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The “combined-stimulation advantage” refers to an improvement in speech recognition when

cochlear-implant or vocoded stimulation is supplemented by low-frequency acoustic information.

Previous studies have been interpreted as evidence for “super-additive” or “synergistic” effects in the

combination of low-frequency and electric or vocoded speech information by human listeners.

However, this conclusion was based on predictions of performance obtained using a suboptimal high-

threshold model of information combination. The present study shows that a different model, based

on Gaussian signal detection theory, can predict surprisingly large combined-stimulation advantages,

even when performance with either information source alone is close to chance, without involving

any synergistic interaction. A reanalysis of published data using this model reveals that previous

results, which have been interpreted as evidence for super-additive effects in perception of combined

speech stimuli, are actually consistent with a more parsimonious explanation, according to which the

combined-stimulation advantage reflects an optimal combination of two independent sources of

information. The present results do not rule out the possible existence of synergistic effects in

combined stimulation; however, they emphasize the possibility that the combined-stimulation

advantages observed in some studies can be explained simply by non-interactive combination of two

information sources.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.3699231]

PACS number(s): 43.66.Ba, 43.66.Ts [LD] Pages: 3970–3980

I. INTRODUCTION

The combination of acoustic and electric stimulation, as

a way to enhance speech-recognition performance in

cochlear-implant (CI) users, has generated considerable in-

terest in recent years (e.g., von Ilberg et al., 1999; Gantz and

Turner, 2003; Ching et al., 2004; Gantz and Turner, 2004;

Gantz et al., 2004; Turner et al., 2004; Kong et al., 2005;

Gantz et al., 2006; Gfeller et al., 2006; Dorman et al., 2008;

Büchner et al., 2009; Cullington and Zeng, 2009). One form

of electro-acoustic stimulation (EAS) involves electric stim-

ulation of the basal part of the cochlea using a short-

electrode array, and acoustic stimulation of the more apical

region of the cochlea, which corresponds to relatively low-

frequency regions of residual acoustic hearing. Alternatively,

electric stimulation using a long-electrode array in one ear

can be combined with acoustic stimulation of the opposite

ear that retains some residual hearing (Ching et al., 2004;

Kong et al., 2005; Mok et al., 2006).

Several studies have demonstrated that EAS can pro-

duce significantly—and sometimes, considerably—higher

speech-recognition performance than either electric or

acoustic stimulation alone, especially in noise backgrounds

(e.g., Gantz and Turner, 2003; Ching et al., 2004; Gantz and

Turner, 2004; Gantz et al., 2004; Turner et al., 2004; Kong

et al., 2005; Gantz et al., 2006; Gfeller et al., 2006; Dorman

et al., 2008; Büchner et al., 2009; Cullington and Zeng,

2009). This effect is commonly referred to as the

“combined-stimulation advantage.” In addition to studies of

the EAS advantage in CI users, several studies have exam-

ined the potential benefits of combined stimulation in

normal-hearing listeners, using simulations of EAS. In these

simulations, envelope-vocoder processing is used to simulate

CI processing, while lowpass filtering is used to simulate re-

sidual low-frequency hearing. Consistent with the results of

CI studies, several simulated-EAS studies have demonstrated

significant benefits of combined (i.e., lowpass-filtered and

vocoded) stimulation, especially in noisy backgrounds

(Turner et al., 2004; Dorman et al., 2005; Qin and Oxenham,

2006; Kong and Carlyon, 2007; Li and Loizou, 2008; Chen

and Loizou, 2010).

While the combined-stimulation advantage is now well

established, its underlying mechanisms are still debated. Possi-

ble explanations for the effect can be divided into two main

categories. According to the first type of explanation, listeners

do better with combined stimulation than with vocoded (or

electric) signals alone because unprocessed low-frequency sig-

nals contain cues that facilitate or enhance the processing of

cues pertaining to a target voice in the presence of a compet-

ing voice or background noise. In particular, it has been sug-

gested that fundamental-frequency (F0) information conveyed

by low-numbered harmonics can help listeners track the target

voice (e.g., Turner et al., 2004; Qin and Oxenham, 2006;

Brown and Bacon, 2009). From a more general standpoint, it

has been suggested that low-frequency signals provide listen-

ers with cues, which they can use to disambiguate target- and

masker-related information in a mixture of vocoded (or
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electric) signals; in effect, the low-frequency cues “tell” the

listener when to “glimpse” at the mixture to selectively extract

relevant information concerning specifically the target (e.g., Li

and Loizou, 2008; Brown and Bacon, 2009). These explana-

tions appear to imply a form of synergy in the combination of

low-frequency and vocoded signals, whereby listeners extract

more information from the vocoded mixture of target and

masker when low-frequency cues are present, than they do in

the absence of such cues. We refer to this as the “super-

additivity” hypothesis.

A second type of explanation for the fact that listeners

do better with both vocoded and low-frequency signals than

they do with either type of signal alone is, simply, that they

then have access to two sources of information, instead of

just one. Several authors have noted that important phonetic

cues are present at low frequencies, and that these cues can

usefully supplement the limited cues present in higher-

frequency vocoded (or electric) signals (e.g., Turner et al.,
2004; Qin and Oxenham, 2006; Kong and Carlyon, 2007;

Li and Loizou, 2008; Brown and Bacon, 2010). Thus, to the

extent that low-frequency signals do not interfere with the

perceptual processing of information in vocoded (or elec-

tric) signals, and they are not ignored by listeners, perform-

ance should be higher with both signals present than with

either signal in isolation, without necessarily having to posit

the existence of synergistic interactions between low-

frequency and vocoded (or electric) signals. We refer to

this type of explanation as the “simple additivity”

hypothesis.

