BY T. PETRIE

INSTITUTE FOR DEFENSE ANALYSES, VON NEUMANN HALL, PRINCETON, NEW JERSEY

Communicated by David Blackwell, January 9, 1967

These papers* are statistically motivated; the content is mathematical. The motivation is this: Given is an $s \times s$ stochastic matrix $A = ((a_{ij})$ and an $s \times r$ stochastic matrix $B = ((b_{jk}))$ where A generates a stationary Markov process $\{X_i\}$ according to $a_{ij} = P[X_{i+1} = j | X_i = i]$ and B generates a process $\{Y_i\}$ described by $P[Y_t = k | X_t = j] = b_{jk}$, so if R is the set of integers 1, 2... r and $R^{\infty} = \prod_{t=1}^{\infty} R_t$, $R_t = R$ (a point Y ϵR^{∞} has coordinates Y_t), then the matrices A and B define a measure $P_{(A,B)}$ on R^{∞} , for $k_i \in R$

$$
P_{(A,B)}\{Y_1 = k_1, Y_2 = k_2 \dots Y_n = k_n\} = \sum_{\substack{S_1 \dots S_n \\ \mathbf{a}_0 = 1, i_1, i_2, \dots, i_n = 1}} a_{i_0} a_{i_0 i_1} b_{i_1 k_1} a_{i_1 i_2} b_{i_2 k_2} \dots a_{i_{n-1} i_n} b_{i_n k_n}
$$

where ${a_{i_0}}$ is the stationary absolute distribution for A. The resulting process $\{Y_t\}$ is called a probabilistic function of the Markov process $\{X_t\}$. Let Λ_1 be the space of s \times s ergodic stochastic matrices, Λ_2 the space of s \times r stochastic matrices and $\Pi = \Lambda_1 \times \Lambda_2$. The above associates to $\pi = (A, B) \in \Pi$ and a stationary vector a for A a measure P_{π} on R^{∞} .

The Problem.—Fix $\pi_0 \in \Pi$ and let a sample Y_1, Y_2, \ldots, Y_n be generated according to the distribution P_{π_0} . From the sample $Y \dots Y_n$ obtain an estimate $\Pi_n(Y)$ of π_0 so that $\Pi_n(Y) \to \pi_0$ a.e., P_{π_0} . Throughout this paper π_0 is fixed and π varies in H.

The Mathematics.--Part I (classification of equivalent processes) demonstrates that the problem has a solution in the following sense: Let $M[\pi_0] = {\pi \in \Pi} P_{\pi} =$ P_{π_0} as measures on R^{∞} . Clearly the points of $M[\pi_0]$ cannot be distinguished by any finite or infinite sample. The description of $M[\pi_0]$ is crucial in our study. Let \mathfrak{C}_s be the symmetric group of degree s operating on the integers 1 through s . $(\mathcal{S}_{\mathbf{s}} \text{ acts on } \Pi \text{ by } \sigma(A,B) = (\sigma A, \sigma B), (\sigma A)_{ij} = a_{\sigma(i),\sigma(j)} (\sigma B)_{jk} = b_{\sigma(j)k} \text{ for } \sigma \in \mathcal{S}_{\mathbf{s}}$. Observe that $P_{\sigma\tau} = P_{\tau}$ as measures on R^{∞} . The main result of part I is

THEOREM 1. There is an open subset Π_0 of Π of Euclidean measure 1 such that for $\pi_0 \in \Pi_0 M[\pi_0] = \mathfrak{S}_{s} \pi_0$, i.e., π_0 is distinguishable up to permutation by the measure $P_{\pi_0}(\mathbb{S}_{s}\pi_0 = {\sigma\pi_0}|\sigma \in \mathbb{S}_{s}).$

Part II (limit theorems and statistical analysis) extends and generalizes the results of reference 1. For each n and each $Y \in \mathbb{R}^{\infty}$ there is a function $H_n[\pi, Y]$ on Π defined by $H_n[\pi, Y] = \frac{1}{n} \log P_{\pi} \{ Y_1, Y_2, \ldots, Y_n \};$ thus, each $H_n[\pi, \cdot]$ is a random variable on the probability space (R^{∞},P_{π_0}) . The value $H_n[\pi, Y]$ is a function on II. These random variables hold the solution to our problem, as the following shows.

