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Olfactory sensory neurons expressing particular olfactory receptors project to specific reproducible locations within the bulb. The axonal
guidance cues that organize this precise projection pattern are only beginning to be identified. To aid in their identification and charac-
terization, we generated a transgenic zebrafish line, OR111-7:IRES:Gal4, in which a small subset of olfactory sensory neurons is labeled.
Most sensory neurons expressing the OR111-7 transgene project to a specific location within the bulb, the central zone protoglomerulus,
while a smaller number project to the lateral glomerulus 1 protoglomerulus. Inhibiting Netrin/DCC (deleted in colorectal cancer)
signaling perturbs the ability of OR111-7-expressing axons to enter the olfactory bulb and alters their patterns of termination
within the bulb. The Netrin receptor DCC is expressed in olfactory sensory neurons around the time that they elaborate their axons,
netrin1a is expressed near the medial-most margin of the olfactory bulb, and netrin1b is expressed within the ventral region of the
bulb. Loss of Netrin/DCC signaling components causes some OR111-7-expressing sensory axons to wander posteriorly after exiting
the olfactory pit, away from netrin-expressing areas in the bulb. OR111-7-expressing axons that enter the bulb target the central
zone less precisely than normal, spreading away from netrin-expressing regions. These pathfinding errors can be corrected by the
reexpression of DCC within OR111-7 transgene-expressing neurons in DCC morphant embryos. These findings implicate Netrins
as the only known attractants for olfactory sensory neurons, first drawing OR111-7-expressing axons into the bulb and then into
the ventromedially positioned central zone protoglomerulus.

Introduction
Olfactory sensory neurons in the olfactory epithelia of vertebrates
stochastically choose to express a single specific receptor from a
large repertoire of odorant receptors (ORs), thereby conferring a
distinct molecular and functional identity upon each neuron.
They project axons to the olfactory bulb where they synapse onto
second order neurons. The axons of sensory neurons expressing
the same OR converge into glomeruli that are located in repro-
ducible locations within the olfactory bulb. This pattern of con-

vergence into OR-specific glomeruli is essential for normal
olfactory perception (Sakano, 2010). Understanding how sen-
sory axons find their way to their appropriate glomeruli is a key
step in understanding how the olfactory system is assembled dur-
ing development and how it functions when mature.

A large body of evidence suggests that the olfactory receptors
themselves contribute to glomerulus formation and placement in
the mouse olfactory bulb (Mombaerts et al., 1996; Wang et al.,
1998; Imai et al., 2006). In addition, several canonical axonal
guidance cues and their receptors have also been shown to con-
tribute to sensory axon targeting in the bulb (Renzi et al., 2000;
Schwarting et al., 2000, 2004; Taniguchi et al., 2003; Cutforth et
al., 2003; Miyasaka et al., 2005; Cho et al., 2007; Takeuchi et al.,
2010). However, the precise sequence of cues that direct sensory
axons to their targets has not yet been defined. The potential
guidance roles of many candidate cues have not even been exam-
ined. In this study, we explored the role of Netrin/DCC (deleted
in colorectal cancer) signaling in olfactory sensory axon guid-
ance. Netrin1 was one of the first axonal guidance cues to be
identified (Hedgecock et al., 1990; Ishii et al., 1992), was the
founding member of a small family of guidance cues (Serafini et
al., 1994), and depending upon the receptors expressed by a re-
sponding axon, can act as either an attractant or a repellent
(Hong et al., 1999).

In this study we define a role for Netrins in the guidance of a
small group of olfactory sensory neurons that project to two spe-
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cific, identified locations in the olfactory bulb. We first generated
lines of transgenic zebrafish in which the odorant receptor
OR111-7 is expressed along with the transactivator Gal4. Gal4
expression in turn induced the expression of a fluorescent axonal
tracer. The highly specific projection pattern of these labeled ax-
ons allowed us to analyze the effects of knocking down or misex-
pressing candidate guidance receptors and ligands.

Here we show that OR111-7 transgene-expressing neurons
express the Netrin receptor DCC. Netrin1a is expressed medially
while netrin1b is detected ventrally in the bulb. Loss of Netrin/
DCC signaling induces ectopic projections of transgene-ex-
pressing axons both between the olfactory epithelium and the
bulb and within the bulb itself. We show that Netrins act directly
on olfactory sensory neurons. Our results are consistent with
Netrins acting as attractants for a subset of olfactory sensory ax-
ons, drawing them both medially and ventrally. Thus, for the first
time, Netrin/DCC signaling is shown to contribute to the initial
targeting of olfactory sensory axons and to be required for the
generation of a correct protoglomerular map in the olfactory
bulb.

Materials and Methods
Transgenic zebrafish lines. Tg(omp:lyn-RFP) and Tg(trpc2:gap-VENUS)-
transgenic lines (hereby referred to as OMP:RFP and TRPC2:Venus,
respectively) were obtained from the Yoshihara laboratory (Sato et al.,
2005). The UAS:DCC-transgenic line was generated using the full-length
DCC coding sequence with 7 of the first 27 base pairs mutated
(ATGGGaTGtGTaACaGGcGAcATcCGC) so that it was resistant to the
translation blocking morpholino we used in our experiments. This se-
quence was cloned into a Gateway middle clone, pME-dccm, and con-
firmed by full-length sequencing (Lim et al., 2011). The UAS:DCC
transgenesis clone was built using the Tol2 kit (Kwan et al., 2007) and
multisite Gateway (Invitrogen) recombination reactions. p5E-10xUAS,
pME-dccm, and p3E-pA were recombined into pDestTol2CG2, which
provided Tol2 transposon ends and a cmlc2:EGFP transgenesis marker.
Injection of this DNA construct and generation of the stable transgenic
line Tg(UAS:dccm; myl7:EGFP) zc79 was performed as described by
Bonkowsky et al. (2008).

The following constructs were cloned into the mini-Tol2 vector (Bal-
ciunas et al., 2006) and injected into single-celled zebrafish embryos
which were raised to adulthood (Fisher et al., 2006). Two or more inde-
pendent founders were obtained for all transgenic lines made with the
following constructs. (1) Tg(omp:GAL4), henceforth referred to as
OMP:Gal4: The 2.1 kb olfactory marker protein (OMP) promoter, ob-
tained from the Yoshihara laboratory (Sato et al., 2005), was cloned
upstream from a Gal4 coding sequence. (2) Tg(orR111-7:IRES:GAL4),
henceforth referred to as OR111-7: IRES:Gal4: We designed our trans-
genic approach based on studies that were pioneered in the mouse (Vas-
salli et al., 2002; Bozza et al., 2009). In our construct (depicted in Fig. 1),
OR111-7 expression is regulated by its endogenous promoter and the
E15-1 enhancer element which promotes odorant receptor expression
(Nishizumi et al., 2007). The entire 4 kb of genomic sequence between
the coding sequences of OR111-7 and its 5� upstream gene, OR111-8,
were included in the construct (111–5 5�). An IRES:Gal4 cassette was
inserted after the OR111-7 coding sequence. This was followed by 1 kb of
untranslated genomic sequence downstream from the OR111-7 coding
sequence (OR111-7 3�). (3) Tg(UAS:gap43-CITRINE), hereafter re-
ferred to as UAS:gap43-Citrine: Fourteen tandem UAS sequences were
used to drive the expression of a citrine fluorophore that was fused with
the first 20 amino acids of the GAP43 protein to promote axon labeling.

DCC mutant. A DCC mutant was isolated by an ENU-induced screen
(Granato et al., 1996), and mutant embryos of either sex were identified
using standard PCR genotyping (R. A. Jain and M. Granato, in preparation).

Immunohistochemistry. Three-day-old zebrafish larvae were fixed
overnight in 4% paraformaldehyde in 0.1 M phosphate buffer. Larvae
were treated with acetone for 20 min at �20°C to facilitate tissue per-
meabilization. Goat anti-GFP (1:100, Rockland Immunochemicals,

catalog #600 –101-215) and anti-goat IgG Alexa Fluor 488 (1:500; Invit-
rogen) were used to visualize GFP-positive neurons. Propidium iodide
staining was performed using the protocol of Brend and Holley (2009)
with the omission of the RNase treatment step. Larvae were mounted face
down or ventral side down to visualize projections along the dorsoventral
axis or anteroposterior axes respectively. Larvae were imaged using a
40� oil-immersion lens on an inverted Leica TSP2 confocal microscope.
Sections of 1 �m thickness were taken through the entire olfactory bulb.

