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Abstract: Modeling and managing correctly the user context in Smart Environments is 

important to achieve robust and reliable systems. When modeling reality we must take into 

account its ambiguous nature. Considering the uncertainty and vagueness in context data 

information it is possible to attain a more precise picture of the environment, thus leading 

to a more accurate inference process. To achieve these goals we present an ontology that 

models the ambiguity in intelligent environments and a data fusion and inference process 

that takes advantage of that extra information to provide better results. Our system can 

assess the certainty of the captured measurements, discarding the unreliable ones and 

combining the rest into a unified vision of the current user context. It also models the 

vagueness of the system, combining it with the uncertainty to obtain a richer inference 

process. 
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1. Introduction 

Intelligent environments host a diverse and dynamic ecosystem of devices, sensors, actuators and 

users. When modeling real environments certainty cannot be taken for granted. Reality, and hence the 

user context [1], is ambiguous. Sensors and devices are not perfect and their measurements carry a 

degree of uncertainty; for example, several thermometers in the same room can provide conflicting  
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temperature values and there always exists the human factor. Not every user can provide the exact 

temperature they want for their bath—most of them will only say that they want it “warm”. For this 

reason, when developing smart spaces and ambient intelligence applications, it is important to address 

ambiguity in order to model the context more realistically. To provide our systems with this feature, 

we have centered our work on two aspects of ambiguity: uncertainty and vagueness. We use 

uncertainty to model the truthfulness of the different context data by assigning to them a certainty 

factor (CF). This way we can know the reliability of each piece of information and act accordingly. 

This knowledge also allows us to create a more robust data fusion process to resolve the problem of 

the existence of multiple providers for the same piece of information at the same location. On the other 

hand, vagueness helps us to model those situations where the boundaries between categories are not 

clearly defined. This usually occurs when users are involved. Different users will have different 

perceptions about what constitutes a cold room or a noisy environment. We have addressed this 

problem using fuzzy sets to model the vagueness. 

By taking into account the ambiguity in the context information our aim is to improve the  

reliability of context management systems. As Black argues, vagueness should not be equated with 

subjectivity [2]. From our point of view (as we will discuss in Section 5) modeling uncertainty and 

vagueness improves the precision of the system. With this information the system is able to better 

assess the actual state of the context, being able to react to a broader range of situations. In this paper 

we will describe the three main components of the ambiguity conscious framework we have 

developed. First we will describe the ontology created to model the uncertainty and vagueness in 

context. Then we will discuss the data fusion process that takes place to infer the real status of the 

locations using multiple measures. Finally we will describe the implemented inference mechanism that 

processes ambiguity as a whole, combining vagueness and uncertainty. The outline of the paper will be 

the following: in Section 2 we will analyze the related work, in Section 3 we will describe the created 

ontology, in Section 4 we will explain how the framework works and the inference that takes place 

within it, in Section 5 we will describe three user cases to illustrate the necessity of taking into account 

the ambiguity of the context data. Finally, in Section 6 we will discuss our conclusions and the next 

steps we intend to take.  

2. Related Work  

As discussed in [3], modeling the context with ontologies offers the following advantages: 

 Ontologies are the most expressive approach to model context. 

 Composition and management of the model can be done in a distributed manner. 

 It is possible to partially validate the contextual knowledge. 

 One of the main strengths of ontologies is the simplicity to enact the normalization and 

formality of the model. 

Multiple ontology based context models have been developed. SOUPA [4] is a set of ontologies 

oriented to ubiquitous and pervasive applications used by the COBRA project [5]. It is composed by 

two sub-sets: SOUPA Core and SOUPA Extensions. The SOUPA Core defines the elements that are 

present in any ubiquitous application, while SOUPA Extensions support more specific applications. 
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CONON [6] is used by the SOCAM [7] project to model the context of pervasive computing 

applications. It is also divided into two sets, one with the general information shared between all the 

applications and the other one domain specific. CODONT [8] is used by the CODAMOS project  

and its main aim is to create an adaptable and flexible infrastructure for AmI applications.  

