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There have been many recent papers on evolutionary change in systems of
interacting loci. Because of nonrandom combination, it has been necessary to use
electronic computers in all but the simplest cases. If, however, the selective dif-
ferences among genotypes are as small as seems usually to be the case in natural
variability and the loci are in different chromosomes, as is usual in organisms with
typical numbers, or even if they are loosely linked, useful approximations may be
obtained by ignoring the small departures from random combination.

Formulae under Random Combination.-Under random combination, the geno-
typic frequency is by definition the product of the frequencies of the component
genes, with doubling for each heterozygous locus. Under this assumption, the rate
of change of a gene frequency Pz per generation is given' in terms of frequencies
f, and relative selective values w, of genotypes by:

AP. = P.(1 - PD) Z W a 12v. (1)

In evaluating where there are multiple alleles2

api- pj/(1 - Px). (2)

We will deal here only with cases in which the selective values of genotypes are
independent of their frequencies, under which3

APX = PX (1 - PX) /2w. (3)

Effect of Departure from Random Combination, a Simple Case.-The departure at
metastable equilibrium of two-factor gametic frequencies from random combina-
tion was given many years ago4 I in a simple but important type of extreme interac-
tion in which the optimum is at the midpoint of the scale.

Genotype Grade w
AABB M + 2a 1-4s
AABb, AaBB M + a 1-s
AAbb, AaBb, aaBB AI 1
Aabb, aaBb AI-a 1-s
aabb M-2a 1-4s

Homallelic AAbb and aaBB are both at the intermediate optimum and thus are
at separate "selective peaks" (1,0) and (0,1) with respect to the gene frequencies p
and q. The extremes, aabb and AABB, are in "selective pits" (0,0) and (1,1),
respectively. There is metastable equilibrium at the "saddle" (0.5,0.5). Letting c
be the amount of recombination in double heterozygotes, the equation expressing
the lack of change in frequencies fAb and faB of the balanced gametes and in those
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of the unbalanced gametes, fAB and fab, is easily found at metastable equilibrium, at
which faB = fAb and fab = fAB = ('/2) - fAb.

8sfAb - 4(s - c)fAb - c = 0, (4)

fAb = faB = [s - c + s2+ c2]/4s t ('/4) (1 + s/2c) if s<<c,

(5)

fAB = fab = [S + C - V/S2 + C2 ]/4s t (1/4)(1 - s/2c) if s<<c,

W = 1 - 48fARB (6)

Extension has been made to three equally spaced loci.6
A somewhat more general case, t for the selective disadvantage of AABB and of

aabb and supplementation by additive heterosis hi and h2, at the loci, has been
presented5' 6 and confirmed from a different viewpoint.7 The equation for gametic
frequency fAb at equilibrium (metastable or stable) becomes

8 (4s- t) fA3b- 8(3s- t) fA~b+ 2(2s- t + 2c') fAb - c' =O, (7)
where c' = c( + h + h2).

General Equations for Two Pairs of Alleles.-The general equations for rates of
change of gametic frequencies in the case of two pairs of alleles were given by
Kimura8 for continuously reproducing populations. The closely similar discrete
rates per generation were given by Lewontin and Kojima.9

AfAB = [fAB (WAB - ) - C DWAaBbI/D)

AfAb = [fAb (WAb ID3) + C DWAaBb]/W (8)

AfaB [faB (WaB - W) + CDWAabI/,I5(
Afab = [fab (Wab - i) - C DWAab]/bi )

where D = fABfab - fAbfaB measures departure from random combination.

WAB = fABWAB/AB + fAbWAB/Ab + faBWAB/aB + fabWAB/ab, etc.

W = fABWAB + fAbWAb + faBWaB + fabWab.

Quasi-Equilibrium.-Kimura'0 has shown that the ratio R = fABfab/fAJfaB ap-
proaches constancy, "quasi-equilibrium," during the evolution of systems under
widely occurring conditions. It is convenient to use symbols that make R greater
than 1 as far as practicable.

AfAB AfAb AfaR AfabA logR-A + ,(9)
fAB fAb faB fab

w A log R t [WAB - WAb - WaB + Wab] - C DWAaB + + +
- A~~~~~~~~BfAb1 faB fab

(10)

In a haploid population, [WAB- WAb- WaR + Wab] is a measure of the interactive
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selection, sI. In the diploid case, it requires four coefficients, each related to one
of the four kinds of gametes.