Whole-mount fluorescent in situ hybridization. Antisense digoxigenin-
labeled RNA probes for DCC, netrin1a, or netrin1b were generated using
plasmids obtained from the Chien laboratory (Fricke and Chien, 2005;
Suli et al., 2006). In situ hybridization was performed as described previ-
ously (Chalasani et al., 2007). In situ signals were amplified using a
cyanine 5-coupled tyramide system (TSA Plus cyanine 5 System,
PerkinElmer, product number NEL745001KT). In situ hybridization was
followed by immunohistochemistry using goat anti-GFP (1:100, Rock-
land Immunochemicals, catalog #600-101-215) and anti-goat IgG Alexa
Fluor 488 (1:500; Invitrogen) to visualize axons in the context of RNA
expression. This was followed by propidium iodide staining (as above).
Processed larvae were mounted in the frontal or ventral orientation and
imaged using a 40� oil-immersion lens on an inverted confocal micro-
scope. Images were captured every micrometer through the entire extent
of the olfactory bulb.

Morpholino injections into zebrafish embryos. Morpholinos (MOs)
were obtained from Gene Tools. They were suspended in autoclaved
water at a final stock concentration of 5 mM (�41.5 ng/nl). Male and
female transgenic adult zebrafish were mated together to generate em-
bryos of either sex for morpholino injection. Morpholinos were injected
into the embryo yolk immediately after fertilization at the one cell stage.
Morpholino sequences were identical to those used by Suli et al. (2006).
Either DCC MO1, DCC MO2, netrin1a MO, or netrin1b MO (9 ng/
embryo) was injected along with 5 ng of p53 morpholino (Robu et al.,
2007). The p53 MO was routinely added to reduce cell death occurring as
a side effect of morpholino treatment. For experiments using subthresh-
old morpholino doses, we first injected 4 ng/embryo of either netrin1a or
netrin1b morpholino along with 5 ng of p53 morpholino. A subset of the
netrin morphants was immediately injected with 4 ng/embryo of DCC
MO1 along with 5 ng of p53 MO. Using the same injection needle, we
then injected previously uninjected embryos with DCC MO1 along with
5 ng of p53 MO.

Quantification of targeting errors. Larvae were processed for immuno-
histochemistry and imaged using confocal microscopy as described pre-
viously. The number of larval olfactory bulbs with axonal projections to
either individual protoglomeruli or non-protoglomerular regions (pos-
terior, ventral, midline, lateral, or anterior) were counted. Fisher’s exact
test was used to determine whether the control group was statistically
different from the experimental group. The graphs represent the percent-
age of larval olfactory bulbs with axonal projections to the specified
locations.

Results
Two general classes of olfactory sensory neurons project
to specific defined neuropilar regions in the olfactory bulb
The zebrafish olfactory epithelium contains two well character-
ized sensory neuron populations that can be defined based on
their position in the epithelium, their morphologies, and their
molecular characteristics (Sato et al., 2005; Hamdani and Døv-
ing, 2007). Ciliated olfactory sensory neurons have long den-
drites and are located deep within the olfactory epithelium. They
express classical main olfactory bulb-type odorant receptors
along with OMP (Celik et al., 2002; Sato et al., 2005). Microvil-
lous olfactory sensory neurons have shorter dendrites and are
located more superficially within the epithelium. These neurons
express V2R-type vomeronasal receptors and also the transient
receptor potential channel 2 (TRPC2). The axons of these two
classes of OMP- and TRPC2-expressing neurons project to non-
overlapping regions of the olfactory bulb (Sato et al., 2005).
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By 3 d postfertilization (3 dpf), OMP and TRPC2 projections
have coalesced into distinct protoglomeruli (Fig. 1A–D; Sato et
al., 2005). Protoglomeruli are specialized neuropilar regions
comprised of olfactory sensory axons and the dendrites of olfac-
tory bulb neurons (Li et al., 2005). Since they are the only acellu-
lar regions in the olfactory bulb, they can be demarcated using
cellular dyes such as BODIPY that label cells within the bulb while
leaving protoglomeruli unlabeled (Dynes and Ngai, 1998). Indi-
vidual protoglomeruli identified in this manner are stereotyped
and consistently recognizable between larvae. In this study, we
have used the protoglomerular nomenclature proposed by Dynes
and Ngai (1998).

We used propidium iodide instead of BODIPY to label cells
(presented in the blue color channel) and were able to identify 12
protoglomeruli as unstained regions in the olfactory bulb sur-
rounded by olfactory bulb cells (Fig. 1). Using OMP:RFP and

TRPC2:Venus double-transgenic animals in combination with
propidium iodide staining, we have identified the specific proto-
glomeruli that are targeted by either OMP- or TRPC2-expressing
axons in 3-d-old olfactory bulbs (Fig. 1D; schematized in Fig.
1A–C). OMP-expressing neurons (green) project to the central
zone (CZ), dorsal zone (DZ), and lateral glomerulus 3 (LG3). A
few OMP-expressing axons also innervate the medial glomeruli
1– 4 (MG1– 4). TRPC2-expressing neurons (red) target the olfac-
tory plexus, lateral glomeruli 1, 2, and 4 (LG1, LG2, LG4), and the
ventral posterior glomerulus. This pattern of targeting is repeat-
able from fish to fish, demonstrating that the axons of specific
subsets of olfactory neurons target particular protoglomeruli.
Aside from the small OMP projection, the MG protoglomeruli
are incompletely filled by axons labeled in the OMP and TRPC2
transgenics. It is possible that the MG protoglomeruli receive
additional axonal input from other less well characterized classes

Figure 1. Olfactory sensory axons converge into distinct identifiable protoglomeruli in the 3-d-old zebrafish olfactory bulb. A–C, E–G, I–K, Single confocal sections through a 3-d-old
olfactory bulb (frontal view). The absence of propidium iodide staining (blue) delineates distinct protoglomeruli in single sections along the anteroposterior axis. A–D, In OMP:RFP;
TRPC2:Venus double transgenics, OMP:RFP (green)-labeled sensory axons project to the central zone (CZ), DZ, MG, and LG3 protoglomeruli while TRPC2:Venus (red)-labeled axons project
to the ventral posterior glomerulus (VPG), olfactory plexus (OP), and LG1, LG2, and LG4 protoglomeruli. E–H, OR111-7:IRES:Gal4; UAS:Citrine-expressing axons primarily target the CZ
protoglomerulus. Some OR111-7 transgene-expressing axons project to the LG1 protoglomerulus. I–K, Larvae harboring OR111-7:IRES:Gal4, UAS:Citrine, and OMP:RFP transgenes are
shown. OR111-7:IRES:Gal4; UAS:Citrine-expressing axons that target the CZ protoglomerulus also express OMP. L, Average intensity projection of serial confocal optical sections through the
transgenic larva shown in I–K. Scale bar (in G): A–C, E–G, I–L, 50 �m.
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of olfactory sensory neurons, perhaps the recently identified
TAAR- and/or V1R-expressing neurons (Saraiva and Korsching,
2007; Hussain et al., 2009).

Construction of a transgenic line that expresses OR111-7
under the control of its flanking control sequences
The study of axonal targeting in the zebrafish system has been
impeded by an inability to visualize the axonal projections of
sensory neurons that express a single odorant receptor. Inspired
by the transgenic approach pioneered in the mouse by Vassalli et
al. (2002), we generated two independent transgenic zebrafish
lines in which a specific odorant receptor, OR111-7, is expressed
along with a reporter under the control of its flanking non-coding
sequences. We expected that transgene-expressing sensory neu-
rons would project axons to a single specific protoglomerulus.
We chose to study OR111-7 because its expression is detected
�30 h postfertilization (hpf) when some of the earliest axons are
extending into the olfactory bulb (Barth et al., 1997). Our con-
struct is schematized in Figure 1 (middle) and is composed of the
following elements: (1) the E15-1 enhancer element identified by
Nishizumi et al. (2007) that is near the OR111 gene family cluster
and acts in cis- to promote odorant receptor expression, (2) 4 kb
of genomic sequence upstream to the OR111-7 coding sequence
(OR 5�), (3) The OR111-7 coding sequence, (4) an IRES sequence
followed by a sequence encoding the transactivating factor Gal4-
VP16, and (5) 1 kb of genomic sequence located just 3� to the
OR111-7 coding region. This construct links olfactory receptor
expression to the simultaneous expression of the transactivating
factor Gal4. Two independent transgenic lines were made with
this construct and appear equivalent in their properties.