In [9] Hervás et al. present a formalized context model for offering visualization services to the users 

depending of their situation, needs and preferences. The proposed model is based on four ontologies: 

users, devices, environment and services, describing concepts of intelligent environments and their 

relationships 

Several authors have worked on combining indetermination or vagueness with ontologies. An 

extensive survey can be found in [10]. In the case of indetermination, in [11] its authors present a 

probabilistic generalization of OWL called PR-OWL, based in Multi Entity Bayesian Networks 

(MEBNs) which allows the combination of first order logic with Bayesian logic. This ontology 

represents the knowledge as parameterized fragments of Bayesian networks. In [12] the authors 

propose another probabilistic generalization of OWL called BayesOWL which also uses Bayesian 

networks. The authors suggest a mechanism which can translate an OWL ontology to a Bayesian 

network, adding probabilistic restrictions when building the network. The created Bayesian network 

maintains the semantic information of the origin ontology and allows ontological reasoning modeled as 

Bayesian inference. The authors in [13] describe another integration of OWL with Bayesian networks, 

a system named OntoBayes. It uses an OWL extension annotated with probabilities and dependencies 

to represent the uncertainty of Bayesian networks. These probabilistic extensions are not confined to 

OWL only; in [14] an extension for OWL Lite is discussed and in [15] and [16] extensions for RDF 

are presented. Several authors have also addressed the combination of the vagueness (represented as 

the usage of fuzzy sets) with ontologies. In [17] authors analyze how SHOIN could be extended adding 

the possibility of using fuzzy sets (f-SHOIN). They also propose a fuzzy extension for OWL. In [18] 

authors describe a fuzzy extension for SROIQ(D) and present an Fuzzy OWL2 Ontology. In [19] a 

fuzzy ontology for the management of medical documents is discussed. This ontology can store 

different membership values. Additionally the author has created a mechanism based in the occurrence 

of keywords in the title, abstract or body of the document to calculate the membership value of the 

different categories. In [20] its authors describe a fuzzy ontology used to automatically create 

summaries of news articles. These authors have also created a mechanism for the automatic creation of 

the fuzzy ontology based on the analysis of the news. Finally, in [21] the authors propose a mechanism 

to create automatically fuzzy ontologies. The created ontologies include the membership values of the 

different terms. 

Our system combines both approaches, enriching the context model with both uncertainty and 

vagueness. It also takes into account the interaction between them (as explained in Section 4), 

assessing how the vagueness modifies the resulting certainty factor. By assessing both aspects of 

ambiguity the resulting system is able to model a broader range of situations and interactions in smart 

environments. 
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3. AMBI2ONT: An Ontology for the Ambiguous Context 

One of the problems we encountered in modeling context data in previous projects was the use of 

the uncertainty and vagueness of the gathered information. In the Smartlab project [22] none of this 

information was used, which led to a loss of important data like the certainty of the measures taken by 

the sensors. In the Imhotep framework (http://www.morelab.deusto.es/imhotep/) [23] we started using 

fuzzy terms to describe a small part of the context (the capabilities of mobile devices and users) in a 

human-friendly manner. Our objective with the work presented in this paper was to develop a 

framework capable of managing the ambiguity and incertitude that often characterizes the reality. To 

do this we have created an ontology that models these concepts.  

Figure 1. Subset of the main ontology concepts. 

 
 

As shown in Figure 1 the main elements of the ontology are: 

 Location: The subclasses of this class represent the location concepts of the context. In our 

system we have three types of locations: points, rooms and buildings. 

 LocableThing: The subclasses of this class represent the elements of the system that have a 

physical location. It contains three subclasses: the Person subclass represents the users, the 

Device subclass models the different devices of the environment and the ContextData subclass 

models the measurements taken by the sensors. As we will explain in the next section, there are 

two types of measurements, those taken by the devices and the global measures for each room 

calculated by our data fusion mechanism. Figure 1 shows a subset of the type of context data 

taken into account in the ontology. 

 LinguisticTerm: This class models the fuzzy linguistic terms of the values of the context data. 