The extent to which the combined-stimulation advan-

tages that have been measured in previous studies can be

quantitatively accounted for in terms of simple additivity is

not entirely clear. Kong and Carlyon (2007) were the first to

address this question rigorously, using a theoretically prin-

cipled approach. Specifically, these authors tested whether

percent-correct (PC) scores for the recognition of words pre-

sented in combined (lowpass-filteredþ vocoder) stimulation

were significantly higher than predicted by a model that

assumes no interaction in the combination of information

across the unprocessed and vocoded signals; we describe

and discuss this model in Sec. II. They found that for two of

the signal-to-noise ratios (SNRs) tested in their study (þ5

and þ10 dB), performance was indeed higher than predicted

by their model. Taken at face value, this finding suggests

that, at least for these two conditions, the results cannot be

accounted for by the simple-additivity hypothesis. However,

it is important to note that the probability-summation model,

used by Kong and Carlyon (2007) to predict performance in

the combined-stimulation case, is suboptimal, meaning that

it is possible in principle for an observer to achieve higher

performance than predicted by this model, even without

assuming any kind of synergistic interactions (see Braida,

1991). Therefore, the possibility remains that the large

combined-stimulation benefits observed by Kong and

Carlyon (2007) can actually be accounted for without assum-

ing synergistic interactions in the perceptual combination of

low-frequency and vocoded information. In fact, Kong and

Carlyon (2007) did not rule out this second possibility; they

acknowledged that adding low-frequency acoustic signals to

vocoded (or electric) signals may improve recognition per-

formance simply by providing additional low-frequency

phonetic information.

To our knowledge, only two other published studies

have compared listeners’ performance in combined-

stimulation conditions with model predictions (Kong and

Braida, 2011; Seldran et al., 2011). Kong and Braida (2011)

measured identification performance for consonants and

vowels in quiet in normal-hearing listeners and CI users in

non-combined stimulation conditions (i.e., hearing aid alone

and CI alone for the CI users, and lowpass-filtered speech

alone or vocoded speech alone for the normal-hearing listen-

ers) and combined-stimulation conditions (i.e., hearing aid

plus CI for the CI users and lowpass-filtered plus vocoded

speech for the normal hearing listeners). They then com-

pared the magnitude of the combined-stimulation advantage

measured in the two groups with predictions obtained using

a signal-detection-theory (SDT) model of bimodal integra-

tion (Braida, 1991; Ronan et al., 2004), in which speech

sounds are represented by vectors in a multidimensional fea-

ture space, and are assigned multivariate Gaussian probabil-

ity density functions. Kong and Braida (2011) found that the

performance of the normal-hearing listeners and of the CI

users was usually lower than expected based on the optimal

(i.e., maximum-likelihood) version of this model, but that

it could be accounted for by the model if different (sub-

optimal) decision rules were assumed. In the other recent

study (Seldran et al., 2011), the authors measured the per-

formance of normal-hearing listeners in a task involving the

recognition of words presented in quiet or in a cafeteria-

noise background at different SNRs in three listening condi-

tions: lowpass-filtered speech alone, vocoded speech alone,

and lowpass-filtered plus vocoded speech simultaneously.

They then compared the performance of the listeners in the

combined-stimulation conditions with the predictions of the

probability-summation model and of two optimal-observer

models based on Gaussian-SDT assumptions (Green and

Swets, 1966). They found that the performance of the listen-

ers was consistently under-predicted by the probability-

summation model, but that it could be accounted for by

either of the two Gaussian-SDT models. It is important to

note that these Gaussian-SDT models did not involve any

constructive interaction in the processing of low-frequency

and vocoded (or electric) signals.

Our goal in the present study was threefold. First, we

sought to clarify the assumptions, and the limitations, of the

probability-summation rule as a model of perceptual integra-

tion in the context of studies of the combined-stimulation

advantage. Second, we sought to clarify the assumptions,

and the limitations, of optimal Gaussian-SDT models, and to

explain why these models can account for large combined-

stimulation advantages (i.e., large differences in PC scores

between combined and non-combined conditions) without

involving any synergistic interaction in the perceptual-

integration process. Third, we sought to examine whether,

and how well, these models could account quantitatively for

the combined-stimulation advantages that have been meas-

ured in previous studies. Although there are many published

studies on the combined stimulation advantage, here, for

J. Acoust. Soc. Am., Vol. 131, No. 5, May 2012 C. Micheyl and A. J. Oxenham: Models of the combined-stimulation advantage 3971



illustration purposes, we focus on two representative exam-

ples (Qin and Oxenham, 2006; Kong and Carlyon, 2007).

II. ASSUMPTIONS AND LIMITATIONS OF THE
PROBABILITY-SUMMATION MODEL

The probability-summation rule can be written formally

as

PC ¼ 1� 1� PLð Þ 1� PVð Þ: (1)

In this equation and the following ones, PC denotes the pre-

dicted probability of a correct response with combined stim-

ulation, PL denotes the proportion of correct responses

measured for lowpass-filtered stimuli alone, and PV denotes

the proportion of correct responses measured for vocoded

(or electric) stimuli alone. Equation (1) can be rewritten as

PC ¼ PL þ PV � PLPV : (2)

Equation (2) can be easily identified with the basic law of

probability that gives the probability of occurrence of either

or both of two independent and not mutually exclusive

events, A and B

P Aþ Bð Þ ¼ P Að Þ þ P Bð Þ � P Að ÞP Bð Þ: (3)

Here, the A and B events correspond to the correct identifica-

tion of the lowpass signal, and to the correct identification of

the vocoded (or electric) signal. In words, Eq. (3) asserts that

the probability of correctly identifying the lowpass signal or

the vocoded signal (or both) equals the probability of cor-

rectly identifying the lowpass signal, plus the probability of

correctly identifying the vocoder signal, minus the probabil-

ity of correctly identifying both signals.

The probability-summation model has been used in vari-

ous contexts (for reviews of the origins and limitations of

this model, see Treisman, 1998; Wickens, 2002; Macmillan

and Creelman, 2005). In particular, it has been applied to

predict the detection of simple events (e.g., signal versus no

signal) at the output of two or more sensory channels (e.g.,

Pirenne, 1943; Green and Swets, 1966; Pelli, 1985). Fletcher

(1953) used it to predict the probability of a correct response

in experiments involving the recognition of simultaneously

presented bands of speech, based on the measured propor-

tions of correct responses for each band in isolation. Boot-

hroyd and Nittrouer also used and extended this model to

analyze temporal context effects in the identification of pho-

nemes (Boothroyd and Nittrouer, 1988; Nittrouer and Boot-

hroyd, 1990). However, the rationale for applying the

probability-summation model in the context of EAS studies

is not straightforward.

From Eqs. (1)–(3), the application of the probability-

summation model requires important assumptions. The first

assumption is that the lowpass and vocoded signals (L and V
signals, respectively) are identified separately and independ-

ently, in such a way that the correct or incorrect identifica-

tion of the L signal does not influence the identification of

the V signal, and vice versa. In other words, there is no inter-

action in the processing of the L and V signals. This assump-

tion is justified, since the goal is to obtain predictions of

performance for the combined case under the null hypothesis

of no interaction between the L and V channels.