OR111-7:IRES:Gal4-transgenic fish were mated with fish con-
taining a UAS driven Gap43-Citrine transgene. The fluorescent
fusion protein is transported into axons and brightly labels ax-
onal projections. The progeny that contain both transgenes have
a small number of labeled cells that are restricted exclusively to
the olfactory epithelium. As would be expected, fluorescently la-
beled cells are also labeled in situ with a probe for OR111-7 (data
not shown). They elaborate axons that extend into the olfactory
bulb. OR111-7 transgene-expressing neurons are first detected
�26 –27 hpf. Surprisingly, we observe that the number of labeled
transgene-expressing neurons decreases with developmental age.
At 3 dpf, an average of �27 neurons in each olfactory pit (n � 30
pits) express the OR111-7 transgene, but only 13 neurons in 7 dpf
larvae (n � 14 pits), and 6 neurons in 9 dpf larvae (n � 4 pits)
express the transgene. The decline in transgene-expressing neu-
rons suggests that it may be inactivated over time. It is possible
that regulatory elements required for continued stable expression
of the odorant receptor are missing in our transgene construct.
Alternatively, the expression of endogenous odorant receptors
may suppress the expression of the transgenic odorant recep-
tor through processes analogous to those that limit odorant re-
ceptor expression to a single allele in each sensory neuron
(Shykind, 2005).

The axons of OR111-7 transgene-expressing olfactory sensory
neurons project to the central zone protoglomerulus and
sometimes to the LG1 protoglomerulus
At 3 dpf the majority of axons extending from transgene-
expressing neurons converge within the bulb upon the central
zone protoglomerulus (Fig. 1E–H). This is reminiscent of a pre-
vious study in which the OR111-7 coding sequence was replaced
with a YFP reporter in a BAC-transgenic animal and the resulting
YFP-labeled axons were shown to target a ventromedial area

likely to be the central zone protoglomerulus (Sato et al., 2007).
The central zone protoglomerulus is large and ventrally posi-
tioned with its longest axis oriented anterior-posteriorly. It is
thought to be composed of approximately five smaller “sub”-
protoglomeruli (Dynes and Ngai, 1998). At 3 dpf, OR111-7
transgene-expressing axons are not localized to any specific sub-
compartment within the central zone. Rather, axons are distrib-
uted and appear to terminate throughout the whole anterior to
posterior extent of the protoglomerulus. In �60% of larvae, a
small number of OR111-7 transgene-expressing axons project to
LG1. This was surprising since LG1 is normally innervated exclu-
sively by TRPC2- and V2R-type receptor-expressing axons (Fig.
1A–D). To examine whether OR111-7-expressing axons are cil-
iated olfactory sensory neurons, we crossed the OR111-7:Gal4;
UAS:Citrine transgenics with OMP:RFP transgenics and exam-
ined fish with all three transgenes. The Citrine and mRFP fluo-
rescent marker proteins are fused with membrane targeting
regions of the GAP43 and lyn-tyrosine kinase respectively. As a
result, these fluorescent reporter proteins are differentially dis-
tributed in neurons. Thus, while OR111-7-dependent Citrine ex-
pression colocalizes with OMP expression in axons, it is difficult
to observe overlapping expression in the cell bodies. We found
that all of the axons expressing both the OR111-7 and OMP trans-
genes project to the central zone, suggesting that these OR111-7-
expressing cells are ciliated olfactory sensory neurons (Fig. 1 I–L).
A small number of sensory neurons expressing the OR111-7
transgene but not the OMP:RFP transgene project to LG1 (Fig.
1E,F, I, J,L; see Figs. 4A,D,G,J, 5A,E,M, 7A, 8A,E, 10A). These
results show that the OR111-7 transgene is largely expressed in
OMP-type neurons that project exclusively to the central zone.
We speculate that the OR111-7-expressing neurons that extend
to LG1 express TRPC2 and belong to the V2R type of olfactory
sensory neurons.

Since the predominant projection of OR111-7 transgene-
expressing neurons is to the central zone, these transgenic fish are
a valuable tool for testing the roles of candidate guidance cues in
targeting axons to a consistent and identifiable location in the
developing olfactory bulb. In this study we assessed the contribu-
tion of Netrin/DCC signaling in properly targeting axons to the
central zone.

DCC is expressed in OMP- and OR111-7 transgene-expressing
olfactory sensory neurons
OMP:Gal4-expressing olfactory sensory axons (green, Fig. 2A,C)
have entered the primordial olfactory bulb in 24 hpf embryos. At
this time, there are on average of 24 labeled olfactory sensory
neurons in each olfactory pit and �75% of them express DCC
mRNA (red, arrowheads in Fig. 2C; N � 241 neurons from 8
olfactory pits). A high level of DCC expression is also detected in
olfactory bulb cells (Fig. 2A, arrow). The axons of OR111-7
transgene-expressing neurons (green, Fig. 2B,D) enter the bulb
by 27 hpf. At this age, there are on average 8 labeled olfactory
sensory neurons in each olfactory pit and �87% of them express
DCC mRNA (red, arrowheads in Fig. 2D; N � 87 neurons from
11 olfactory pits). At 53 hpf, when axons have already reached the
presumptive central zone, there are on average 23 Citrine-labeled
OR111-7 transgene-expressing neurons and �35% of them ex-
press DCC mRNA (data not shown, N � 232 neurons from 10
olfactory pits). These results indicate that the Netrin receptor
DCC is expressed in OMP-expressing sensory neurons and in
most OR111-7 transgene-expressing neurons early as their axons
are growing into the olfactory bulb.
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Netrin1a is expressed at the
telencephalic midline and netrin1b is
expressed ventrally in the olfactory
bulb
Netrin1a and netrin1b expression pat-
terns were examined at 27 hpf when olfac-
tory axons are extending into the bulb,
and at 53 hpf when they have navigated
into the central zone (Fig. 2). Netrin
mRNA expression was visualized along
the dorsoventral axis (in frontal views)
and along the anteroposterior axis (in
ventral views). At 27 and 53 hpf, netrin1a
mRNA (red) is expressed in a dense strip
of cells near the margin of the bulb at the
telencephalic midline (Fig. 2E,G, arrow)
all along the anteroposterior axis (Fig. 2 I,
arrow; data not shown). At 27 and 53 hpf,
netrin1b mRNA (red) is present more
ventrally in close proximity to where ol-
factory sensory axons enter the bulb
(green, arrows in Fig. 2F,H,J). These
findings suggest that these two secreted
Netrins are expressed at a time and in a
place where they could influence the tra-
jectories of olfactory sensory axons.

Sensory neurons expressing OMP, but
not TRPC2, display pathfinding errors
in DCC morphants
A majority of OMP:Gal4; UAS:Citrine
neurons express the DCC receptor by 24
hpf as axons extend into the olfactory
bulb. Fluorescent TRPC2:Venus neurons
are first detected �42 h postfertilization,
when axons have already entered the ol-
factory bulb. DCC mRNA is not detected
in TRPC2 neurons at this age (data not
shown). However, it is possible that DCC
is expressed earlier than 42 hpf in imma-
ture neurons that will express TRPC2

Figure 2. DCC mRNA is expressed in OR111-7 transgene-expressing neurons, netrin1a mRNA is expressed at the telencephalic
midline, and netrin1b mRNA is expressed ventrally within the olfactory bulb. A, B, Propidium iodide (blue) demarcates cells in the

