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The Nicotiana attenuata LECTIN 
RECEPTOR KINASE 1 (LecRK1) 

has been recently identified as a compo-
nent of the mechanism used by plants to 
suppress the Manduca sexta-triggered 
accumulation of salicylic acid (SA). The 
suppression of the SA burst by LecRK1 
allows for the unfettered induction of 
jasmonic acid (JA)-mediated defense 
responses against M. sexta herbivory. 
LecRK1 contains a multi-domain extra-
cellular region composed of a G-type 
Lectin domain and a PAN-AP domain 
separated by a variable sequence with 
low similarity to an EGF domain. The 
LecRK1 intracellular region is composed 
of a single domain structure with pre-
dicted Ser/Thr protein kinase activity. 
The multi-domain structure of the extra-
cellular region of LecRK1 adds a level 
of complexity in terms of the potential 
ligands that this receptor protein could 
recognize.

Insect-associated Elicitors and 
Identification of Na-LecRK1

The recognition of phytophagous insects 
by plants induces a set of very specific 
responses aimed to deter tissue consump-
tion and to reprogram the metabolism 
and development of the plant to tolerate 
the herbivore. The recognition of insects 
by plants requires the plant’s ability to 
perceive chemical cues generated by the 
insects and to distinguish a particular 
pattern of tissue disruption.1 Relatively 
little is known about the molecular basis 
of insect perception by plants and the sig-
naling mechanisms directly associated to 
this perception. During insect feeding, 

The Nicotiana attenuata LECTIN RECEPTOR KINASE 1  
is involved in the perception of insect feeding

Gustavo Bonaventure
Max Planck Institute of Chemical Ecology; Department of Molecular Ecology; Jena, Germany

components of the oral secretions (OS) or 
saliva of insects become into contact with 
plant cells and elicitors present in these 
insect-derived fluids are perceived by plant 
cells to initiate the activation of specific 
signaling cascades.1,2 Importantly, several 
examples have also shown that OS com-
ponents can interfere with or even sup-
press the activation of defense responses in 
plants. Thus, although some OS compo-
nents are perceived by plants as a signal 
of herbivore attack, others interfere with 
the induction of defense responses allow-
ing the insect to feed in a “stealthy” man-
ner. For example, mandibular glands of 
Helicoverpa zea secrete salivary glucose 
oxidase (GOX), an enzyme that functions 
as an effector to suppress the induced 
defenses of the host plant.3 Experimental 
evidence suggests that GOX contributes 
to the initial oxidative burst of H
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observed in leaves damaged by herbi-
vores4-6 and the enhanced oxidative burst 
suppresses the induction of plant defense 
responses. GOX activity in Spodoptera 
exigua OS produce high levels of H

2
O

2
 

that induce a strong salicylic acid (SA) 
burst in N. attenuata leaves.7 These high 
levels of SA attenuate the induction of 
JA-mediated defense responses.

The insect-associated elicitors that act 
during folivory by chewing insects are 
diverse in structure. They can be enzymes 
(e.g., glucose oxidase, β-glucosidase),4,8 
fatty acid-amino acid conjugates (FACs),2,9 
sulfur-containing fatty acids (caelifer-
ins),10 fragments of cell walls (e.g., pectins 
and oligogalacturonides),11 or peptides 
released from digested plant proteins (e.g., 
inceptins; proteolytic fragments of the 
chloroplastic ATP synthase γ-subunit).12 
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LecRK1 is Indispensable  
during M. sexta Herbivory  