The second assumption implied by the probability-

summation rule is that a correct response is produced when-

ever at least one of the two channels produces a correct out-

put, i.e., whenever the L signal or the V signal is correctly

identified. This second assumption is not so easily justified.1

For example, suppose that in the combined-stimulation con-

dition of a simulated-EAS experiment the vowel /i/ was pre-

sented and the vocoded signal was identified as /i/ (i.e., the

correct answer), but the simultaneous lowpass signal was

identified as /u/ (i.e., an incorrect answer).2 The probability-

summation model assumes that whenever the signals identi-

fied at the outputs of the A and V channels are in conflict, the

listener invariably selects the correct answer. Thus, this

model predicts that the listener will always give the correct

answer, /i/, in this situation. However, it is not clear why,

and how, the listener should always be able to guess cor-

rectly which of the two conflicting responses is correct.

More plausibly, the listener will sometimes choose the incor-

rect answer. This will result in lower performance than pre-

dicted by the probability-summation rule. From this point of

view, it appears that predictions obtained using the

probability-summation model may be overly optimistic, and

that a more realistic version of this model would only rein-

force the conclusion of super-additive effects in human lis-

teners. However, there is a more fundamental problem with

the probability-summation model. Even if it is assumed that,

when faced with conflicting responses from the L and

V channels, the listener always knows the correct answer,

the decision rule implied by this model is suboptimal. This

means that it is possible—at least in principle—for an ob-

server to achieve a higher level of performance by using a

different decision rule. In fact, as we demonstrate in Sec. III,

Gaussian SDT models can achieve considerably higher per-

formance than predicted by the probability-summation

model. This conclusion has significant implications for the

interpretation of the results of EAS and vocoder-simulated

EAS experiments.

III. GAUSSIAN-SDT MODELS OF CUE-COMBINATION

The probability-summation model falls in the category

of post-labeling models (Braida, 1991). Models of this type

assume that listeners first identify speech items (phonemes,

syllables, or words) within each channel, then combine the

resulting identification decisions in some way, e.g., by

selecting one of the two answers with a certain probability.

In contrast, pre-labeling models posit that listeners combine

information across channels before they make a decision as

to which item was presented (Braida, 1991; Uchanski and

Braida, 1998; Müsch and Buus, 2001; Ronan et al., 2004). In

general, post-labeling decision strategies are suboptimal

(e.g., Green and Swets, 1966; Wickens, 2002), although the

extent to which their performance falls short of the upper

bound defined by maximum-likelihood decision strategies

can vary, depending on the specifics of the situation being

modeled (e.g., Pelli, 1985). Pre-labeling models can achieve
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optimality if the decision variable(s) formed by combining

information across channels are related monotonically to the

likelihoods of the different hypotheses (in this case, different

speech items), and the decision rule invariably selects as a

response the stimulus alternative that is the most likely a
posteriori (Green and Swets, 1966; van Trees, 1968).

In the context of speech-recognition experiments, in

which the listener’s task is to identify a speech item (e.g., a

word) drawn from a set of m items—which is generally

known in the psychophysics literature as an m-alternative

forced-choice (mAFC) task—the maximum-likelihood deci-

sion rule is to choose the response alternative corresponding

to the item indexed by k (k¼ 1, …, m), such that

k ¼ arg maxi ‘ið Þ; (4)

where ‘i denotes the likelihood that item i (i¼ 1,…, m) was

presented, given the received signal (Green and Birdsall,

1958; van Trees, 1968). In other words, the observer should

always choose the response corresponding to the most likely

item, given the received signal. If the m items are all equally

likely, this decision rule is equivalent to the maximum-a pos-
teriori decision rule, which maximizes the long-term average

proportion of correct responses (van Trees, 1968).

Following previous investigators (e.g., Green and Bird-

sall, 1958; Müsch and Buus, 2001), we assume that the ob-

server only has access to a noisy representation, x, of the

transmitted signal, hj (j¼ 1,…, m), and that it can compute a

quantity, yi (i¼ 1,…, m) which is directly proportional to the

likelihood of signal i, ‘i. Note that we use the convention of

denoting vectors by boldface characters. The representation

of the received signal as a vector is quite general. For exam-

ple, the vectors x and hj may be thought of as sampled time

waveforms or as arrays of phonetic-feature activation values

(e.g., Braida, 1991).3 The noise in the received signal may

be of internal or external origin. This includes background

noise, neural noise, as well as random variations in speech

signals due to within- and across-speaker variability (Green

and Swets, 1966; Uchanski and Braida, 1998). For simplic-

ity, and justified by the central limit theorem (Green and

Swets, 1966), it is assumed that the noise is additive and

Gaussian with a constant variance. Moreover, consistent

with the standard Gaussian-SDT model for the mAFC task

(see Green and Dai, 1991), the variables, yi, i¼ 1,…, m, are

assumed to have an expected value of zero for all i= j, and

an expected value greater-than-zero for i¼ j.
With these simplifying assumptions, it can be shown

(e.g., van Trees, 1968) that the probability of a correct

response, P, equals

P ¼
ðþ1

�1

/ z� d0ð ÞUm�1 zð Þdz; (5)

where /(.) denotes the standard normal probability density

function, Um�1(.) denotes the cumulative standard normal

function, and d0 equals the ratio of the mean to standard

deviation of yi¼ j. Equation (5) can be inverted numerically

to obtain an estimate of d0 based on a measured proportion

of correct response in an experiment.