SI(AB) = WAB/AB - WAB/Ab - WAB/aB + WVAB/ab, etc., (11)

3I = fAB3I(AB) + fAb3I(Ab) + faB3I(aB) + fab3I(ab), (12)

w A log R
3

CWAaBb fAbfaB (R 1 ( + + ± ) (13)
fAB fAb JaB falb

Kimura showed that with small selective differences and loose, if any, linkage, R
changes so little in a single generation that i\A log R may be treated as zero to
obtain a useful approximate result. He gave a number of examples, calculated
through hundreds of generations by electronic computer, in which R approached
constancy. He also illustrated the failure of the principle where moderately great
interactive selection is associated with very tight linkage and R increased without
limit as fixation of one of the genotypes was approached.

It is convenient to let x = R - 1, and use K = SI/CWABb as an index that ex-
presses the relation between interactive selection and recombination where the
term w A log R is negligible.

X2 (A b + faB) + X (1 - K) - K = 0.

If iv A log R is not negligible in comparison with 3,, it is possible to make pro-
visional estimates and redefine K as (3, - it A log R)/CWAaBb in the iteration process
of solution:

x = [V/(1 - K)2 + 4K(fAb + faB) - (1 - K) ]/ [2(fAb +faB) ] (14)

If K is always small, x is approximately K/(1 - K), R is never much larger than
1 and sufficiently uniform that DvA log R is unimportant, and there is consequently
quasi-equilibrium in Kimura's sense. But even if K approaches 1, and R becomes
indefinitely large as p approaches 0 or 1, there may be quasi-equilibrium in a broader
sense.

The Quasi-Equilibrium Surface of Mean Selective Values.-The system of gametic
frequencies in the case of pairs of alleles can be represented by points in an equilat-
eral tetrahedron of unit height, to each of which a mean selective value can be
assigned. Assuming that gametic frequencies change only slowly and K is not too
large, there is a surface within this space, bounded by the edges ab - Ab, Ab - AB,
AB - aB, and aB - ab, on which D A log R is less than for points on each side.
Populations on this surface move along it in quasi-equilibrium, in a broad sense,
even though R may change greatly with the changes in the set of gene frequencies.

If there is symmetry of the selective values about the line q = p, the gametic
frequencies and the mean selective values along this line can readily be calculated.
We will consider cases in which the selective peak or peaks are on this line. These
values, in conjunction with those of homallelic AAbb and aaBB, indicate fairly
well the nature of the surface.

Along the line q = PfaB = fAbi fAB = p - fAb, andfab = 1 - p - fAb,

(15)R = 1 + x = (p - fAb)(1 - p - fAb)/fAb,
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XfAb + fAb - p(1 - p) = 0, (16)

fAb = [I1 + 4p(l - p)x - 1]/2x, (17)

R - 1 = x = [V/(1 - K)2 + 8KfAb - (1 - K)]/4fAb from (14). (18)

The gametic frequencies and the values of K (if not constant), of R, and of W
can be found by iteration of equations (17), (12) if necessary, and (18) for each
desired value of q = p for systems with given selective values w and given amounts
of recombination for comparison with those given under the assumption of random
combination (R = 1).
The following systems of constant genotypic values (aabb at lower left, AABB at

upper right) will be considered.

I (, -= 0.20) II (3, = 0.20) III (SI = 0.15) IV
0.6 0.9 1 0.6 1.1 1 0.75 1 1.10 1 1 1
0.9 1 0.9 1.1 1. 41.1 0.95 1.05 1 1 1.25 1
1 0.9 0.6 1 1. 10.6 1 0.95 0.75 1 1 1

V VI VII (SI = 0.25)
0.81 1 0.97 0.64 1 0.96 1 1.50 2
1 1.03 1 1 1.05 1 1 1.25 1.50
0.97 1 0.81 0.94 1 0.64 1 1 1

Case I, symmetrical about both diagonals, is of the sort in which there is an
optimum at the midpoint of the phenotypic scale, discussed above, but here with
exchange of B and b. Case II is the same except for a bonus (0.2) for heterosis at
each locus. Case III is somewhat like case I except that the selective peaks are
unequal. In each of these three cases, the interactive selection is uniform. Case
IV is a simple example of nonadditive heterosis. The interactive selection is
variable (4 0.25 in the four corners) so that s1 must be calculated for each p in the
iteration process. It is a special case of a type discussed by Lewontin and Kojima.9
Cases V and VI were presented in a previous paper" to illustrate the possibility of
two selective peaks that may be heterallelic at both loci. In both, SI varies. In
VII, as in cases considered by Felsenstein,12 mean selective value rises toward one
extreme, but does so nonlinearly. Interactive selection is uniform.