to Suppress the Insect-Mediated 
Inhibition of Defense Responses

Gene function analysis performed by 
reducing LecRK1 expression in N. attenu-
ata plants by both virus induced gene 
silencing (VIGS) and inverted repeated 
RNA interference (ir-RNAi) revealed that 
LecRK1 is essential to mount a full defense 
response against M. sexta folivory; larvae 
growing on plants with reduced expres-
sion of LecRK1 were 40–100% larger 
than larvae growing on wild type plants.24 
The increased rates of larval growth were 
correlated with reduced levels of induc-
tion of several critical defense molecules, 
namely nicotine, HGL-DTGs and trypsin 
protease inhibitors (TPIs). The expression 
of threonine deaminase (TD) was also sev-
eral fold reduced in plants with reduced 
expression of LecRK1 compared with wild 
type plants. The reduced induction of 
these defense molecules was independent 
of the capacity of the plants to produce JA; 
the accumulation of JA and JA-Ile during 
M. sexta herbivory was similar in wild type 
plants and plants reduced in the expression 
of LecRK1. However, the accumulation of 
SA was increased by 2-fold in the latter.24 
The ectopic expression of the nahG gene 
prevented the increased accumulation of 
SA during M. sexta herbivory and fully 
restored the defense response against this 
herbivore in plants with reduced expres-
sion of LecRK1. The results indicated that 
N. attenuata LecRK1 is indispensable to 
suppress the SA-mediated inhibition of 
defense responses and thereby to stimulate 
the unfettered JA-mediated induction of 
defense metabolites (Fig. 1).

Analysis of LecRK1 mRNA expression 
in plants deficient in JA biosynthesis or 
perception showed that jasmonates inhibit 
the induction of the LecRK1 gene (Fig. 1). 
Moreover, plants with reduced expression 
of SIPK (SA-inducible protein kinase) and 
WIPK (Wound-inducible protein kinase) 
showed that these two regulatory compo-
nents have a positive effect on the expres-
sion of LecRK1, consistent with their 
central role in the activation of defense 
responses against M. sexta herbivory25 
(Fig. 1). These results revealed that the 
induction of LecRK1 expression is under 

and protease inhibitors (PIs).18-21 The 
accumulation of these defense molecules 
depend on de novo biosynthesis of JA 
and jasmonyl-Isoleucine (JA-Ile). In addi-
tion to these jasmonates, ET and SA also 
play critical roles in the modulation of 
induced JA-mediated defense and toler-
ance responses.7,22,23

As mentioned above, relatively little 
is known about the molecular basis of 
insect perception by plants and the sig-
naling mechanisms directly associated 
to this perception. With the aim of iden-
tifying signal transduction components 
of the pathways operating early during 
the response to M. sexta larval attack, 
a SuperSAGE (serial analysis of gene 
expression) approach combined with 
next generation sequencing (NGS) was 
recently used to quantify the early tran-
scriptional changes elicited by the FAC 
N-linolenoyl-glutamic acid (18:3-Glu) 
in N. attenuata plants.17 The analysis 
targeted mRNAs encoding regulatory 
components: rare transcripts with very 
rapid FAC-elicited kinetics. Among the 
547 differentially expressed transcripts, 
more than 25% corresponded to puta-
tive regulatory components, including 
22 protein kinases.17 Among these pro-
tein kinases was LECTIN RECEPTOR 
KINASE 1 (LecRK1).

Importantly, most of these insect-associ-
ated elicitors are not general elicitors of 
responses against chewing insects in all 
plant species but are usually restricted to 
particular plant-insect associations (Table 
1). This selectivity probably reflects the 
evolutionary history of both plants and 
their interacting insects and, hence, it is 
crucial to understand the mechanisms of 
plant-insect interactions in the evolution-
ary context of the interaction.2

N. attenuata is an annual fire-chas-
ing plant native to the Great Basin des-
ert of the southwestern USA which has 
evolved a large number of specific induced 
responses against generalist and special-
ist herbivore species that co-exist with 
the plant in the same environment. For 
example, N. attenuata responds very spe-
cifically to the attack by M. sexta larvae. 
Among the responses induced by M. sexta 
folivory are changes in the expression of 
more than 500 genes, 90 proteins, 170 
metabolites and the differential produc-
tion of leaf volatile organic compounds 
(VOCs), jasmonic acid (JA), ethylene 
(ET) and salicylic acid (SA).13-17 Critical 
defense responses against M. sexta folivory 
are the accumulation of the defense mol-
ecules 17-hydroxygeranyllinalool diter-
pene glycosides (HGL-DTGs), nicotine, 
phenylpropanoid-polyamine conjugates 

Table 1. examples of chewing insect-associated elicitors that induce specific responses in plants 
during insect folivory

Elicitors Insect species Plant species

Glucose Oxidase 
(GOX)

Helicoverpa zea 
Spodoptera exigua 

Helicoverpa armigera 
Other Lepidoptera and 

Hymenoptera

Nicotiana tabacum (tobacco) 
Nicotiana attenuata (coyote 

tobacco) 
Medicago truncatula 

Solanum lycopersicum (tomato)

b-glucosidase Pieris brassicae
Phaseolus lunatus (lima beans) 