4

olfactory epithelium in a frontal view of zebrafish embryos. A,
B, By 24 hpf, DCC mRNA (red) is expressed in both the olfactory
epithelium (boxed) and in the nascent olfactory bulb (white
arrow). The boxed regions are magnified in C and D. C, DCC
mRNA (red, arrowheads) is detected in OMP:Gal4; UAS:Citrine
(green) neurons at 24 hpf as axons first extend into the olfac-
tory bulb. B, D, At 27 hpf, most OR111-7 transgene-expressing
neurons (green) express DCC mRNA (red, arrowheads). E–J,
Maximum intensity projections of serial confocal optical sec-
tions through OMP:Gal4; UAS:Citrine-transgenic embryos.
E–H, In frontal views, dorsal is to the top and ventral toward
the bottom of the image. I, J, In ventral views, anterior is to the
top and posterior toward the bottom. E, G, I, At both 27 and 53
hpf, Netrin1a mRNA (red) is detected at the telencephalic
midline along the anteroposterior axis of the olfactory bulb
(arrows). F, H, J, Netrin1b mRNA is expressed within the
ventral region of the olfactory bulb (arrow), close to the
presumptive central zone at 27 and 53 hpf. The olfactory
bulb is outlined with dashed lines. Scale bar (in D): A, B, 50
�m, C, D, 25 �m. Scale bar (in H): E–H, 50 �m. Scale bar
(in J): I, J, 50 �m.
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Figure 3. Sensory neurons expressing OMP, but not TRPC2, display pathfinding errors in DCC morphants. A, B, D, E, Single confocal optical sections through 3-d-old OMP:Gal4; UAS:Citrine larvae.
G, H, J, K, Single confocal optical sections through 3-d-old TRPC2:Venus larvae. Propidium iodide (blue) allows the identification of distinct protoglomeruli. C, F, I, L, The percentages of olfactory bulbs
displaying a particular guidance error are shown. Embryos injected with DCC MO1 (purple bars) are compared with sibling control larvae (blue bars). Fisher’s exact test was used to test for statistical
significance, p � 0.05. Error bars indicate the SEM. A, C, In control larvae, OMP:Gal4; UAS:Citrine axons do not enter LG1 or LG2 (white arrowheads). B, C, Knocking down DCC levels causes axons to
inappropriately enter LG1 and LG2 (yellow arrowheads). D, F, Control OMP-expressing axons enter the olfactory bulb and do not misproject posteriorly into the anterior commissure (white
arrowhead). E, F, OMP:Gal4; UAS:Citrine axons mistarget posteriorly and inappropriately enter the anterior commissure (posterior, yellow arrowhead). G–L, In both controls and DCC morphants,
TRPC2-expressing axons innervate LG1, LG2, LG4, VPG and OP. No guidance errors are observed upon DCC inhibition. Scale bar (in K): A, B, D, E, G, H, J, K, 50 �m. CZ, Central zone; VPG, ventral
posterior glomerulus; OP, olfactory plexus; Other, axonal projections to non-protoglomerular regions of the olfactory bulb; Post, posterior; Vent, ventral; Mid, midline; Lat, lateral; Ant, anterior. These
individual categories are grouped together as Other in C and I.
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later. To examine whether DCC is re-
quired for proper axonal pathfinding, we
used a translation blocking morpholino,
DCC MO1, previously characterized by
Suli et al. (2006) to reduce DCC levels spe-
cifically in OMP- or TRPC2-expressing
neurons. Embryos obtained by mating
transgenic OMP:Gal4 zebrafish with UAS:
Citrine transgenics or TRPC2:Venus trans-
genics with wild-type animals were injected
with DCC MO1 at the single-cell stage.
Fluorescent larvae were fixed at 3 d post-
fertilization and processed for immuno-
histochemistry and propidium iodide
staining. Uninjected controls were com-
pared with morpholino-injected larvae
(morphants) in frontal views to examine
axonal projections along the dorsoventral
axis and in ventral views to observe axons
along the anteroposterior axis. Impor-
tantly, all protoglomeruli were easily dis-
cernable in 3-d-old DCC morphants and
had their characteristic morphologies in
their expected locations. Thus, the DCC
morpholino did not have a observable ef-
fect upon protoglomerular development.
Since it was impossible to quantify the
number of individual axons making a
particular targeting error (severity of the
phenotype), instead we quantified the
number of olfactory bulbs in which a spe-
cific axonal guidance error was observed
(penetrance of the phenotype). This is
done by assigning a score, 0 for absence
and 1 for the presence of a particular phe-
notype. We then counted the total num-
ber of bulbs with a given phenotype and
expressthisasapercentage(Fig.3C,F,I,L).Re-
ducing DCC levels in OMP-expressing neu-
rons causes their axons to inappropriately
target the lateral glomeruli LG1 and LG2
(Fig. 3A–C). In addition, in �70% of DCC
morphants, OMP-expressing axons ectopi-
cally project posteriorly, away from the
bulb, instead of entering it (Fig. 3D–F). In
contrast, TRPC2-expressing neurons have
no detectable axon guidance errors upon
DCC knockdown (Fig. 3G–L). These data
show that DCC-mediated signaling is spe-
cifically required for the pathfinding of ax-
ons of OMP but not TRPC2-expressing
olfactory neurons.

Figure 4. OR111-7 transgene-expressing sensory neurons misproject into dorsal protoglomeruli in DCC morphants and in a DCC
mutant. A–C, G–I, Single confocal optical sections through 3-d-old OR111-7:IRES:Gal4; UAS:Citrine larvae (frontal view). Dorsal is
to the top and the midline is to the right of the image. Propidium iodide (blue) allows the identification of distinct protoglomeruli.
D–F, J–L, Maximum intensity projections of serial confocal optical sections from the same larvae shown immediately above. M, N,
Schematics showing control OR111-7:IRES:Gal4; UAS:Citrine projections (green) and mistargeted axons (red) observed upon DCC
knockdown. The thickness of the red lines corresponds roughly to the penetrance of the indicated phenotypes. Netrin1a mRNA
(pink dots) is expressed at the telencephalic midline and netrin1b mRNA (blue dots) is expressed in the ventral bulb. Black circle,
central zone; Red circles, dorsal zone, medial glomeruli. A, D, G, J, M, In uninjected embryos, OR111-7 transgene-expressing axons
(green) target the central zone (CZ, white arrowhead) and LG1. A, M, Control OR111-7-transgenic axons do not enter DZ (white

4

arrowhead). B, E, C, F, N, In embryos injected with DCC MO1 or
in DCC mutants, OR111-7-transgenic axons target the CZ
(white arrowheads), but also inappropriately enter the DZ
(yellow arrowheads). G, M, Uninjected control OR111-7
transgene-expressing axons do not enter the MG (white ar-
rowhead). H, I, K, L, N, OR111-7 transgene-expressing axons
misproject into MG and DZ protoglomeruli in DCC morphants
and DCC mutant larvae (yellow arrowheads). Scale bar (in L):
A–L, 50 �m.
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Figure 5. Inhibiting netrin1b, but not netrin1a, phenocopies the dorsal protoglomerular misprojections of OR111-7-transgenic axons observed in DCC morphants. A–D, I–L, Single confocal
optical sections through 3-d-old OR111-7:IRES:Gal4; UAS:Citrine larvae (frontal view). Dorsal is to the top and midline to the right of the image. Propidium iodide (blue) delineates distinct
protoglomeruli in the olfactory bulb. E–H, M–P, Maximum intensity projections of serial confocal optical sections of the same larvae shown immediately above. Q–T, Schematics showing control
OR111-7:IRES:Gal4; UAS:Citrine projections (green) and mistargeted axons (red) observed upon reducing Netrin1a or Netrin1b levels. The thickness of the red lines corresponds roughly to the
penetrance of the indicated phenotypes. Netrin1a mRNA (pink dots) is expressed at the telencephalic midline and netrin1b (blue dots) is expressed in the ventral bulb. Black circle, central zone; Red
circles, dorsal zone, medial glomeruli. A, E, I, M, Q, Uninjected control OR111-7 transgene-expressing axons (green) project to the central zone (CZ, white arrowhead) and LG1. A, B, Q, R, OR111-7
transgene-expressing axons do not enter the DZ (white arrowhead) in uninjected control embryos or in netrin1a morphants. C, G, D, H, S, T, Knocking down netrin1b alone or netrin1a and netrin1b
together causes OR111-7 transgene-expressing axons to inappropriately enter the DZ (yellow arrowheads). I, J, Q, R, OR111-7:IRES:Gal4; UAS:Citrine axons do not enter the MG (white arrowheads)
in controls or in netrin1a morphants. K, O, L, P, S, T, Reducing the level of netrin1b alone or netrin1a and netrin1b together causes axonal misprojections into MG (yellow arrowheads). Scale bar (in
P): A–P, 50 �m.
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OR111-7 transgene-expressing sensory
neurons misproject into dorsal
protoglomeruli in DCC morphants and
in a DCC mutant
OR111-7-expressing neurons are a subset
of OMP-expressing neurons that express
the DCC receptor and primarily target a
single protoglomerulus. This allowed us
to investigate in detail the contribution of
DCC signaling toward axonal targeting
within the zebrafish olfactory bulb. We
first examined whether reducing DCC ex-
pression affects the protoglomerular tar-
geting of OR111-7 transgene-expressing
axons. Two separate approaches were
used to decrease DCC levels in vivo. First,
OR111-7:IRES:Gal4 and UAS:Citrine
transgenic fish were crossed together. The
resulting embryos were injected with one
of two different translation blocking mor-
pholinos, DCC MO1 or DCC MO2, both
of which were previously characterized by
Suli et al. (2006). OR111-7:IRES:Gal4;
UAS:Citrine double-transgenic larvae
with fluorescent olfactory sensory neu-
rons were identified and processed for im-
munohistochemistry and propidium
iodide staining. Axonal projections of un-
injected controls were compared with lar-
vae that were injected with morpholinos
(morphants). There was no difference in
the number of OR111-7-expressing neu-
rons in controls (an average of 27 � 1
neurons per olfactory pit, n � 30 pits) and
DCC morphants (an average of 26 � 2
neurons per olfactory pit, n � 21 pits)
suggesting that there was no nonspecific
cell death due to morpholino injections.
Second, we examined the projections of
OR111-7-transgenic axons in larvae with
a hypomorphic DCC allele that has a mis-
sense mutation in the DCC coding se-
quence (Granato et al., 1996; Jain and
Granato, in preparation). Adult OR111-7:
Gal4; UAS:Citrine double transgenics that
carried a single DCC mutant allele were
generated. Mating these transgenics with
their siblings generated fluorescent prog-
eny of which 25% were also homozygous
mutant for DCC. Genomic DNA was ex-
tracted from the tails of 3-d-old fluores-
cent larvae to test for the presence of the
DCC mutant allele while their heads were
processed for immunohistochemistry.
Axonal projections in individual mutant larvae were compared
with siblings that carried wild-type DCC alleles. In general, the
axonal guidance phenotypes observed in morphant and mutant
fish are similar but stronger in morphants. The guidance pheno-
types we observed are quantified in Figure 6A–C. We quantified
the number of olfactory bulbs in which a particular axonal guid-
ance error is detected (penetrance of the phenotype) because of
the difficulty in quantifying the number of individual axons mak-
ing a particular targeting error (severity of the phenotype). As