This model can be extended to the case where the ob-

server receives two signals, for example, a low-frequency

unprocessed signal and a vocoded (or electric) signal. In this

situation, the observer is assumed to compute, for each

i¼ 1,…, m, a pair of decision variables, yi,L and yi,V, where

the superscripts L and V refer to the low-frequency and

vocoded signals, respectively. To arrive at a decision, the ob-

server must then combine yi,L with yi,V. The number of ways

in which two variables can be combined is infinite. Here, we

focus on the maximum-likelihood decision rule. Given the

assumptions stated above, it can be shown (Green and Swets,

1966) that an optimal decision rule involves choosing

response k such that

k ¼ arg maxi yið Þ; (6)

where

yi ¼ xLyi;L þ xVyi;V : (7)

The variables xL and xV may be thought of as relative

weights, which the observer assigns to the (noisy) observa-

tions of the low-frequency and vocoded signals. Intuitively,

it is clear that the observer will achieve a higher correct-

recognition score if the weights are adjusted based on the rel-

ative reliability of the two signals, with greater weight given

to the more reliable signal and less weight to the less reliable

signal. Mathematically, the reliability of a signal is directly

related to the magnitude of the signal, and inversely related

to the variance of the noise. Here, these magnitudes and var-

iances correspond, respectively, to the expected values and

variances of yj,L (for the low-frequency part) and yj,V (for the

vocoded part). To maximize the probability of a correct deci-

sion, the weights should be adjusted as follows (Green and

Swets, 1966):

xL ¼
E yj;L

� �
V yj;L

� � ; (8)

and

xV ¼
E yj;V

� �
V yj;V

� � ; (9)

where E[.] and V[.] are the mathematical expectation and

variance operators.

To prevent the weights from becoming arbitrarily large,

we add the constraints that the weights must be between

0 and 1, and that their sum must equal 1. This leads to a

re-formulation of the linear-combination model as

k ¼ arg maxi zið Þ; (10)

with

zi ¼ wLyi;L þ wVyi;V ; (11)
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where

wL ¼
xL

xL þ xV
; (12)

and

wV ¼
xV

xL þ xV
: (13)

Since zi is directly proportional to yi, the decision rules

defined by Eqs. (6)–(9) and (10)–(13) are equivalent.4 There-

fore, the index of sensitivity for these two rules is the same.

This index can be computed as

d0 ¼
E yj

� �
ffiffiffiffiffiffiffiffiffiffiffi
V yj

� �q ; (14)

with

V yj

� �
¼

E yj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2

C

q ; (15)

and

r2 ¼
E yL

j

h i� �2

V yL
j

h i þ
E yV

j

h i� �2

V yV
j

h i ; (16)

where r2 is the total variance of the noise resulting from the

combination of information across the low-frequency and

vocoded signals, and r2
C denotes the variance of any addi-

tional noise, hereafter referred to as “late” noise. This late

noise is assumed to be present in combined and non-

combined stimulation conditions, and its magnitude is

assumed to be constant. One example of a possible source of

late noise is inattention.

Two specific cases must be considered. If r2� r2
C, and

the contribution of the late noise is negligible, d0 is approxi-

mately equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0L

2 þ d0V
2

q
, where d0L and d0V can be esti-

mated based on the PCs measured in unimodal (i.e., low-

frequency signal alone and vocoded signal alone) conditions

using Eq. (5). This case can be referred to as the

“independent-noises” model. Denoting the estimates of sen-

sitivity as d̂0L and d̂0V , the predicted proportion of correct

responses for this case is

Pindependent ¼
ðþ1

�1

/ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̂0L

2 þ d̂0V
2

q� �
Um�1 zð Þdz: (17)

By contrast, if r2� r2
C, so that the late noise is the only sig-

nificant source of noise limiting performance, which we refer

to as the “late-noise” model, the predicted proportion of cor-

rect responses is

Plate ¼
ðþ1

�1

/ z� d̂0L þ d̂0V
	 
	 


Um�1 zð Þdz: (18)

It is important to note that, like the probability-summation

model, these two Gaussian-SDT models do not assume any

synergistic interaction in the processing of the low-frequency

and vocoded signals. This can be seen by noting that Eqs.

(12) or (13) contain no interaction term involving a product

of d̂0L and d̂0V . These models involve no mechanism whereby

sensitivity to the vocoded signal is enhanced by the addition

of the low-frequency signal (or vice versa). Therefore, the

predictions obtained using these models provide an indication

of the performance that can be achieved in combined-

stimulation conditions without any constructive interaction in

the processing of the low-frequency and vocoded signals.

The two Gaussian-SDT models outlined above were

briefly described in Seldran et al. (2011), and they present

some similarities with Braida’s (1991) pre-labeling model of

bimodal identification (see also Ronan et al., 2004). In par-

ticular, these models are all based on the assumption that the

observer combines Gaussian observations before choosing a

response. This contrasts with post-labeling models, and with

the probability-summation model, in which the observer is

assumed to make separate identification judgments about the

stimulus in each channel, and then to combine these judg-

ments (i.e., discrete random variables) to determine a

response. Braida’s (1991) pre-labeling model is more sophis-

ticated than the two Gaussian-SDT models described above,

in that it takes into account the relative locations of the stim-

ulus and response centers in the multi-dimensional feature

space (for details, see Braida, 1991; Ronan et al., 2004).

These two types of Gaussian-SDT models both have

advantages and limitations. One advantage of Braida’s

(1991) pre-labeling model is that it can be used to obtain

phoneme-specific predictions of recognition performance,

whereas the two Gaussian-SDT models described above

only yield overall PC predictions. One advantage of the

Gaussian-SDT models, however, is that they are somewhat

simpler, and have fewer free parameters, than Braida’s

(1991) pre-labeling model; their predictions only depend on

the parameter, m, whereas for Braida’s (1991) pre-labeling

model, different predictions are obtained depending on the

locations of the response centers relative to the stimulus cen-

ters in the multi-dimensional feature space (Braida, 1991;

Ronan, 2004). However, the independent-noise model

described above shares one important feature with Braida’s

(1991) optimal pre-labeling model (i.e., the version of the

model in which all of the response centers coincide with the

stimulus centers), in that these two models both predict that

the sensitivity for the combined case equals the Pythagorean

sum of the sensitivities measured in the two unimodal

conditions.

IV. REVISITING SUPER-ADDITIVE EFFECTS
IN COMBINED STIMULATION

A. Proof of principle

In this section we demonstrate that the Gaussian-SDT

models described in Sec. III can account in principle for

large benefits of combined stimulation, even when perform-

ance with either of the constituent signals (lowpass-filtered

or vocoded) is close to chance. Consider the curve relating
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PC to d0, which is shown in Fig. 1. This curve corresponds to

the psychometric function predicted using Eq. (13), with m
set to 8000. This number was based on the work by Müsch

and Buus (2001). They reanalyzed Kryter’s (1962) data on

speech intelligibility as a function of set-size, and found that

setting m to 8000 led to more accurate predictions of per-

formance for open-set speech-recognition experiments, and

experiments involving more than a few hundred potential

items (e.g., words), than setting m to the actual number of

potential stimuli or response alternatives. A similar effect

was observed by Green and Birdsall (1958), who suggested

that when the stimulus set is large and its contents are not

known in advance to the listener, performance is determined

not by the number of stimulus alternatives but by the number

of response alternatives, which in this case may equal the

size of the listener’s active vocabulary. Müsch and Buus

(2001) estimated the size of this vocabulary at about 8000

words.