Zea mays (maize) 
Brassica oleracea (cabbage)

n-acyl-amino acids 
(Facs)

Spodoptera exigua 
Manduca sexta 

Teleogryllus taiwanemma 
Drosophila melanogaster 

Several Lepidoptera

Zea mays 
Glycine max (soybean) 

Solanum melongena (eggplant) 
Nicotiana attenuata 

Solanum nigrum

caeliferins Schistocerca americana
Zea mays 

Arabidopsis thaliana

Inceptin

Produced by degradation of the 
plant atP synthase g-subunit 
during folivory by Spodoptera 

frugiperda

Vigna unguiculata (cowpea)

Oligouronides
Produced by degradation of plant 

cell walls during insect folivory
Solanum lycopersicum
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tight control; it is induced by OS elicita-
tion but the levels of induction are checked 
by jasmonates (in a COI1-dependent 
manner). Thus, in this case, jasmonate 
levels would tune LecRK1 expression and 
thereby the accumulation of SA levels dur-
ing insect herbivory (Fig. 1).

The amino acid sequence of LecRK1 
contains a predicted N-terminal (Nt) 
extracellular region, a single transmem-
brane spanning α-helix and a C-terminal 
(Ct) cytoplasmic region (Fig. 2). The 
extracellular Nt region contains a pre-
dicted 22 amino acid signal sequence to 
the secretory pathway, a G-type Lectin 
domain, an Epidermal Growth Factor-like 
domain (EGF) domain and a PAN-AP 
(plasminogen/apple/nematode) domain. 
The Ct cytoplasmatic region contains 
a predicted functional Ser/Thr kinase 
domain. The closest homologs to LecRK1 
in other plant species that have been 
extensively studied are the brassica self-
incompatibility determinant S receptor 
kinase (SRK) acting in self-recognition 
of pollen. SRK binds a cycteine-rich pro-
tein at a hypervariable region in the Nt 
extracellular region.26 LecRK1 has also 
close homology to the N. glutinosa RLK1 
(Receptor-like Kinase 1) that interacts 
with elicitin (a conserved protein of ~98 
amino acids) from Phytophthora capsici.27 
The Lectin domains in the LecRK fam-
ily of proteins usually do not carry all the 
conserved residues found in soluble lec-
tins and which are responsible for carbo-
hydrate binding. Moreover, the presence 
of the PAN-AP domain which has been 
shown to bind proteins and carbohydrates 
and the variable region between the lec-
tin and the PAN-AP domains add a level 
of complexity in terms of the potential 
ligands that LecRK1 could recognize. 
The identification of these ligands will 
provide critical information about the 
mechanisms used by plants to perceive 
lepidopteran herbivory.
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Figure 1. Proposed model for the role of LecrK1 in the N. attenuata defense response against M. 
sexta. During herbivory by M. sexta larvae, the larval OS induce the expression of the LecRK1 gene, 
however, LecRK1 is also constitutively expressed. the induction of LecRK1 depends on the activ-
ity of SIPK and WIPK, which in parallel activate the biosynthesis of Ja.16 Ja is conjugated to Ile to 
form Ja-Ile, and tD supplies Ile for this biosynthetic process.28 Ja-Ile induces the accumulation of 
defense metabolites or proteins (including nicotine, tPIs, HGL-DtGs and tD) via cOI1-dependent 
mechanisms29,30 and inhibits the expression of LecRK1. LecrK1 suppresses the accumulation of 
Sa induced by M. sexta herbivory which in turn allows for an unfettered induction of the defense 
metabolites nicotine, tPIs, HGL-DtGs and tD. LOX3, lipoxygenase 3; 13-HPOt, 13S-hydroperoxy-
octadecatrienoic acid; SIPK, Sa-induced protein kinase; WIPK, Wound-induced protein kinase;  
tD, threonine deaminase.
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Figure 2. N. attenuata LecrK1 predicted domains. Schematic representation of na-LecrK1 domain composition and organization based on conserved 
domain analysis. Pan_aP, plasminogen-apple-nematode motif; eGF, epidermal growth factor-like motif; Ser/thr kinase: serine/threonine protein 
kinase domain.