explained earlier, this is done by assigning a score, 0 for absence
and 1 for the presence of a particular phenotype. The total num-
ber of bulbs with a given phenotype are then counted and ex-
pressed as a percentage. The data are schematized in Figure
4M,N. Green axons indicate normal projections while red axons
represent targeting errors. The thickness of the red line corre-
sponds to the penetrance of the phenotype, and not its severity. In
both DCC morphants and DCC mutant larvae, axons of OR111-7
transgene-expressing axons misproject into the DZ and MG

Figure 6. Quantification of protoglomerular targeting errors observed upon knocking down DCC, Netrin1a, Netrin1b, or
both Netrins together. A–G, The percentage of embryos with OR111-7:IRES:Gal4 axonal projections into the specified
protoglomeruli is shown. Error bars indicate the SEM. A–C, Embryos injected with DCC MO1, DCC MO2, or DCC mutant larvae
(purple bars) are compared with sibling control larvae (blue bars). D–F, Embryos injected with netrin1a MO, netrin1b MO,
or netrin1a and netrin1b MOs together (purple bars) are compared with uninjected control siblings (blue bars). G, The
axonal projections of uninjected controls (white bars), subthreshold netrin1b morphants (blue bars), and subthreshold DCC
morphants (green bars); are compared with morphants injected with subthreshold doses of both netrin1b and DCC mor-
pholinos together (red bars). A–C, The percentages of larval olfactory bulbs with OR111-7-transgenic axonal projections to
DZ and MG (boxed) significantly increase upon DCC knockdown using DCC MO1, DCC MO2, or in the DCC mutant. DCC MO1
or MO2 morphants also show increased misprojections into LG2 and LG3, while DCC mutant larvae do not have misprojec-
tions into any lateral protoglomeruli. D–F, OR111-7-transgenic axons inappropriately enter DZ and MG at a statistically
higher rate in netrin1b and in netrin1a�netrin1b morphants, but not netrin1a morphants. Inhibiting netrin1b alone or
netrin1a and netrin1b together also causes increased axonal projections to the LG3. G, Embryos injected with subthreshold
doses of both netrin1b and DCC morpholinos display increased misprojections into DZ and MG, while embryos injected with
subthreshold doses of either netrin1b or DCC morpholino alone do not misproject dorsally. A, B, D–F, Inhibiting DCC,
netrin1a, netrin1b, or both netrins together causes increased non-protoglomerular misprojections of OR111-7-transgenic
axons (Other, described in detail in Figs. 7–9). Fisher’s exact test was used to test for statistical significance, p � 0.05. CZ,
Central zone; VPG, ventral posterior glomerulus; Other, axonal projections to non-protoglomerular regions of the olfactory bulb.
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protoglomeruli (Fig. 4A–F,G–L,M,N; quantified in Fig. 6A–C).
These errors were incompletely penetrant, but consistent in all
three experimental conditions. Projections to dorsal protoglom-
eruli are rare in control larvae. Additionally, DCC MO1 or MO2
morphants also show increased axonal misprojections into the
lateral glomeruli LG2 and LG3 (see Fig. 6A,B). Since we observed
similar misprojections using two different morpholinos to DCC
and confirmed dorsal misprojections in the DCC mutant, we are
confident that these errors are not caused by off target effects of
the morpholinos or undefined genetic variation in the mutant
fish.

OR111-7 transgene-expressing sensory neurons misproject
into dorsal protoglomeruli in netrin1b morphants
We next tested whether decreasing levels of the likely ligands of
the DCC receptor, netrin1a or netrin1b, phenocopy the targeting
errors induced in DCC knockdown fish. Netrin1a or netrin1b
were targeted with morpholinos previously characterized by Suli
et al. (2006). Knockdown of netrin1b alone induces axonal mis-
projections of OR111-7 transgene-expressing neurons into both
the DZ protoglomerulus (Fig. 5A,C,E,G,Q,S; quantified in Fig.
6E), and the MG protoglomerulus (Fig. 5 I,K,M,O,Q,S; quanti-
fied in Fig. 6E). This observation recapitulates the finding that

mistargeting to these more dorsal proto-
glomeruli is greatly enhanced when DCC
expression is reduced. To further examine
the interaction between netrin1b and
DCC, we injected “subthreshold” doses of
netrin1b and DCC morpholinos (Fig.
6G). Subthreshold knockdown of either
netrin1b or DCC does not induce signifi-
cant misprojections to the DZ or MG
protoglomeruli. However, subthreshold
doses of both netrin1b and DCC morpho-
linos together recapitulates the dorsal
misprojections observed upon severely
knocking down either netrin1b or DCC
alone. In contrast, knockdown of netrin1a
did not induce any significant axonal mis-
targeting of OR111-7 transgene-expressing
neurons to any protoglomeruli (Fig.
5A,B,E,F,I,J,M,N,Q,R; quantified in Fig.
6D). Knockdown of both netrin1a and
netrin1b induced the same protoglomerular
mistargeting as netrin1b knockdown alone
(Fig. 5A,D,E,H,I,L,M,P,Q,T; quantified in
Fig. 6F). We presume that the netrin1a
morpholino is at least partially effective
since its knockdown causes other guidance
errors (see Fig. 9D; Fig. 8A,B,E,F,I-
,J,M,N). These data suggest that netrin1b
works together with DCC to help target the
axons of OR111-7 transgene-expressing ax-
ons ventrally.

Netrin/DCC signaling contributes to
the entry of olfactory sensory axons
into the olfactory bulb
In addition to mistargeting of protoglom-
eruli by the axons of OR111-7 transgene-
expressing neurons in DCC and netrin1b
knockdown larvae, we also observed er-
rors in transgene-labeled axon trajectories

between the olfactory epithelium and the bulb. Normally, olfac-
tory axons exit the epithelium together in a tight bundle and
traverse the short distance between the epithelium and the bulb
by the most direct route. In contrast, in a majority of DCC MO1-
or DCC MO2-treated larvae, the axons of at least some OR111-7
transgene-expressing neurons project posteriorly and away from
the olfactory bulb (Fig. 7B; see Fig. 9A,B, posterior category).
Even in these animals, however, the majority of labeled sensory
axons enter the bulb normally where they make the targeting
errors described above. The same posterior misprojections be-
tween the olfactory epithelium and the bulb are observed at a
much lower but still statistically significant rate in DCC mutant
fish (Fig. 7C; see Fig. 9C, posterior category). Additional non-
protoglomerular misprojections are detected in DCC knock-
down fish including small numbers of axons extending along the
lateral-most margin of the bulb (Figs. 4N, 7E,F,H; see Fig. 9A–C,
lateral category). Notably, the protoglomerular and non-
protoglomerular errors quantified in Figures 6 and 9 are spread
out throughout the whole population of analyzed olfactory bulbs.
There is no apparent correlation between separate phenotypes,
suggesting that they do not cluster together in any pattern that we
could detect. Overall, the axons of a larger number of OR111-7
transgene-expressing neurons end in a variety of locations out-