The ontology only stores the linguistic term and membership value of each individual of 

context data. Currently the ontology does not model the membership functions and rules used 

by the inference engine. 

 Capability: The subclasses of this class model the capabilities of users and their mobile 

devices. One objective of our framework is to be integrated with the Imhotep Framework that 

allows creating adaptive user interfaces that react to these capabilities and the changes on the 

context. 
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3.1. Modeling Uncertainty and Vagueness 

Our ontology models two aspects of the ambiguity of the context data: the uncertainty (represented 

by a certainty factor, CF) and the vagueness (represented by fuzzy sets). Uncertainty models the 

likeliness of a fact, for example “the temperature of the room is 27 °C with a certainty factor of 0.2 and 

18 °C with a certainty factor of 0.8” means that the value of the temperature is more probably 18 °C 

(but it cannot be both of them). In the case of vagueness it represents the degree of membership to a 

fuzzy set. For example “the temperature of the room is cold with a membership of 0.7” means that the 

room is mostly cold. In Figure 2 it can be seen how those values are stored in the ontology. Each 

ContextData individual has the following properties: 

 crisp_value: the measure taken by the associated sensor. In our system a sensor is defined as 

anything that provides context information.  

 certainty_factor: the degree of credibility of the measure. This metric is given by the sensor 

that takes the measure and takes values between 0 and 1. 

 linguistic_term: each measure has its fuzzy representation, represented as the linguistic term 

name and the membership degree for that term. 

Figure 2. Example of the ambiguity data for a temperature measure stored in the ontology. 
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This can be seen in the example shown on Figure 2. The temperature measurement has a crisp value 

of 32 °C with a certainty factor of 0.7. After processing that crisp value with the associated 

membership functions our system has inferred that the membership degree for cold is 0, for mild is 0.2 

and for hot is 0.9; so the room is mainly hot. 

4. Semantic Context Management for Ambiguous Data 

The semantic context management is done in four steps (see Figure 3): add the measures to the 

ontology, process the semantic and positional information, apply the data fusion mechanism and 

process the ambiguity contained in the data. 

Figure 3. Context management process. 

 

4.1. Adding the Measure 

To add a measurement to the ontology the sensor must provide the measurement type, its value, 

location and a certainty factor. We assume that each sensor knows its certainty factor based on its type 

and manufacturer. We also assume that the certainty factor of the sensor can change over time 

depending on the environment (e.g., a thermometer can be pretty accurate for temperatures between 

−10 °C and 50 °C, but the measurement quality can degrade outside that range). For that reason the 

sensor certainty factor is not stored in the ontology when the sensor registers itself.  

4.2. Processing the Semantic and Spatial Data 

Once the measurements have been added, we apply a semantic inference process to achieve two 

goals: make explicit the hidden implicit knowledge in the ontology and infer the positional information 

of each measurement. To do this we use two different sets of rules: the semantic rules and the spatial 

heuristic rules. To make the semantic reasoning less cumbersome we implement a subset of the RDF 

Model Theory [24] and the OWL Model Theory [25]. An example of the used rules can be seen in 

Figure 4. 
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Figure 4. An example of the implemented semantic rules. The first rule is extracted from 

the RDF Model Theory and models the transitivity of the subClassOf relationship. The 

second rule is extracted from the OWL Model Theory and models the behavior of the 

inverse properties. 

 
 

The spatial heuristic rules are used to infer higher level spatial information from the coordinates 

provided by the sensors. This information comprises data like the room in which the sensor is located; 

the devices, people and sensors surrounding it and the relative location to other LocableThing-s (refer 

to Section 3 for more information about the elements of the ontology). An example of the used rules 

can be seen in Figure 5. In the first rule a device’s area of location is inferred using its (x,y) 

coordinates. The second rules checks if a device and a person are in the same position. 