The filled circle marks the point on the psychometric

function corresponding to a 0.5 probability of observing zero

correct responses out of 75 trials—the average number of

words per condition per listener in Kong and Carlyon’s

(2007) study—assuming no over-dispersion. (In the presence

of over-dispersion, the filled circle would correspond to an

even higher d0.) Note that the d0 corresponding to this point

equals 1.3. This means that if a listener who behaves accord-

ing to this model had a d0 of 1.3, there would be an approxi-

mate 1-in-2 chance of observing a PC of zero in this listener,

for the considered condition. Let us assume that in the

lowpass-only condition the listener had an even lower d0, 1,

and that in the vocoded condition the same listener achieved

40% correct. As indicated by the dashed line, this corre-

sponds to a d0 of about 3.5. The notion that a PC of zero can

correspond to a d0 larger than zero can be understood in light

of Kong and Carlyon’s (2007) remark that although a

lowpass-filtered or vocoded speech signal “may not be suffi-

cient to identify any whole words, this does not mean that it

conveys no phonetic information at all.”

According to the late-noise model, d0 for the combined

condition should be equal to 1þ 3.5¼ 4.5. The solid line

shows that the PC corresponding to this d0 of 4.5 is close to

75%. In other words, this late-noise model predicts that

when lowpass-filtered stimuli, which yield essentially 0%

correct when presented on their own, are combined with

vocoded stimuli (as in simulated EAS studies) or with elec-

tric stimuli (as in real EAS studies), which yield 40% correct

when presented on their own, the listener should be able to

achieve about 75% correct. Note that this model assumes no

interaction in the extraction of information from the lowpass

and vocoded stimuli, i.e., the model has no “super-additive”

mechanism. However, if these results were analyzed using

the probability-summation model, they would lead to the

conclusion that super-additivity occurred because, in this

example, the probability-summation rule predicts that PC in

the combined case should be no more than 40%.

B. Application to two published datasets

In this section, we apply the models described above to

published data by Kong and Carlyon (2007) and Qin and

Oxenham (2006). Background information and methodologi-

cal details can be found in those articles.

1. Sentence identification

Figure 2 replots the data from Kong and Carlyon’s

(2007) Fig. 1, overlaid with the predictions of the

probability-summation, late-noise, and independent-noise

models. The predictions of the latter two models were com-

puted with the parameter m set to 8000 (see Sec. IV A for

the justification of this choice). The within-subject standard

errors that were displayed in the original figure have been

multiplied by 1.96, so that the error bars in Fig. 2 show the

95% confidence intervals (within subjects). Two points are

noteworthy. The first is that listeners’ performance in the

combined-stimulation condition is remarkably well predicted

by the independent-noise model, with predictions often fall-

ing with the 95% confidence intervals of the data points.

The second point is that the predictions of the late-noise

model (shown by the short-dashed line at the top) are consis-

tently and substantially higher than the mean PCs measured in

the combined-stimulation conditions in the human listeners.

Thus, human listeners’ ability to combine the information

contained in lowpass and vocoded speech signals is substan-

tially lower than predicted by a model in which the only

source of performance-limiting noise occurs after the combi-

nation of information provided by the lowpass and vocoded

stimuli. This is perhaps not entirely surprising, since most of

FIG. 1. Illustration of the ability of the Gaussian-SDT model to predict a

large combined-stimulation advantage, even when one of the two informa-

tion sources yields close-to-chance performance when presented on its

own. The solid curve shows the relationship between d0 and PC for the

mAFC identification task with m¼ 8000, as predicted by the maximum-

likelihood Gaussian-SDT model [Eq. (7)]. The dashed and solid lines illus-

trate the connection between d’ for acoustic stimulation alone (A), electric

stimulation alone (E), and combined stimulation (AþE), to the corre-

sponding PC points on the psychometric function. The horizontal short-

dotted line close to the x-axis indicates the PC corresponding to d0 ¼ 1

for the A condition; this PC was very close to zero, or to the chance rate

(1/8000). For the E condition, PC equals 40%, which corresponds to a d’

of approximately 3.5. The late noise model described in the text predicts

that d0 for the AþE condition equals the sum of these two d0s, i.e., 4.5.

This corresponds to a PC of approximately 75%. The filled circle marks

the point on the psychometric function corresponding to a 0.5 probability

of observing zero correct responses out of 75 trials in this observer; this

corresponds to a d0 of about 1.3.
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the conditions tested by Kong and Carlyon (2007) involved an

external interferer, i.e., a significant source of noise located

before the combination of information across channels. How-

ever, one might have expected the late-noise model to cor-

rectly predict listeners’ performance in the quiet condition;

instead, the prediction of this model was higher than the lis-

teners’ performance even for that condition. This suggests

that even in quiet listening conditions, human listeners’ per-

formance is significantly limited by other sources of noise

than late (i.e., post-combination) noise.

2. Double-vowel identification

Figure 3 shows proportions of correct responses meas-

ured by Qin and Oxenham (2006) in an experiment involv-

ing the identification of pairs of concurrently presented

vowels. Two lowpass-filter cutoff frequencies (CFs) of the

acoustic stimulation (300 and 600 Hz), and seven F0 separa-

tions (DF0, ranging from 0–14 semitones), were tested in

this experiment. The data for lowpass-filtered, vocoded, and

combined (lowpass-filteredþ vocoded) stimuli are shown as

symbols connected by solid lines, using the same coding

scheme as in Fig. 2. The predictions of the probability-

summation, independent-noise, and late-noise models are

superimposed on the data. For this experiment, the parame-

ter, m, in the latter two models was set to 20, which is the

number of different vowel pairs presented to the listeners,

and the number of response alternatives.