Calculations for c = 0.5 and 0.2 were made, first treating w A log R as negligible.
Having estimated R for each value of p, at intervals of 0.1, this term was estimated
in each case from the formula w-A p (d log R/dp) in which

W A P = [fABWAB + fAbWAb -P@]

The sums of the nine absolute estimates of W A log R and of SI and the ratios are
given in Table 1. The largest ratios are in case IV but involve only trivial devia-
tion of M from its value under random combination. Of more interest is case I
with relatively large deviations of uv. Recalculations were made in these cases
using K = (I- W A log R)/CWAaBb. The changes were trivial except for R in a
few cases.

Tables 2 and 3 give the quantities indicated in the headings, using the recalcula-
tions where made.

Figure 1 shows the values of av for c = 0.5, 0.2, and 0 in cases I to VI in solid lines,
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Case
I

II
III
IT

VI
VII

TABLE 1
RATIO OF THE TERM WA log R TO 3I

C=0.5 c = 0.2
2Iliv A log RI 2:111 Ratio ;lZsv log RI xtiIl Ratio

0.012 1.80 0.007 0.058 1.80 0.032
0.006 1.80 0.004 0.054 1.80 0.030
0.004 1.35 0.003 0.027 1.35 0.020
0.043 0.62 0.068 0.129 0.66 0.193
0.002 0.51 0.031 0.004 0.49 0.009
0.005 0.97 0.005 0.014 0.91 0.015
0.060 2.25 0.027 -

for comparison with those under the assumption of random combination (broken
lines). The latter are all outside the range of true values (c = 0.5 to c = 0) except
at the extreme values of p, and at p = 0.5, in case IV.

In cases I to III, the curves represent Lv along a ridge on the quasi-equilibrium
surface (aabb to AABB) between deep depressions at AAbb and aaBB. The
curves for c = 0.5 differ little from the approximation shown by the broken line.
That for the curve on the surface at right angles to this, passing through the same
value at (0.5,0.5), can differ little from the approximation. Even with c = 0.2
there is rough approximation. The values for w at q = p = 0.5, c = 0.10,0.05, 0.02,
and 0.01 are shown by dots in cases I and II (formula 5).

In case IV, the true curves, even for c = 0.2, differ very little from the approxima-
tion, there being no difference at (0.5,0.5).

Case V has the smallest selective differences and the least interactive selection on
the average. The shallow saddle between heterallelic peaks is, however, close to the
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FiG. 1.-Mean selective values ?b on the surface between aabb and
AABB in six two-factor systems as described in the text.
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TABLE
DATA ON THE QUASI-EQUILIBRIUM SURFACES OF MEAN SELECTIVE VALUE

q = X
rw Ap

1.000 0
0.964 -0.0075
0.936 -0.0103
0.916 -0.0092
0.904 -0.0053
0.900 0
1.000 0
1.036 +0.0069
1.064 +0.0090
1.084 +0.0077
1.096 +0.0044
1.100 0
1.000 0
0.983 -0.0032
0.972 -0.0033
0.967 -0.0011
0.968 +0.0025
0.975 +0.0063
0.988 +0.0097
1.007 +0.0115
1.032 +0.0109
1.063 +0.0072
1.100 0
1.000 0
1.008 +0.0032
1.026 +0.0075
1.044 +0.0084
1.058 +0.0054
1.063 0
0.970 0
0.978 +0.0011
0.981 +0.0004
0.981 -0.0003
0.980 -0.0004
0.980 0
0.940 0
0.956 +0.0024
0.962 +0.0009
0.962 -0.0005
0.961 -0.0005
0.961 0
0.963 +0.0019
0.967 +0.0021
0.970 +0.0008
0.970 -0.0010
0.960 0

q = 1-p*1
0.600
0.708
0.792
0.852
0.888
0.900
0.600
0.780
0.920
1.020
1.080
1.100
0.750
0.831
0.894
0.939
0.966
0.975
0.966
0.939
0.894
0.831
0.750
1.000
1.008
1.026
1.044
1.058
1.063
0.810
0.876
0.923
0.955
0.974
0.980
0.640
0.765
0.855
0.915
0.950
0.961
0.950
0.915
0.853
0.765
0.640