Figure 7. DCC signaling helps OR111-7 transgene-expressing axons enter the olfactory bulb and prevents non-
protoglomerular mistargeting within the bulb. A–C, Maximum intensity projections of serial confocal optical sections of
3-d-old larvae (ventral view). Anterior is toward the top and the midline to the right of the image. The olfactory bulb is
outlined with dashed lines. G, H, Schematics showing control OR111-7:IRES:Gal4; UAS:Citrine projections (green) and
mistargeted axons (red) observed upon inhibiting DCC. The thickness of the red lines corresponds roughly to the penetrance
of the indicated phenotypes. Netrin1a mRNA (pink dots) is expressed at the telencephalic midline and netrin1b mRNA (blue
dots) is expressed in the ventral bulb. A, G, OR111-7 transgene-expressing axons (green) primarily target the central zone
(CZ, white arrowhead) and LG1. B, C, H, In DCC MO1 morphants and in the DCC mutant, some OR111-7 transgene-
expressing axons extend posteriorly away from the olfactory bulb and do not enter it (posterior, yellow arrowhead). D–F,
Single confocal optical sections through frontally mounted 3-d-old OR111-7:IRES:Gal4; UAS:Citrine larvae. Propidium
iodide (blue) delineates distinct protoglomeruli in the olfactory bulb. D, OR111-7:IRES:Gal4; UAS:Citrine axons are detected
in the central zone (CZ, white arrowhead). E, F, Reducing DCC levels via DCC MO1 morpholino or in the hypomorphic DCC
mutant causes some OR111-7-transgenic axons to mistarget toward the lateral border of the olfactory bulb posterior to the
LG1 protoglomerulus (lateral, yellow arrowhead, schematized in Fig. 3M,N). Scale bar (in F): A–F, 50 �m.
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side protoglomeruli in DCC knockdown as compared with nor-
mal larvae.

Very similar results are obtained in larvae injected with
netrin1a or netrin1b morpholinos, or both morpholinos to-
gether. Frequently the axons of OR111-7 transgene-expressing
neurons were observed to turn posteriorly away from the bulb
after exiting the olfactory epithelium (Figs. 8A–D,M–P, 9D–F,
posterior category). While the penetrance of posterior misprojec-

tions is greater in netrin1a morphants (59%, Fig. 9D) compared
with netrin1b morphants (30%, Fig. 9E), the severity of posterior
misprojections is greater in netrin1b morphants and the pheno-
type ranges from that shown in Figure 8C to the one in 8G.
Netrin1a or Netrin1b knockdown is also observed to induce ec-
topic anterior trajectories of transgene-labeled axons (Figs. 8E–
G,M–O, 9D,E, anterior category). Treatment of embryos with
netrin1a or with both netrin1a and netrin1b morpholinos to-

Figure 8. Netrin1a and netrin1b contribute to the proper pathfinding of OR111-7-transgenic axons into and within the olfactory bulb. A–H, Maximum intensity projections of serial confocal
optical sections of 3-d-old larvae (ventral view). Anterior is to the top and the midline is to the right. The olfactory bulb is outlined with dashed lines. M–P, Schematics showing control
OR111-7:IRES:Gal4; UAS:Citrine projections (green) and mistargeted axons (red) observed upon inhibiting netrin1a, netrin1b or netrin1a and netrin1b together. The thickness of the red lines
corresponds roughly to the penetrance of the indicated phenotypes. Netrin1a mRNA (pink dots) is expressed at the telencephalic midline and netrin1b (blue dots) is expressed in the ventral bulb. A,
E, M, OR111-7:IRES:Gal4; UAS:Citrine axons (green) project to the central zone (CZ, white arrowhead) and LG1. B–D, N–P, Some OR111-7-transgenic axons misproject posteriorly (posterior, yellow
arrowheads) rather than entering the olfactory bulb when Netrin1a, Netrin1b, or both Netrin1a and Netrin1b levels are reduced. F–H, N–P, OR111-7:IRES:Gal4; UAS:Citrine axons also inappropri-
ately stray anteriorly (anterior, yellow arrowheads) in netrin1a, netrin1b, or netrin1 and netrin1b double morphants. I–L, Single confocal optical sections of 3-d-old zebrafish larvae (frontal view).
Dorsal is toward the top of the image. Propidium iodide (blue) labels olfactory bulb cells and allows identification of distinct protoglomeruli. I, OR111-7 transgene-expressing axons are observed in
the central zone (CZ, white arrowhead) in uninjected Control larvae. J, L, Reducing Netrin1a levels or Netrin1a and Netrin1b levels together causes ventral mistargeting of OR111-7 transgene-
expressing axons (ventral, yellow arrowhead, schematized in Fig. 5R,T). Scale bar (in L): A–L, 50 �m.
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gether induce ventral misprojections of transgene-labeled axons
(Figs. 5Q,R,T, 8 I, J,L, 9D,F, ventral category). The netrin1a and
netrin1b morpholinos together induce an even higher rate of
ectopic ventral, lateral, and anterior misprojections than either
morpholino alone (Figs. 8D,H,L,P, 9D–F). The parallel findings
that both DCC and netrin knockdown induce similar misguid-
ance effects supports a role for Netrin/DCC signaling in the ax-
onal pathfinding of OR111-7 transgene-expressing sensory
neurons. To examine the genetic interactions between DCC and
the netrins in greater detail, we injected the individual morpho-

linos at subthreshold doses. Subthreshold
knockdown of either netrin1a or DCC in-
dividually does not induce posterior, lat-
eral, or anterior misprojections (Fig. 9G).
However, embryos injected with sub-
threshold doses of both netrin1a and DCC
morpholinos display increased posterior,
lateral, and anterior targeting errors. Sim-
ilarly, subthreshold knockdown of
netrin1b or DCC does not cause posterior
misprojections, but embryos in which
both netrin1b and DCC are reduced at
subthreshold levels exhibit increased pos-
terior misprojections (data not shown).
These data show that netrins acting via the
DCC receptor guide axons into and
within the larval zebrafish olfactory bulb.

Expression of DCC in
OR111-7-expressing neurons
corrects mistargeting induced by
DCC knockdown
DCC is expressed in the olfactory epithe-
lium, including most of the OR111-7
transgene-expressing subpopulation, and
also in the olfactory bulb. In principle, ne-
trin or DCC knockdown could affect sen-
sory axon pathfinding either through a
direct action on sensory axons them-
selves, or indirectly by influencing the de-
velopment of netrin-sensitive cells within
the bulb. To determine whether the ax-
onal pathfinding defects we observed
upon DCC knockdown were cell-auto-
nomous to the OR111-7 transgene-ex-
pressing sensory neurons, we sought to
increase DCC levels within this subpopu-
lation in DCC morphants using a UAS:
DCC-transgenic line (Lim et al., 2011).
The UAS-driven DCC gene was modified
so that it cannot be knocked down by the
translation blocking DCC morpholino
that we used in this study (See Materials
and Methods). The UAS:DCC-transgenic
construct contains a cardiac myosin light
chain2 (cmlc2) promoter driving expres-
sion of mCherry. Thus, the presence of the
UAS:DCC transgene was detected by se-
lective red fluorescence in cardiac cells.
OR111-7:IRES:Gal4;UAS:Citrine double
transgenics were crossed to the UAS:DCC
transgenic and injected with DCC MO1.