As for the Kong and Carlyon (2007) data, the predic-

tions of the probability-summation model (dotted line)

generally fall below the mean PCs of the listeners in

combined-stimulation conditions (triangles). For the 600-Hz

CF conditions (shown on the right), the predictions of the

probability-summation model fall systematically below the

lower limit of the 95% confidence intervals around the mean

PCs across listeners. The discrepancy between data and pre-

dictions is less pronounced for the 300-Hz CF conditions

(shown on the left); for these conditions, the predictions of

the model fall within the limits of the 95% confidence inter-

vals around the data for four out of the seven DF0 conditions

tested. On the whole, however, the probability-summation

model does not provide a satisfactory account of these data.

The independent-noises model under-estimated listen-

ers’ performance in most of the combined-stimulation condi-

tions of this experiment. As for the probability-summation

model, the discrepancy is more pronounced for the 600-Hz

CF condition, where performance in lowpass-alone condi-

tions was generally higher than for the 300-Hz CF condi-

tions. Thus, for these data, the independent-noises model

with m equal to the number of alternatives (i.e., 20) cannot

fully account for the large improvements in vowel-

identification performance that were measured by Qin and

Oxenham (2006) when lowpass-filtered signals were added

to vocoded signals. However, it is important to note that the

predictions of the independent-noises model can be brought

in line with the data if m is allowed to exceed 20. The

dashed-dotted lines in Fig. 3 show the predictions of

the independent-noises model with m set to 451, which is the

value that was found to minimize the squared error between

the data and the model predictions. As can be seen, with this

m value, the model predictions fall within the 95% confi-

dence intervals of the data, with only one exception (for the

600-Hz CF, 12-semitones condition). It is worth emphasiz-

ing that, although in this example, m was allowed to vary to

yield the best possible fit, it was not allowed to differ across

conditions; thus, the finding that the same m value of

451 was found to fit the data of both the 300-Hz CF and the

600-Hz CF conditions well is not trivial. However, it is also

important to note that this m value is ad hoc, and is substan-

tially larger than the number of response alternatives in the

considered experiment. One interpretation of this outcome is

that the level of uncertainty of the listeners in this experi-

ment may have been higher than expected based on the num-

ber of possible stimuli, i.e., the listeners entertained more

than one template for each response alternative (see Pelli,

1985). Another possible interpretation is that the listeners

did not, in fact, entertain more templates than there were

response alternatives, so that the only possible setting for

m is 20, which implies that the independent-noises model

cannot account for the data of Qin and Oxenham (2006). If

the latter interpretation is correct, this would raise the ques-

tion of why the model is able to account for some data

sets—namely, the data of Kong and Carlyon (2007)—but

not others. At present, we can only speculate as to why this

may be the case.

FIG. 2. Measured and predicted performance in a combined-stimulation

experiment involving the identification of words for sentences presented in

quiet and in background noise. The data are from Kong and Carlyon (2007),

Fig. 1. As indicated in the key, the data for different stimulation modes

(lowpass-alone, vocoded alone, and combined) are shown using different

symbols connected by solid lines, using the same code as in Kong and

Carlyon’s Fig. 1. Model predictions are shown using dashed and dotted lines

with no symbols. As in Kong and Carlyon’s Fig. 1, the long-dashed lines

correspond to the predictions of the probability-summation model. The pre-

dictions of the two other models tested in this study, the late-noise model

and the independent-noise model, are shown using short-dashed and dotted

lines, respectively. The labels underneath the x-axis indicate the different

SNRs tested by Kong and Carlyon (2007), and the quiet condition. The error

bars show 95% confidence intervals around the mean PCs; these confidence

intervals were computed based on the error bars shown in Kong and Carly-

on’s (2007) Fig. 1, which were obtained after partialing out across-subject

variability as explained in that article.
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Possible reasons include differences in the nature of the

task (open-set vs closed-set) or in the test materials (words in

sentence context vs concurrent vowels). For example, human

listeners’ perceptual and decision processes in experiments

involving relatively small stimulus sets may not conform as

well to the simplifying assumptions and asymptotic approxi-

mations of SDT models (i.e., Gaussian distributions, statisti-

cally independent observations, and orthogonal templates) as

those underlying recognition performance with open (or large)

stimulus sets. This might explain why the independent-noises

model was less successful for Qin and Oxenham’s (2006) data

than for Kong and Carlyon’s (2007) data.

Finally, with only two exceptions (corresponding to the

2-semitone DF0 condition for the 300-Hz CF and to the 12-

semitone condition for the 600-Hz CF), the predictions of the

late-noise model always fall within the bounds of the 95%

confidence intervals around the listeners’ mean PCs. We do

not have an explanation for why the late-noise model cor-

rectly predicts listeners’ performance in Qin and Oxenham’s

(2006) experiment while it over-predicts listeners’ perform-

ance in Kong and Carlyon’s (2007) experiment. We simply

note that Qin and Oxenham’s and Kong and Carlyon’s experi-

ments involved very different stimuli (concurrently presented

steady-state vowels for the former, sentences presented in

backward-speech masker for the latter) and tasks (closed-set

identification for the former, open-set speech recognition for

the latter). Taken at face value, our finding that the Kong and

Carlyon data were better fitted by the independent-noises

model suggests that this model might provide a more accurate

representation of the processes underlying human listeners’

performance in open-set speech-recognition tasks with an

energetic masker, whereas the late-noise model might be

more adequate for explaining human listeners’ performance

in double-vowel experiments. Ultimately, it could be that a

model including both pre- and post-combination noises is

needed to account for the effects of combined-stimulation on

performance in different tasks, using different stimuli. The

predictions of the independent-noises model and late-noise

model tested in this study provide lower and upper bounds,

respectively, on the predictions that would be obtained using

an independent- plus late-noise model.

V. LIMITATIONS AND PERSPECTIVES

The examples described above demonstrate that it is pos-

sible to account for combined-stimulation advantages that are

as large as, or larger than, those that have been measured in

earlier studies, using relatively simple decision-theoretic mod-

els that do not involve interactions in the combination of

lowpass and vocoded speech cues. These findings are encour-

aging and suggest that these models could be used in future

studies of the combined-stimulation advantage. However, it is

important to acknowledge that these models entail several

simplifying assumptions. In the remainder of this section, we

examine some of these assumptions and suggest ways in

which the models might be refined in future work.