Figure 5. Example of the spatial inference that takes place in the system. The first rule is 

used to infer the area where the device is places in using the (x,y) coordinates of that 

device. The second rule infers if a device and a person are placed in the same place. 
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4.3. The Data Fusion Process 

Once the location and semantic information of the measurements has been inferred and processed, 

the data fusion process is applied. From the previous step we can infer that each room can have 

multiple sensors that provide the same context data (e.g., various thermometers located in the same 

room). Usually the values and certainty factors of those measurements do not coincide. To be able to 

take the proper actions we need to process those differing measurements to assess the real status of the 

room. To tackle this problem we have created a data fusion mechanism that refines those individual 

measurements into a single global one for each room. We have implemented two types of strategies for 

this process: tourney and combination. 

Using the tourney strategy the measure with the best CF is selected as the global measure of the 

room. On the other hand the combination strategy has three different behaviors, as stated in [26]: 

 Severe: The worst certainty factor from all the input measurements is assigned to the combined 

measurement. 

 Indulgent: The best certainty factor from all the input measurements is assigned to the 

combined measurement. 

 Cautious: An average certainty factor is calculated using the certainty factor from the input 

measurements. 

To determine the combined measurement value we weight the individual values using their 

certainty factors, as seen in the following equation: 

݉ ൌ
∑ ሺൈሻ

సబ

∑ 

సబ

      (1) 

where:  

 ݉: the measurement values  

 ܿ ݂: the measurement certainty factor 

It is also possible to configure a minimum CF level for the measurements. Measurements with a CF 

value below this threshold will not be taken into account in the calculations. In Table 1 we show an 

example of how the data fusion process works when the combination strategy is used. 

Table 1. Example of the data fusion. 

 Value CF Global Value CF Severe CF Indulgent CF Cautious 

M1 18 0.7 

19.9 0.6 0.8 0.7 
M2 22 0.7 

M3 16 0.6 

M4 20 0.8 

4.4. Processing the Ambiguity 

As explained previously we model two aspects of the ambiguity: the uncertainty and the vagueness. 

To be able to reason over this information we have modified the JFuzzyLogic [27] Open Source fuzzy 

reasoner to also accept uncertainty information. JFuzzyLogic follows the Fuzzy Control Lenguage 

(FCL) [28] standard for its rule language. 
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The modified reasoner supports two types of uncertainty: uncertain data and uncertain rules. The 

first type occurs when the input data is not completely reliable (as seen in the example shown in  

Table 1). To support this type of uncertain data we have modified the API of the reasoner (see Figure 6). 

Figure 6. Use of the modified reasoner to process the data of the previous example. 

 
 

The second type of uncertainty takes place when the outcome of a rule is not fixed, for example “if 

the barometric pressure is high and the temperature is low there is a 60% chance of rain”. To model 

this aspect of uncertainty we have modified the grammar of the FCL language. An example of the 

modified rules can be seen in Figure 7. 

Figure 7. An example of an uncertain fuzzy rule. 

 
 

Uncertainty and fuzziness can appear in the same rule and influence each other. To tackle this 

problem we have implemented the inference model described in [29]. This model contemplates three 

different situations depending on the nature of the antecedent and consequent of the rule and the 

matching fact: CRISP Simple Rule where both antecedent and matching fact are crisp values, 

FUZZY_CRISP Simple Rule where both the antecedent and matching fact are fuzzy and the 

consequent is crisp and finally the FUZZY_FUZZY Simple rule where all three are fuzzy. 

In the case of the CRISP Simple Rule the certainty factor of the consequent is calculated using the 

following formula: 

ܨܥ ൌ ܨܥ ൈ   (2)ܨܥ

where:  

 ܨܥ: the certainty factor of the consequent. 

