachenmayer et al. Page 8

J Hepatol. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



HCC hepatocellular carcinoma

HBV hepatitis B virus

HCV hepatitis C virus

HDAC histone deacetylase

HDACi histone deacetylase inhibitor

HSP90 heat shock protein 90

IACUC Institutional Animal Care and Use Committee

IHC immunohistochemistry

PBS phosphate buffered saline

SC spearman’s coefficient
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Fig. 1. Aberrant HDAC mRNA expression and copy number changes in human HCC
(A) Heatmap representing expression levels of all HDACs (HDAC1–11) in the training set.
(B) Boxplots displaying gene expression levels of HDAC2, 4 and 11 in the
hepatocarcinogenic process (N: normal liver, Ci: cirrhosis, DN: dysplastic nodule, and for
HCC VE: very early, E: early, A: advanced and VA: very advanced). (C) HDAC3 and (D)
HDAC5 DNA copy number levels, expression analyses and their correlation. QQplots show
mean SNP array value for the gene’s locus for each tumoral sample and dashed lines
represent highest/lowest copy number values in paired cirrhotic samples; Boxplots show
mean expression values in high and low copy number samples. Dotplots display expression
and copy number values per sample, red dots=copy number ≥2.2 and 2.3, respectively; blue
dots=copy number <2.2 and 2.3, respectively). Stars in boxplots represent outlier samples.
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Fig. 2. Panobinostat shows high efficacy in liver cancer cell lines, enhanced by sorafenib
(A) Cell viability studies after treatment with panobinostat, sorafenib and their combination
for 1, 2, and 3 days in Hep3B cells. (B) Proliferation studies after 3 days of treatment in
Huh7, Hep3B and HepG2 cells. (C) Cell cycle analysis after 3 days of treatment in Huh7
cells. (D) Western blots of acetylated/total Histone H3, acetylated/total HSP90, p21, LC3,
p62 and CDH1 in Huh7 cells. (E) Expression levels of CDH1 and BIRC5 in Huh7 cells after
treatment for 1 day. Mean values + standard deviation are shown.
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Fig. 3. Combination of panobinostat and sorafenib mostly decreases tumor volume and improves
survival in HCC xenografts
(A) Tumor volume of HCC xenografts treated with panobinostat, sorafenib and the
combination of both. Plotted values represent mean tumor volume until half of the mice for
each treatment arm have been sacrificed. Mean values + standard error are shown. (B)
Waterfall plot showing % tumor growth from randomization to day 12 of treatment. Bars
below 20% show stable disease or response. (C) Representative pictures of HCC xenografts
of each group at the day of euthanization. (D) Kaplan-Meyer survival analyses of mice in
different treatment arms.
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Fig. 4. Drug-induced effects on proliferation, apoptosis, angiogenesis and target-gene expression
in HCC xenografts
(A) Ki-67 immunostaining for proliferation analysis, (B) TUNEL immunostaining for
apoptosis analysis and (C) H&E staining for vessel density assessment in HCC xenografts.
Original magnification for all pictures is 40x. (D) Western blot results for acetylated and
total Histone H3 in HCC xenografts. (E) Expression levels of CDH1 and BIRC5 in vivo.
Mean values + standard deviation are shown.
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