_--C = 0.5
fAb

0 1.000
0.086 0.966
0.148 0.941
0.192 0.923
0.217 0.913
0.225 0.910
0 1.000
0.087 1.037
0.152 1.067
0.197 1.089
0.223 1.103
0.232 1.107
0 1.000
0.087 0.984
0.152 0.974
0.197 0.971
0.223 0.973
0.232 0.980
0.223 0.993
0.197 1.011
0.152 1.034
0.087 1.064
0 1.100
0 1.000
0.087 1.009
0.156 1.026
0.206 1.044
0.239 1.058
0.250 1.063
0 0.970
0.090 0.978
0.157 0.981
0.204 0.982
0.232 0.982
0.241 0.981
0 0.940
0.089 0.956
0.155 0.963
0.200 0.965
0.225 0.966
0.233 0.966
0.224 0.968
0.199 0.970
0.155 0.971
0.089 0.970
0 0.960

threshold, and disappears by coalescence of the peaks if c = 0.2. Case VI with
unequal peaks is even more sensitive, in spite of greater selective differences. There
is loss of the saddle if c = 0.50, as brought out in a computer study by Jain and
Allard.'3 The saddle would persist, however, if selective differences from WAaBb
were less than one third as great.

In case VII, the deviation of WI, c = 0.5, from that under random combination
would be barely perceptible in a figure of the scale of the others in spite of the large
uniform value of K (0.40). The approximation under random combination falls
outside the true range, however, by about 11 per cent at p = 0.5 (less elsewhere),
which is somewhat similar to other cases.

In all of these cases, the calculation of Tw under the assumption of random com-

Case p

I 0
0.1
0.2
0.3
0.4
0.5

II 0
0.1
0.2
0.3
0.4
0.5

III 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

IV 0
0.1
0.2
0.3
0.4
0.5

V 0
0.1
0.2
0.3
0.4
0.5

VI 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

fAb
0
0.09
0.16
0.21
0.24
0.25
0
0.09
0.16
0.21
0.24
0.25
0
0.09
0.16
0.21
0.24
0.25
0.24
0.21
0.16
0.09
0
0
0.09
0.16
0.21
0.24
0.25
0
0.09
0.16
0.21
0.24
0.25
0
0.09
0.16
0.21
0.24
0.25
0.24
0.21
0.16
0.09
0
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2
tb IN SIX CASES OF INTERACTING Loci, R = 1, c = 0.5, 0.2, OR 0

C

R
1.67
1.57
1.53
1.50
1.49
1.49

= 0.5 _
K
0.400

fAb

0
0.077
0.129
0.164
0.184
0.191

c = 0.2

1.000
0.969
0.948
0.935
0.926
0.924

R

3.24
2.84
2.70
2.64
2.62

c = 0
fAb = 0

K iv
1 .000

i

(.

1.000
,.(

1.40 0.286 0 1.000 2.50 0.714 1.000
1.37 " 0.081 1.040 2.40 " 1.072
1.35 " 0.138 1.073 2.17 " 1.128
1.34 " 0.177 1.097 2.07 " 1.168
1.33 " 0.199 1.112 2.03 " 1.192
1.33 " 0.207 1.117 2.01 " 1.200
1.40 0.286 0 1.000 2.50 0.714 1.000
1.37 " 0.081 0.986 2.40 " 1.010
1.35 " 0.138 0.979 2.17 " 1.020
1.34 " 0.177 0.977 2.07 " 1:030
1.33 " 0.199 0.980 2.03 " 1.040
1.33 " 0.207 0.988 2.01 " 1.050
1.33 " 0.199 1.000 2.03 " 1.060
1.34 " 0.177 1.017 2.07 " 1.070
1.35 " 0.138 1.039 2.17 " 1.080
1.37 " 0.081 1.066 2.40 " 1.090
1.40 " 0 1.100 2.50 " 1.100
1.67 0.400 0 1.000 o 1.000 1.000
1.34 0.268 0.081 1.011 2.43 0.723 1.045
1.18 0.164 0.145 1.029 1.73 0.513 1.080
1.08 0.080 0.196 1.045 1.35 0.295 1.105
1.02 0.022 0.235 1.058 1.09 0.088 1.120
1.00 0 0.250 1.063 1.00 0 1.125
1.00 0 0 0.970 1.00 0 0.970
1.06 0.056 0.089 0.978 1.16 0.138 0.981
1.11 0.098 0.153 0.982 1.28 0.238 0.989
1.14 0.127 0.196 0.983 1.36 0.305 0.995
1.16 0.144 0.220 0.983 1.41 0.342 0.999
1.16 0.149 0.228 0.983 1.42 0.354 1.000
0.98
1.10
1.19
1.26
1.30
1.32
1.31
1.28
1.22
1.13
1.02