 ܨܥ: the certainty factor of the rule  

 CF: the certainty factor of the fact 

In the case of the FUZZY_CRISP Simple Rule, the certainty factor of the consequent is calculated 

using the following formula: 

ܨܥ ൌ ܨܥ ൈ ܨܥ ൈ ܵ (3) 
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where S is the measurement of similarity between both fuzzy sets and is calculated using the following 

formula: 

ܵ ൌ ܲሺܨఈ|ܨఈᇱሻ ݂݅ ܰሺܨఈ|ܨఈᇱሻ  0.5 

ܵ ൌ ሺܰሺܨఈ|ܨఈᇱሻ  0.5ሻ ൈ ܲሺܨఈ|ܨఈᇱሻ   ݁ݏ݅ݓݎ݄݁ݐ
(4) 

where: 

ܲሺܨఈ|ܨఈᇱሻ ൌ ݔܽ݉ ൬݉݅݊ ቀߤிഀ ሺݑሻ, ிഀᇲߤ ሺݑሻቁ൰ , ݑ∀ ∈ ܷ  (5) 

and: 

ܰሺܨఈ|ܨఈᇱሻ ൌ 1 െ ܲሺܨఈതതത|ܨఈᇱሻ (6) 

Finally in the case of the FUZZY_FUZZY Simple Rule the certainty factor of the consequent is 

calculated using the same formula as the CRISP Simple RULE. Currently we do not support this type 

of combined reasoning for complex rules that involve multiple clauses in their antecedent. 

5. Use Cases 

In order to illustrate the importance of modeling ambiguity and having a data fusion process in 

context management systems we will describe several smart environment scenarios. Each scenario will 

help us to show different aspects closely related to our systems: modeling the certainty of the captured 

measures and the rules, modeling the subjectivity in the perceptions of the users and the importance of 

creating a global picture for each space. 

5.1. Scenario 1: Temperature Control in a Laboratory 

In this first scenario we will explain the importance of evaluating the certainty factor of the context 

data and the importance of the data fusion process. In this scenario we want to maintain the 

temperature of our laboratory at 23 degrees. To do this we will use four thermometers (see Table 2) 

located inside the lab to measure the temperature. The laboratory has a radiator to regulate the 

temperature and to simplify the example we will assume that the only operation it allows is to switch it 

on and off. The low certainty factor in “Thermometer 4” is due to the fact this thermometer is broken. 

For this example we assume that each thermometer has a self-diagnostic mechanism that constantly 

evaluates its status. The self-diagnostic details fall outside the scope of this example. 

Table 2. Devices present in scenario 1. 

Device Type CF Value 
Thermometer 1 Sensor 0.8 25 
Thermometer 2 Sensor 0.95 23 
Thermometer 3 Sensor 0.9 22 
Thermometer 4 Sensor 0.6 11 
Radiator Actuator NA NA 
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Table 3. Configuration of each version of the scenarios. 

 Uncertainty Vagueness Data fusion 
Version 1 No No No 
Version 2 No No Yes 
Version 3 Yes Yes Yes 

 

The scenario will have three versions (see Table 3). The first one will use a semantic model without 

uncertainty and vagueness information and without any data fusion process. The second one will 

include a rather simple average value calculation as the data fusion mechanism. Finally, the third one 

will be the process previously described. In each scenario we will describe the sensors and actuators 

that take part, their values and CF and the rules that model the behavior of the system. To make the 

examples easier to understand the rules will be written in pseudocode using simple triple-like expressions. 

In the first version, with no ambiguity modeling or data fusion (see Table 3), the rules would be the 

following: to switch on the radiator: 

thermoX type thermometer, 
thermoX location LaboratoryA 
thermoX hasValue temperatureX 
temperatureX < 21 
-> 
radiatorX type radiator 
radiatorX location LaboratoryA 
radiator status ON 

And to switch it off:  

thermoX type thermometer, 
thermoX location LaboratoryA 
thermoX hasValue temperatureX 
temperatureX > 24 
-> 
radiatorX type radiator 
radiatorX location LaboratoryA 
radiator status OFF 

There are several problems with this approach. First the system is not able to take into account the 

low reliability of the thermometer T4, using its temperature measure as input for the reasoning engine. 

This will result in incorrect behavior when that measure is processed, prompting the system to switch 

on the radiator to increase the room temperature. Secondly, each temperature measurement is 

processed individually, resulting in unreliable results that depend on the order of this processing. This 

version the system has no means of knowing the global measure for the laboratory and must process 

each measure individually, resulting in contradictory actions in this case.  