This generated two sets of larvae with
fluorescently labeled olfactory sensory neurons: a set that over-
expressed DCC in OR111-7 transgene- and Citrine-expressing
neurons and a set that did not express DCC. Within each set,
larvae were further subdivided into those injected with DCC
morpholino at the single-cell stage or those that were not. Alto-
gether there were a total of four sets of larvae: uninjected or
morpholino-injected larvae that either overexpressed just Citrine
or DCC and Citrine together. Expression of Citrine or DCC was
confined exclusively to OR111-7 transgene-expressing neurons.
We compared the axonal trajectories of uninjected fish that did

Figure 9. Quantification of non-protoglomerular targeting errors observed upon knocking down DCC, Netrin1a, Netrin1b, or
both Netrins together. A–G, The percentages of larval olfactory bulbs in which OR111-7 transgene-expressing axons display the
specified targeting errors are quantified. Error bars show the SEM. A–C, DCC MO1 morphants, DCC MO2 morphants, or DCC mutants
(purple bars) are compared with control siblings (blue bars). D–F, Embryos injected with netrin1a MO, netrin1b MO, or netrin1a
and netrin1b MOs together (purple bars) are compared with uninjected control siblings (blue bars). G, The axonal projections of
uninjected controls (white bars), subthreshold netrin1b morphants (blue bars), and subthreshold DCC morphants (green bars) are
compared with morphants injected with subthreshold doses of both netrin1b and DCC morpholinos together (red bars). A–F, The
proportion of larvae with posterior misprojections (boxed) increases in DCC MO1, DCC MO2, netrin1a, netrin1b, and netrin1a �
netrin1b morphants, as well as in DCC mutant larvae. A–C, D, F, Reducing the levels of DCC, netrin1a or netrin1a together with
netrin1b increases the number of larvae in which OR111-7 transgene-expressing axons make lateral pathfinding errors. A, B, D, F,
DCC MO1, DCC MO2, netrin1a, and netrin1a � netrin1b morphants display increased ventral misprojections. B, D–F, Larvae
injected with DCC MO2, netrin1a, netrin1b, or netrin1a and netrin1b morpholinos together display increased anterior misprojec-
tions. G, Embryos injected with subthreshold doses of netrin1a and DCC morpholinos together display increased posterior, lateral,
and anterior misprojections; but embryos injected with subthreshold doses of either netrin1a or DCC morpholino alone do not
exhibit these guidance errors at more than control levels. Fisher’s exact test was used to test for statistical significance, p � 0.05.
Post, Posterior; Vent, ventral; Mid, midline; Lat, lateral; Ant, anterior. These individual categories were previously grouped to-
gether as Other in Figure 6.
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Figure 10. Expression of DCC in OR111-7-expressing neurons corrects mistargeting induced by DCC knockdown. A–D, Maximum intensity projections of serial confocal optical sections of 3-d-old
larvae (ventral view). E–L, Single confocal optical sections through 3-d-old OR111-7 transgene-expressing larvae (frontal view). Propidium iodide (blue) labels olfactory bulb cells and allows
identification of distinct protoglomeruli. M–P, Maximum intensity projections of serial confocal optical sections of the same larvae shown immediately above. Q, R, The percentages of larval
olfactory bulbs with the specified axonal misprojections are shown. Bars are color coded based on the larval groups indicated at the top of the figure. A, E, I, M, White bars in Q, R, Three-day-old control
uninjected OR111-7:IRES:Gal4; UAS:Citrine larvae without the UAS:DCC transgene. B, F, J, N, Blue bars in Q, R, Three-day-old OR111-7:IRES:Gal4; UAS:Citrine larvae without (Figure legend continues.)
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not express the DCC transgene (Fig. 10A,E, I,M, white bars in
Q,R), fish injected with a DCC morpholino that did not express
the DCC transgene (Fig. 10B,F, J,N, blue bars in Q,R), uninjected
fish that expressed the DCC transgene (Fig. 10C,G,K,O, green
bars in Q,R), and fish injected with a DCC morpholino that ex-
pressed the DCC transgene (Fig. 10D,H,L,P, red bars in Q,R). As
expected, knocking down DCC levels induced posterior mispro-
jections (Fig. 10A,B, blue Post bar in Q), and also dorsal mispro-
jections to the DZ and MG protoglomeruli (Fig. 10 I, J,M,N, blue
DZ and MG bars in R). These morpholino-induced errors were
partially corrected to a significant degree in larvae that over-
expressed DCC only in the OR111-7 transgene-expressing
neurons (Fig. 10 D, H, L, P, red Post bar in Q, red DZ and MG
bars in R). Overexpression of DCC in the OR111-7-expressing
neurons of non-morpholino-treated fish had no significant
effect on these particular errors. But interestingly, overexpres-
sion of DCC in OR111-7-expressing neurons did increase the
chance that their axons would misproject ventrally and to the
midline (Fig. 10G,O, green Vent and Mid bars in Q). These
results are consistent with a requirement for DCC in the subset
of olfactory sensory neurons that express the OR111-7 trans-
gene for correct targeting of the central zone protoglomerulus.
They also suggest that the overexpression of DCC in the same
cells can drive their axons closer to the midline and ventral
margin of the olfactory bulb where netrins are expressed, fur-
ther supporting the idea that Netrins act as attractants for
these axons.

Discussion
Vertebrate olfactory sensory neurons choose to express a single
odorant receptor from a large genomic repertoire. This choice of
odorant receptor determines the odorant specificity of the neu-
ron. The axons of neurons that express a particular odorant re-
ceptor reproducibly target selected glomeruli in the olfactory
bulb. Odorants evoke a characteristic activation pattern of one or
more specific glomeruli, revealing an underlying coding mecha-
nism for odorants in the primary olfactory circuit (Friedrich and
Korsching, 1997, 1998; Rubin and Katz., 1999; Belluscio and
Katz., 2001). The formation of an accurate map of olfactory sen-
sory axons into reproducibly located glomeruli in the bulb re-
quires that sensory neurons expressing particular receptors be
guided to specific locations in the bulb. However, they do not
converge into glomeruli immediately, but first form protoglo-

merular condensations from which individual glomeruli segre-
gate over time.

Protoglomeruli have been observed not only in zebrafish (Li et
al., 2005), but also in insects and rodents (Oland et al., 1990;
Treloar et al., 1999; Conzelmann et al., 2001). There are 12 dis-
tinct, identifiable protoglomeruli in the 3-d-old zebrafish olfac-
tory bulb (Dynes and Ngai, 1998). They are innervated by at least
two classes of olfactory sensory neurons in the olfactory epithe-
lium: ciliated neurons expressing classical ORs along with OMP,
and microvillous neurons expressing V2R-type vomeronasal re-
ceptors along with TRPC2. Selective expression of fluorophores
directed by OMP or TRPC2 promoters in transgenic animals
showed that OMP and TRPC2 axons target distinct protoglom-
eruli in the bulb (Sato et al., 2005). Our work extends these find-
ings by defining the particular protoglomeruli innervated by
these two general classes of sensory axons. The OMP-expressing
class of sensory axons terminate in the central zone, dorsal zone,
lateral protoglomerulus 3, and a very few axons in MG1– 4 pro-
toglomeruli. TRPC2-expressing axons terminate in the olfactory
plexus, lateral protoglomeruli 1, 2 and 4; and the ventroposterior
protoglomerulus. Our work further suggests that there is at least
one additional class of sensory neurons that express neither OMP
nor TRPC2. Since the medial protoglomeruli are only very
sparsely innervated by either of these two classes, it is attractive to
hypothesize that they are innervated by olfactory sensory neurons
expressing the recently discovered TAAR and/or V1R class of
receptors (Saraiva and Korsching, 2007; Hussain et al., 2009).

Our results reveal that the Netrin receptor DCC is required
cell autonomously within a small subpopulation of sensory neu-
rons for their axons to correctly target the central zone proto-
glomerulus. Reducing the expression or activity of DCC,
Netrin1a or Netrin1b interferes with the ability of axons from the
OR111-7 transgene-expressing subpopulation of neurons to en-
ter the olfactory bulb and to converge upon the central zone
protoglomerulus. These findings are consistent with an attractive
function for Netrin1a expressed at the midline and Netrin1b ex-
pressed ventrally where sensory axons enter the bulb. Reducing
DCC or Netrin1b levels induces the axons of transgene-
expressing neurons that enter the bulb to mistarget dorsal proto-
glomeruli. These data suggest that Netrin1b expressed in the
ventral portion of the bulb helps draw these axons into the central
zone protoglomerulus and prevents them from wandering into
more dorsal protoglomeruli. Altogether, we propose that a com-
bination of midline Netrin1a and ventral Netrin1b signaling
helps to guide a specific population of axons into the bulb and to
terminate within the central zone protoglomerulus.