THEOREM 2. $\lim H_n[\pi, Y] = H_{\pi_0}(\pi)$ exists a.e., P_{π_0} .

THEOREM 3. $\overline{H}_{\pi_0}^{+\infty}(\pi)\leq H_{\pi_0}(\pi_0)$ and $H_{\pi_0}(\pi)=H_{\pi_0}(\pi_0)$ iff $\pi\in M[\pi_0].$ Define $\Pi_n(Y) = {\pi' \in \Pi | \pi' \text{ maximizes } H_n[\pi, Y]}$. THEOREM 4. $\Pi_n(Y) \to M[\pi_0]$ a.e., P_{π_0} .

Theorems ¹ through 4 theoretically solve our problem. Note in particular the importance of the function $H_{\pi_0}(\pi)$ in view of Theorems 1 and 3.

Part III (Morse theory) makes a further study of the function $H_{\pi_0}(\pi)$ for $\pi \in \Pi_{\delta}$

 $\{(A,B) \in \pi | a_{ij} \geq \delta, b_{jk} \geq \delta\}, \delta > 0$ and ties the theory together with the following theorem of reference 2: $\mathbb H$ a class of functions 3 on Π such that if $f \in \mathcal I$, there is a transformation $\tau_f: H \to H$ with the property that $f\tau_f(\pi) \geq f(\pi)$ and $f\tau_f(\pi) = f(\pi)$ iff π is a critical point of f. The class 3 contains each $H_n[\pi, Y]$; thus, a procedure which is naturally suggested for dealing with the problem is: Given $Y_1 \ldots Y_n$, let $f = H_n[\pi, Y]$ and take $\Pi^*(\pi, Y) = \lim_{k \to \infty} \tau f(\pi)$ for any $\pi \in \Pi_{\delta}$. (In great generality this limit exists; for complete validity let $\Pi^*(\pi,Y)$ be the accumulation points of

 $\{\tau_t^k(\pi)\}\$.) How good is this estimate of π_0 ? The main theorem of part III answers this with

THEOREM 5. Let $\pi_0 \in \Pi_0 \cap \Pi_{\delta}$. Hence π_0 an open set U_{π_0} containing $M[\pi_0]$ such that given $\epsilon > 0$, $\exists N(\epsilon) \supseteq P\{Y | \Pi^*(\pi', Y) \epsilon M[\pi, \epsilon] \} > 1 - \epsilon$ for $n > N(\epsilon)$, $\nabla \pi' \epsilon U_{\pi \nu}$ $(M[\pi_0,\epsilon])$ is the set of points of Π_{δ} whose Euclidean distance from some point of $M[\pi_0]$ is less than ϵ .)

The proof of Theorem 5 rests on a study of the critical points of $H_{\tau_0}(\pi)$, in particular,

THEOREM 6. $H_{\tau_0}(\pi)$ is an analytic function of the coordinates of π for $\pi \in \Pi_{\delta}$.

THEOREM 7. The critical point set $M'[\pi_0]$ of $H_{\pi_0}(\pi)$ (as a function of π) is an analytic variety, and the points of $M'[\pi_0]$ which are absolute maxima, i.e., the points of $M[\pi_0]$, are isolated critical points if $\pi_0 \in \Pi_0 \cap \Pi_{\delta}$.

Conjecture.—All critical points of $H_{\pi_0}(\pi)$ are nondegenerate for $\pi_0 \in \Pi_0 \cap \Pi_{\delta}$, and the critical points which are local maxima are precisely the elements of $M[\pi_0]$.

Corollary of Conjecture.—Theorem 5 holds for any π' ϵ Π_{δ} .

* Petrie, T., "Probabilistic functions of finite-state Markov chains: I. Classification of equivalent processes; II. Limit theorems and statistical analysis; III. Morse theory," to appear.

¹ Baum, L. E., and T. Petrie, "Statistical inference for probabilistic functions of finite-state Markov chains," Ann. Math. Stat., to appear.

² Baum, L. E., and J. A. Eagon, "An inequality with applications to statistical estimations for probabilistic functions of Markov processes and to a model for ecology," Bull. Am. Math. Soc., to appear.

³ Billingsley, Patrick, Statistical Inference for Markov Processes (Chicago, Illinois: University of Chicago Press, 1961).