In the second version (see Table 3) a simple data fusion mechanism will be used. This example will 

help us illustrate the need of a sound and adaptable data fusion mechanism. The rules that control the 

behavior will be the following: to switch on the radiator: 

LaboratoryA hasGlobalTemperature temperatureX 
temperatureX < 21 
-> 
radiatorX type radiator 
radiatorX location LaboratoryA 
radiator status ON 
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And to switch it off:  

LaboratoryA hasGlobalTemperature temperatureX 
temperatureX > 25 
-> 
radiatorX type radiator 
radiatorX location LaboratoryA 
radiator status OFF 

In this case the system has a unified vision of the temperature in the room and is able to take an 

unique action to adjust the radiator, but still does not take into account the differences in the certainty 

factors of the sensors. As a result the global temperature in the laboratory is 20.25 °C and the radiator 

will be turned on. 

Finally in the third version of the scenario we use the system described previously, processing the 

ambiguity of the context data and applying a richer data fusion process. In this case we use the 

combination strategy with a cautious behavior for the data fusion process (see Section 4.3). The rules 

are almost identical to the second version, but include an important change—now they state a 

minimum CF for body of the rule to be launched. The rules that control the behavior will be the 

following: to switch on the radiator: 

LaboratoryA hasGlobalTemperature temperatureX 
temperatureX < 21 WITH CF 0.8 
-> 
radiatorX type radiator 
radiatorX location LaboratoryA 

radiator status ON 

And to switch it off:  

LaboratoryA hasGlobalTemperature temperatureX 
temperatureX > 25 WITH CF 0.8 
-> 
radiatorX type radiator 
radiatorX location LaboratoryA 
radiator status OFF 

According to the selected configuration the global temperature value will be: 

݉ ൌ
ሺ25 ∗ 0.85  23 ∗ 0.95  24 ∗ 0.9  11 ∗ 0.4 ሻ

0.85  0.95  0.9  0.4
≅ 22.3 (7) 

And the global certainty factor: 

ܨܥ ൌ
0.85	  0.95  0.9  0.4

4
ൌ 0.775 (8) 

The certainty factor of the global measure will be too low to launch the rule (we set a minimum CF 

of 0.8 for the temperature in the rules), but we can tune even more the configuration and establish a CF 

threshold for the measures in the data fusion process. As we explained in Section 4.3 using the 

threshold the measurements with a CF below it are automatically discarded. Setting the threshold for 

the data fusion problem at 0.8 the measurements given by the broken thermometer are discarded, 

obtaining the following results: 

݉ ൌ
25 ∗ 0.85  23 ∗ 0.95  24 ∗ 0.9

0.85  0.95  0.95
≅ 23.96 (9) 
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And the global certainty factor: 

ܨܥ ൌ
0.85  0.95  0.9

3
ൌ 0.9 (10) 

Taking into account the certainty factor of the context data and applying a data fusion process the 

system can ascertain much more reliably the real state of the laboratory, providing a better picture of 

its current situation. As a result the system knows that the temperature value is between the acceptable 

limits and that no action must be taken. 

As can be seen on Table 4 the results between different versions vary significantly. The results in 

the first version are completely unreliable, as the final state depends on the order that the rules are 

evaluated (this is problematic because several semantic reasoning engines do not guarantee the order in 

which matching rules will fire [30]). The second version uses the measurement from the broken 

thermometer to compute the global measure, inducing an error in the calculation that results in the 

radiator been switched on.  Finally, the last version takes into account the certainty factor, resulting in 

a more reliable system. 

Table 4. Results of each version of the first scenario. 

 Version 1 Version 2 Version 3 

Result 

The radiator controlling rules are fired 

two times (only two of the four values 

meet the conditions). The final state of 

the radiator will depend on the order in 

which the rules are evaluated 

The computed global 

measure will be 20.25 °C. 

The radiator will be 

turned on. 

The computed global 

measure will be 23.96 °C. 

No action will be taken. 