A. Nature and number of speech templates

A fundamental assumption of the two Gaussian-SDT

models described in this article is that, when recognizing

speech, listeners systematically compare internal representa-

tions of incoming acoustic signals with internal “templates”

stored in long-term memory. This assumption is quite com-

mon in the context of speech-recognition models; indeed, it

is difficult to conceive of a speech-recognition system that

does not involve some form of comparison with stored

FIG. 3. Measured and predicted performance in a combined-stimulation experiment involving the identification of pairs of concurrent vowels. The data are

from Qin and Oxenham (2006), Fig. 2. The labels underneath the x-axis refer to different conditions, involving combinations of seven F0 separations (ranging

from 0–14 semitones), and two lowpass-filter CFs (300 and 600 Hz). Data corresponding to different presentation modes (lowpass-filtered, vocoded, and com-

bined) are indicated by symbols, and the predictions of the different models (independent-noise, late-noise, and probability summation) are indicated by differ-

ent lines styles, as in Fig. 2. The error bars show 95% confidence intervals around mean PCs for the combined conditions; these confidence intervals were

determined by multiplying the size of the standard-error bars reported by Qin and Oxenham by 1.96. For the independent-noise and late-noise models, predic-

tions were generated with the parameter, m, set to 20, which is the number of vowel pairs that listeners had to identify in this experiment. In addition, simula-

tions were run to find the value of m that minimized the squared error between the data and the predictions of the independent-noise model. This value was

found to be equal to 451, and the “predictions” that were obtained using this value are also shown (dashed-dotted lines).
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representations of phonemes, syllables, entire words, or fea-

tures. However, at present, the nature and the number of

speech templates stored in the human brain and activated

during an open- or closed-set speech-recognition task are

still subject to debate. In modeling Kong and Carlyon’s

(2007) data, we assumed that the templates corresponded to

entire words rather than to syllables or phonemes. This

choice seemed natural, since Kong and Carlyon (2007)

measured the percentage of correctly repeated keywords,

rather than the number of correctly repeated syllables or pho-

nemes. Had these authors used another measure of perform-

ance, such as the percentage of correctly repeated syllables,

the same models could have been used, at least in principle.

However, it is important to note that the nature of the

basic “speech items” that are assumed in the model may

have important implications concerning both the interpreta-

tion of the number of items (m), and assumptions concerning

the statistical independence of these items; we return to this

important issue of statistical independence in Sec. V B.

In addition, we assumed that the parameter, m, which in

this context represented the average size of listeners active

vocabulary, was as estimated by Müsch and Buus (2001).

These authors found that the results of open-set speech-rec-

ognition experiments involving isolated words (Kryter,

1962) or words in sentence context (Warren et al., 1995)

were well described when an active-vocabulary size of 8000

was assumed. The same number was found to also describe

the data of Kong and Carlyon (2007) well in the current

study. However, we cannot rule out the possibility that this

outcome was coincidental. Moreover, this finding does not

imply that the same m value will generally provide a good fit

for other data sets, especially if the data were obtained using

a different type of speech material.5

That the same m value cannot correctly predict

combined-stimulation advantages measured using different

types of speech material or conditions is already evident in

the present study: the results of Qin and Oxenham’s (2006)

study involving vowels were found to be most accurately

predicted with an m value of 451, rather than 8000. In addi-

tion, there is some evidence that an m value of 8000 does not

always yield the best fit even for open-set speech-recognition

data. In a recent study, Seldran et al. (2011) found that the

performance of their listeners in a task involving the recogni-

tion of isolated disyllabic French words under simulated

combined-stimulation conditions was better fitted by the

independent-noises model when the value of m was about 2

orders of magnitude larger than 8000.

What might explain the fact that values of m consider-

ably larger than the number of response alternatives (Qin

and Oxenham, 2006), or any plausible estimate of the size

of listeners’ active vocabulary (Seldran et al., 2011), are

needed to account for the large combined-stimulation

advantages that were observed in these studies? One possi-

ble answer is that the independent-noises model with no

interaction simply cannot provide a plausible account for

these data. Alternatively, it is conceivable that the value of

m, which represents the number of candidate templates

being entertained by the listener and, therefore, the listen-

er’s degree of “uncertainty” (Pelli, 1985), is smaller in the

combined-stimulation condition—reflecting less uncer-

tainty—than in the lowpass-alone and vocoded-alone condi-

tions. To understand why this reduction in uncertainty

might happen, consider that, when provided with vocoded-

alone stimuli, the listener may not have access to important

voicing cues which, when available (as in the combined-

stimulation case) considerably reduce the space of candidate

phonemes, syllables, or words, that the listener has to search

through. Conversely, when presented with lowpass-alone

stimuli, the listener does not have access to high-frequency

envelope cues that signal the presence of fricatives and

would, if available, constrain the space of candidate pho-

nemes, syllables, and words for the current stimulus.

The question may be raised as to whether assuming a

reduced uncertainty in combined-stimulation conditions, com-

pared to non-combined conditions, is equivalent to assuming

the existence of significant interactions in the combination of

lowpass and vocoded information. Providing a clear answer to

this question requires formulating models of the combined-

stimulation advantage that involve interactions in the cue-

combination process. For example, the decision-theoretic

models described above could be modified so that d0V is larger

in the presence of low-frequency information (i.e., in the

combined-stimulation condition) than in the absence of such

information. However, this implies adding an extra degree of

freedom in the model, and it makes it possible to predict an

arbitrarily large combined-stimulation advantage, simply by

assuming an arbitrarily large increase in the value of d0V when

low-frequency information is added. An important goal for

future studies, therefore, is to formulate principled models of

the combined-stimulation advantage that involve synergistic

combination of low-frequency and vocoded (or electric) sour-

ces of information, and to demonstrate that these models can

provide a (statistically) significantly better account of experi-

mental data, even after their higher number of degrees of free-

dom is taken into account.

B. Equal a priori probabilities and lack of contextual
influences

The maximum-likelihood decision rule for the mAFC

task (Green and Birdsall, 1958; Müsch and Buus, 2001; Pelli

et al., 2006), on which Eqs. (12), (14), and (15) are based,

hinges on the simplifying assumption that the speech items

are all equally likely a priori.
If this assumption is not met, the proportion of correct

responses obtained using this decision rule will fall short of

the proportion of correct responses obtained using the maxi-

mum-a posteriori rule, which takes into account differences

in the a priori probabilities of speech items. It is well known

that some phonemes, syllables, and words in the English lan-

guage, or in any other spoken language, occur with a greater

frequency than others. Thus, in open-set speech recognition

tasks, the a priori probabilities of different phonemes, sylla-

bles, and words are likely to reflect, at least in part, the a pri-
ori probabilities of phonemes, syllables, and words in the

considered language. To the extent that human listeners have,

and use, knowledge of these a priori probabilities, more accu-

rate predictions of speech-recognition performance might be
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obtained using models that take these probabilities into

account, especially in open-set speech recognition tests.