-0.019
0.090
0.172
0.228
0.262
0.275
0.269
0.243
0.194
0.120
0.019

0
0.088
0.148
0.185
0.206
0.212
0.205
0.184
0.146
0.087
0

0.940
0.957
0.964
0.968
0.971
0.972
0.973
0.974
0.973
0.970
0.960

0.95
1.27
1.54
1.72
1.81
1.85
1.84
1.78
1.64
1.38
1.05

-0.048
0.222
0.409
0.528
0.598
0.625
0.614
0.562
0.461
0.295
0.048

0.940
0.960
0.976
0.988
0.996
1.000
1.000
0.996
0.988
0.976
0.960

bination gives a good first-order approximation to the nature of the quasi-equilib-
rium surface for c = 0.5, except where a feature is close to the threshold. From the
results for c = 0.2, it appears that rough approximations can be obtained up to
values of K of at least 0.5, and that allowance for deviations from random com-
bination is hardly necessary for this purpose where K is 0.05 or less. A number of
cases in which there is frequency dependence of selective value have given similar
results.
The concept of a multidimensional "surface" of mean selective values on which a

population moves toward the immediately controlling peak (except as diverted by
the other systematic pressures, recurrent mutation, and immigration, and by
random processes) was developed" for natural populations, assumed to have been
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TABLE 3
DATA ON THE QUASI-EQUILIBRIUM SURFACE OF MEAN SELECTIVE VALUE

11 IN CASE VII FOR R = 1, C = 0.5, AND C = 0

R = 1 - c =O

q = p q =-p c 0.5 - fAb 0

fAb 3 fAb iS R K 173

0 0 1.000 0 1.000 0 1.000 1.67 0.400 1.000
0.1 0.09 1.010 +0.0045 1.090 0.086 1.012 1.57 " 1.055
0.2 0.16 1.040 +0.0160 1.160 0.148 1.046 1.53 " 1.120
0.3 0.21 1.090 +0.0318 1.210 0.192 1.099 1.50 " 1.195
0.4 0.24 1.160 +0.0493 1.240 0.217 1.172 1.49 " 1.280
0.5 0.25 1.250 +0.0666 1.250 0.225 1.262 1.49 " 1.375
0.6 0.24 1.360 +0.0828 1.240 0.217 1.372 1.49 " 1.480
0.7 0.21 1.490 +0.0967 1.210 0.192 1.499 1.50 " 1.595
0.8 0.16 1.640 +0.1085 1.160 0.148 1.646 1.53 " 1.720
0.9 0.09 1.810 +0.1178 1.090 0.086 1.812 1.57 " 1.855
1.0 0 2.000 0 1.000 0 2.000 1.67 " 2.000

breeding according to the same system long enough that there is divergence from
random combination only as forced by interactive selection.
A cross between two inbred lines is likely to have a selective value higher than

the nearest peak on the equilibrium surface. The randomly bred descendants will
thus move douw toward the latter. Because of this sort of situation, Moran'5
has drawn the conclusion indicated by the title of his paper, "The nonexistence of
adaptive topographies." This was based on a misunderstanding of the concept.
Summary.-Kimura's concept of "quasi-equilibrium" with respect to a ratio of

gametic frequencies is used to clarify the concept of a "surface" of mean selective
values, the gradient of which tends to control evolutionary change within a pan-

mictic population. It is shown that the actual surface, where there is deviation from
random combination because of interactive selection, differs little from that calcu-
lated under the assumption of random combination if selective differences, including
the interactive coefficients, are as small as is probably usually the case in nature, and
the loci are in different chromosomes, as is usual in organisms with typical numbers,
or if in the same chromosome, are only loosely linked.

* Paper no. 1119 from the Laboratory of Genetics, University of Wisconsin, Madison, Wis-
consin. This work has been supported by a grant from the National Science Foundation (GB-
1317).
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