5.2. Scenario 2: Occupation Data Inferred from the Status of the Lights 

This scenario will help us illustrate the necessity of modeling another aspect of the uncertainty. In 

the previous scenario we have explained the importance of assessing the uncertainty in the taken 

measurements; this one will be centered in the uncertainty of the rule.  In this scenario we want to infer 

room occupation data based on the status of the lights. We will have two versions of this scenario with 

and without uncertainty. 

The first version is quite straightforward, without taking into account the outcome uncertainty. The 

rules that model the behavior will be: 

lightX type light, 
lightX location LaboratoryA 
lightX hasValue On 
-> 
LaboratoryA hasStatus peopleInside 

In this case, we assume that if the lights of the laboratory are ON, there is someone inside. But we 

do not take into account situations where the users get out leaving the lights on. Using the rule 

uncertainty we could model these situations. Assuming that after studying the habits of the users we 

have inferred that 90% of the time, when a light is on there is someone in the laboratory, then the 

resulting rule would be: 



Sensors 2012, 12  

 

 

4947

RULE CF 0.9 
lightX type light, 
lightX location LaboratoryA 
lightX hasValue On 
-> 
LaboratoryA hasStatus peopleInside 

Using the rule uncertainty we can better model the contextual information (in this case the 

information obtained after processing the raw data from the measurements). The result is a more 

reliable model of the smart environment that ascertains better its real status. 

5.3. Scenario 3: User Preferences for Temperature 

This final scenario will help us explain the importance of taking into account the human factor 

when modeling the context data. In our case we use vagueness to model the user perceptions and 

represent the vagueness using fuzzy sets. This scenario will be similar to the first one, but the 

temperature limits will be expressed using fuzzy facts. To show how the uncertainty and the vagueness 

interact it will be a FUZZY-CRISP simple rule with fuzzy uncertain input facts and a crisp output: 

 Input data: Fuzzified room temperature with an associated certainty factor (0.95 in this 

example). We assume that the fuzzification process is done accordingly to the previously 

captured user perceptions. 

 Output data: Crisp temperature value for the air conditioning system with a certainty factor 

determined using the third formula explained in Section 4.1. 

 Rule: FUZZY-CRISP simple rule with an associated certainty factor. 

The used rule will be: 

RULE CF 1 
LaboratoryA hasGlobalTemperature temperatureX 
temperatureX HOT 
-> 
airCoditioningX type AirConditioning 
airCoditioningX location LaboratoryA 
airCoditioningX temperature 22 

The first step will be to calculate the value of 	PሺF|Fᇱ ሻ (see Figure 8 for a graphical explanation) 

and with it the measure of necessity (N) [see formula (6)]: 

ܰሺܨఈ|ܨఈᇱሻ ൌ 1 െ 0.6 ൌ 0.4 (11) 

N is lower than 0.5, so the similarity (S) measure will be: 

ܵ ൌ ሺܰሺܨఈ|ܨఈᇱሻ  0.5ሻ ൈ ܲሺܨఈ|ܨఈᇱሻ ൌ ሺ0.4  0.5ሻ ൈ 0.9 ൌ 0.81 (12) 

With the similarity we can calculate the certainty factor of the outcome following formula (3): 

ܨܥ ൌ ܨܥ ൈ	ܨܥ ൈ ܵ ൌ 1 ൈ 0.95 ൈ 0.81 ൌ 0.76 (13) 

Using fuzzy sets we can model the vagueness present in the context data. This allows us to model 

user perceptions and preferences (e.g., “I like the water hot”, “Turn on the air conditioning system 

when the room is hot”) without the loss of expressiveness that we will have using only crisp values.  
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Figure 8. Possibility calculation. The straight line represents the expected fuzzy fact and 

the dotted line the provided fuzzy fact. 

 

6. Discussion and Future Work 

In this paper we have presented an ontology that models the ambiguity of smart environments and a 

flexible semantic context management system. Our context management system is able to process the 

uncertainty and vagueness of the contextual information. We have also described a data fusion 

mechanism applied in the case that multiple data sources for the same measurement exist in one room. 