Another simplifying assumption, which is commonly

made in macroscopic models of speech-recognition perform-

ance, is that the probability of correctly identifying a word,

syllable, or phoneme is independent of the context. It is well

known that, in syntactically and semantically lawful senten-

ces, this is not the case; for example, the choice of last key-

word in a sentence is usually constrained by the words that

precede it. Although the two Gaussian SDT models consid-

ered in this article do not explicitly model contextual

dependencies in the speech-recognition process, they do

nonetheless provide a mechanism for taking into account the

influence of linguistic redundancy on speech-recognition

performance via the parameter m. The value of this parame-

ter reflects the degree of the listener’s uncertainty concerning

the identity of the signal (e.g., word). Even when the actual

degree of uncertainty varies within the course of a sentence

due to linguistic redundancy effects, the average degree of

uncertainty may be approximately constant, for a given

speech corpus. This may explain why the independent-

noises model was found to be reasonably successful in pre-

dicting PC in the combined-stimulation conditions of Kong

and Carlyon’s (2007) experiment, even though the experi-

ment measured PC for words presented in the context of sen-

tences with a relatively high degree of linguistic redundancy

in them. It will be important to test these assumptions in

future studies.

C. Orthogonality of speech templates

Another assumption of the decision-theoretic models

considered in this article is that the templates to which

incoming signals are being matched by the observer are

mutually orthogonal, i.e., uncorrelated. This simplifying

assumption is often made in decision-theoretic models of

mAFC tasks (e.g., Green and Birdsall, 1958; Müsch and

Buus, 2001; Pelli et al., 2006), and it is supported by the

results of a reanalysis of speech-recognition data obtained

using monosyllabic words for various set sizes and various

SNRs (Green and Birdsall, 1958). However, it must be

acknowledged that this assumption is, at best, a convenient

approximation. Studies of confusion matrices in speech-

recognition experiments demonstrate that some speech items

are more likely to be confused with each other than with

other, more dissimilar-sounding items (Miller and Nicely,

1954). This suggests that speech templates are partly

correlated.

Although taking into account such internal correlations

does not appear to be crucially important for developing rea-

sonably successful macroscopic models of speech-

recognition performance, i.e., models that seek to predict

overall recognition performance (e.g., Green and Birdsall,

1958; Müsch and Buus, 2001), it is obviously important

when developing models that can also predict confusion pat-

terns. Moreover, even if the goal is to predict overall PC,

taking into account any available knowledge concerning pat-

terns of confusions may yield more accurate predictions.

From this point of view, the models described in this article

may be viewed as simplifications of more sophisticated pre-

dictive models of speech-recognition performance in

combined-stimulation (or multi-band) conditions based on

performance in non-combined (or single-band) conditions,

such as those proposed by Braida and colleagues (Braida,

1991; Ronan et al., 2004; Kong and Braida, 2011).

VI. CONCLUSIONS

(1) Evidence for super-additive effects in the perceptual

processing of combined speech stimuli based on predic-

tions obtained using the probability-summation model

should be interpreted with caution, because this model is

largely suboptimal. PC performance measured in

combined-stimulation conditions can be higher than pre-

dicted by the probability-summation rule, even if the two

sources of information (acoustic and electric, or

vocoded) are combined additively.

(2) Gaussian-SDT models, which implement optimal (maxi-

mum-likelihood) decision rules, can account for consid-

erably larger benefits of combined stimulation than

predicted by the probability-summation model, without

the need to posit the existence of constructive interac-

tions between the two channels of information. These

models can account for the seemingly surprising finding

that lowpass-filtered speech stimuli, which produce

chance performance when presented on their own, can

nonetheless significantly enhance performance when

combined with vocoded or electric stimuli (e.g., Kong

et al., 2005; Kong and Carlyon, 2007). Therefore, such

findings should not be interpreted automatically as evi-

dence for synergistic interactions.

(3) For the particular data sets analyzed in this study,

although synergistic effects are not ruled out, Gaussian-

SDT models of cue combination were found to account

for human listeners’ performance in combined-

stimulation conditions. Although a more extensive rean-

alysis of published data sets is needed to determine

whether this conclusion holds more generally, the pres-

ent results suggest that, at the very least, Gaussian-SDT

models of non-interactive information combination pro-

vide a good starting point for principled analyses (or re-

analyses) of data obtained in EAS or simulated EAS

studies.
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1In the context of detection experiments, the assumption that a correct

response occurs whenever the signal is detected in at least one of the sen-

sory channels is a logical consequence of the high-threshold postulate (see

Macmillan and Creelman, 2005; Wickens, 2002). According to this postu-

late, the presentation of noise can never trigger a “detect” state. The high-

threshold observer is aware of this fact. Thus, whenever at least one sen-

sory channel is in the detect state, the high-threshold observer always

responds “signal,” and this always leads to a correct response. However,

as the example in the main text illustrates, it is less clear how the
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high- threshold postulate applies in the context of a forced-choice identifi-

cation task involving more than two possible stimulus-response alterna-

tives—which is usually the case in EAS experiments.
2This outcome is likely because the vowels /i/ and /u/ have similar first-

formant frequencies (around 350–450 Hz), but very different second-

formant frequencies (around 1100 Hz for /u/ versus 2300–2800 Hz for /i/)
(Hillenbrand et al., 1995); thus, these two vowels are likely to be confused

when listening to a lowpass-filtered version of the speech signal, but less

likely to be confused when listening to a highpass-filtered vocoded version

of the speech signal.
3A model of how speech signals are encoded and decoded in the human au-

ditory system remains elusive, and is beyond the scope of this study.
4In decision theory, two decision rules are considered to be equivalent if

they always lead to the same decision.
5One might expect the combined-stimulation advantage to be influenced by

the degree of linguistic redundancy (or “context”) of the speech material

(e.g., Brown and Bacon, 2009). To the extent that low redundancy
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