Netrin/DCC signaling has been shown to mediate attractive
effects in a wide variety of axons in invertebrates (Hedgecock et
al., 1990; Kolodziej et al., 1996; Mitchell et al., 1996), in vertebrate
central commissures (Kennedy et al., 1994; Serafini et al., 1996;
Fazeli et al., 1997), and in noncommissural projections in verte-
brates including corticofugal and thalamocortical axons (Métin
et al., 1997; Braisted et al., 2000). DCC has been detected on rat
olfactory axons that are extending toward the telencephalon and
Netrin1 is present along their trajectory, suggesting that Netrin/
DCC signaling could potentially play a role in early olfactory map
formation in rodents (Astic et al., 2002). Netrins can bind and act
through other alternative receptors. Unc-5, in combination with
DCC or on its own, mediates a repulsive response to netrins
(Hong et al., 1999). In principle, a repellent reaction to netrin
expressed at the midline in zebrafish could help guide axons that
terminate in more lateral protoglomeruli. There are three known
Unc5 genes in zebrafish: Unc5a, Unc5b, and Unc5c. We did not

4

(Figure legend continued.) UAS:DCC were injected with DCC MO1. C, G, K, O, Green bars in
Q, R, Three-day-old uninjected OR111-7:IRES:Gal4; UAS:Citrine larvae that also carry the
UAS:DCC transgene. D, H, L, P, Red bars in Q, R, Three-day-old OR111-7:IRES:Gal4; UAS:
Citrine larvae carrying UAS:DCC were injected with DCC MO1 (Rescue condition). B, Blue
Post bar in Q, Reducing DCC levels causes posterior misprojections. A, C, White and green
Post bars in Q, Posterior targeting errors are not observed in the absence of DCC MO.
OR111-7-transgenic axons (green) are present in the central zone (CZ, white arrowhead)
and in the lateral glomerulus 1 (LG1, white arrowhead). D, Red Post bar in Q, Posterior
targeting errors in DCC morphants are reduced in OR111-7 axons also expressing the
UAS:DCC transgene. J, N, Blue DZ bar in R, Reducing DCC levels causes OR111-7-transgenic
neurons to inappropriately enter the DZ (yellow arrowhead). I, M, K, O, White and green
DZ bars in R, OR111-7 transgene-expressing axons do not enter DZ in the absence of DCC
morpholino regardless of whether the UAS:DCC transgene is present. L, P, Red DZ bar in R,
Axonal mistargeting into DZ is reduced in DCC morphants that contain the morpholino-
resistant UAS:DCC transgene. Green Vent and Mid bars in Q, Increased ventral and midline
misprojections are observed in OR111-7-transgenic larvae that express the UAS:DCC trans-
gene. Fisher’s exact test was used to test for statistical significance, p � 0.05. Scale bar (in
P): A–P, 50 �m. Post, Posterior; Vent, ventral; Mid, midline; CZ, central zone.
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detect any of their mRNAs by in situ hybridization in the devel-
oping olfactory epithelium. Unc5a and Unc5c mRNA were, how-
ever, detected in the developing olfactory bulb along with DCC
mRNA. It is therefore unlikely that Unc5 mediated repellent re-
sponses to netrins guide olfactory sensory axons within the bulb,
but it remains a possibility that repellent netrin signaling contrib-
utes to the protoglomerular targeting of mitral cell dendrites.
Neogenin is a DCC-like receptor that also binds Netrin1, albeit an
order of magnitude less potently than its other ligand, repulsive
guidance molecule RGM (Rajagopalan et al., 2004). We found
that neogenin1 mRNA is detected in 27 hpf OMP- and OR111-
7-expressing neurons by in situ hybridization. It is possible that
Neogenin1 acts in concert with DCC to attract olfactory sensory
axons to Netrin1-expressing areas. Neogenin1 morphants have
defects in neural tube formation and neuronal differentiation,
thus impeding the analysis of its role in olfactory axonal guidance
(Mawdsley et al., 2004). The requirement for Neogenin1 in ax-
onal targeting could be tested in future studies by expressing a
dominant-negative Neogenin1 receptor in subpopulations of ol-
factory sensory neurons.

Several other traditional guidance cues have been impli-
cated in organizing the mouse glomerular map. The repulsive
cues Slit1 and Slit3 are present in the ventral olfactory bulb in
mice while OSNs in the epithelium express the Slit receptor,
Robo2. In both Robo2 mutant mice and slit1 mutant mice, a
subset of OSNs that normally targets the dorsal region of the
bulb misprojects ventrally and forms ectopic glomeruli (Cho
et al., 2007). Some olfactory glomeruli in Robo2 mutant ze-
brafish are either absent or ectopically located. This phenotype
has been ascribed to global protoglomerular disruption in
Robo2 mutant larvae (Miyasaka et al., 2005). In developing
Xenopus spinal axons, the activated Robo receptor has been
reported to bind DCC and silence the attractive effect of Ne-
trin1 (Stein and Tessier-Lavigne, 2001). Inhibition of Slit/
Robo signaling in chick and mouse motor neurons induces
axonal grown toward Netrin1 (Bai et al., 2011). We wondered
whether the guidance of OR111-7 transgene-expressing axons
depends upon Robo receptor signaling, either directly or
through modulation of Netrin/DCC signaling. We have exam-
ined the trajectories of OR111-7 transgene-expressing axons
in zebrafish embryos with a null mutation in robo2 and find no
consistent errors (data not shown). However, our results to
date cannot exclude the possibility that the targeting of other
olfactory sensory axons is affected by the loss of Robo2-
mediated signaling.

The repulsive ligand Sema3F is expressed in the dorsal bulb
of mice and repels axons that express its receptor, Neuropi-
lin2, thus confining these axons to the ventral bulb. Knocking
down either Sema3F or Neuropilin2 in olfactory sensory neu-
rons mistargets ventrally projecting axons to the dorsal olfac-
tory bulb (Takeuchi et al., 2010). Sema3a is expressed in mice by
ensheathing cells in the nerve layer of the ventral olfactory bulb
while some olfactory sensory neurons express its receptor,
Neuropilin1a. Neuropilin1a-positive axons extend to the lateral
region of the anterior olfactory bulb and medial region of the
posterior bulb, avoiding Sema3A-expressing regions. In Sema3A
deficient mice, many Neuropilin1a-positive glomeruli are ectop-
ically positioned in the anteromedial and ventral bulb (Schwart-
ing et al., 2000, 2004; Taniguchi et al., 2003). The repulsive
guidance mediated by Neuropilin-1 receptor signaling in olfac-
tory sensory axons seems to be conserved to some degree across
vertebrate species. Chick olfactory sensory neurons expressing a
dominant-negative Neuropilin1 enter the brain prematurely and

overshoot Semaphorin-expressing regions in the bulb to project
into the forebrain (Renzi et al., 2000). Finally, deleting ephrinA3
and ephrinA5 together in mice shifts glomeruli of SR1 or P2 odor-
ant receptor-expressing olfactory sensory neurons posteriorly,
while overexpression of EphrinA5 specifically in P2 neurons
shifts its glomerulus anteriorly (Cutforth et al., 2003). These
studies have uncovered a crucial role for axonal repellents in
olfactory map formation. Our study, however, is the first to dem-
onstrate the requirement for attractive cues, specifically netrins,
in proper targeting of olfactory sensory axons.

Although studies in the mouse have identified several cues
that contribute to olfactory axon guidance, the complexity and
inaccessibility of its developing olfactory system has limited most
observations to postnatal animals in which the glomeruli are al-
most fully differentiated. Thus the developmental contribution
of these signaling molecules to initial targeting is not always clear,
and the processes that drive the segregation of axons into glom-
eruli may confound the analysis of some axonal guidance mu-
tants. By comparison, the zebrafish is an excellent vertebrate
system in which to study the initial targeting of olfactory sensory
axons in the olfactory bulb. The system is relatively simple, with
�150 ORs compared with 	1000 in mice (Alioto and Ngai,
2005). Development is rapid, with initial axon targeting occur-
ring within the first 3 d of fertilization (Whitlock and Westerfield,
1998; Wilson et al., 1990; Sato et al., 2005). The embryo is small
and transparent, making it possible to observe sensory axon path-
finding even in a living animal (Dynes and Ngai, 1998). Most
importantly, sensory axons entering the bulb first terminate in
distinct individually identifiable neuropilar protoglomeruli.

Our results highlight the advantages of a relatively simple
vertebrate olfactory system for studying the initial targeting of
olfactory sensory axons to defined protoglomeruli in the ol-
factory bulb. In this study, we identified for the first time in
any model system, an important role for Netrin/DCC signal-
ing in the correct initial targeting of axons from the olfactory
epithelium to the bulb and within the bulb itself. To deduce
the overall molecular logic underlying protoglomerular tar-
geting, it will be necessary to generate additional transgenic
lines that label axons that target protoglomeruli other than the
central zone. Using the OR111-7-transgenic line and addi-
tional lines as they become available, it will be possible to
assess the specific contributions of almost any candidate guid-
ance cue to the mapping of specific olfactory sensory neurons
to their targets in the olfactory bulb.
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