In the previous section we have explained how the inclusion of these three elements (uncertainty, 

vagueness and data fusion) in context management systems provides several advantages: 

 Taking into account uncertainty and vagueness of the contextual information provides a more 

detailed picture of the current state of the user environment. This leads to more informed 

decisions of the Smart Environments. 

 Uncertainty allows us to ascertain the quality of the data, discarding those measurements below 

a certain threshold. The result of the more robust data model is the improvement of the system 

reliability. 

 Vagueness allows us to model user perceptions. This allows us to react better to their 

requirements. 

 The necessity of a data fusion process in context managing system can be clearly seem in those 

scenarios where the environment contains a large number of sensors. To tackle this problem we 

try to provide a unified picture of the environment to avoid conflicting behaviors. 

The created system has also some constraints. The most important one is the extra knowledge 

required from the system-deployers to model both aspects of the ambiguity (uncertainty and 

vagueness) when designing the domain specific applications. A broader knowledge of the domain is 

necessary in order to correctly create the rules according to the different certainty factors. System-

deployers are also required to model the fuzzy membership functions for the different measurements, 

but this same problem arises when a traditional fuzzy inference engine is used. Finally is necessary to 

ascertain the certainty factor of each sensor to be able to provide the certainty of the taken measures. If 

data about the sensor capabilities is not provided by the vendor, system-deployers would have to 

perform a testing phase prior to the system deployment to determine these capabilities. Despite of 

these drawbacks the proposed context managing system will provide system-deployers with a more 

truthful view of the situation of the modeled smart environment. The extra work taken when modeling 

the environment will lead to more informed decisions. This will help to avoid the unwanted behavior 
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discussed in the previous section, like performing actions using unreliable context information given 

by broken sensors or processing multiple measures of the same location. The result will be a more 

reliable context management process. 

As discussed in the related work section, our solution differs from previous ambiguity modeling 

approaches in that it combines both aspects of the ambiguity in one solution that also provides a 

semantic model of the environment. As a result we are able to model a broader range of situations and 

interactions, providing richer context information. It also differs from mediation-based approaches  

like [31] in that our system does not require any feedback from the user to identify and ascertain the 

uncertainty. Non-expert users will find difficult to evaluate the certainty of the raw data of the sensors. 

Instead of using a feedback process to appraise the certainty factor of more abstract context 

information, we have implemented a data fusion process that calculates the combined uncertainty of 

the measurements of a specific location and a reasoning process that infers the certainty factor of the 

data created from the combination of raw measurements. In any case, it would be interesting to add 

some kind of feedback from system-deployers or an automatic method to assess the validity of the 

calculated certainty factor in order to allow the system to learn and infer the correct context data. 

As future work, first we would like to create a mechanism that automatically assesses the certainty 

factor of a sensor comparing its data with the one provided by other sensors. This will allow us to 

identify and discard malfunctioning sensors. We would also like to include a feedback based learning 

mechanism that fine-tunes over the time the certainty and vagueness data of the modeled intelligent 

environment.  

Secondly we would like to develop an ecosystem of reasoners to distribute the inference process. 

We have already created an initial version of this inference sharing process [32] basing our approach 

on an agent based peer-to-peer architecture that divides the reasoning problem into smaller inference 

units according to the interests stated by each of the context consumers. Inference is no longer 

performed by a central reasoning engine, making it more computationally affordable and allowing us 

to combine less powerful devices to obtain a rich and expressive inference. We expect to achieve 

several objectives with this approach to context reasoning: 

1. Attain the temporal decoupling of the different inference units, allowing the inference to be 

done concurrently in various reasoning engines.  

2. Attain the spatial decoupling of the inference process, increasing the general robustness of the 

system and making it more fault-tolerant.  

3. Reduce the number of triples and rules that each reasoning engine has to manage, which will 

allow us to use more computationally constrained devices to carry out the inference process. 

Combining these characteristics with those already explained in this paper will result in a 

distributed, robust and fault-tolerant context management process that is able to process the ambiguity 

information and can be deployed in more computationally limited devices. 
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