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Recent evidence suggests that spectral change, as measured by cochlea-scaled entropy (CSE), pre-

dicts speech intelligibility better than the information carried by vowels or consonants in sentences.

Motivated by this finding, the present study investigates whether intelligibility indices implemented

to include segments marked with significant spectral change better predict speech intelligibility in

noise than measures that include all phonetic segments paying no attention to vowels/consonants or

spectral change. The prediction of two intelligibility measures [normalized covariance measure

(NCM), coherence-based speech intelligibility index (CSII)] is investigated using three sentence-

segmentation methods: relative root-mean-square (RMS) levels, CSE, and traditional phonetic seg-

mentation of obstruents and sonorants. While the CSE method makes no distinction between spec-

tral changes occurring within vowels/consonants, the RMS-level segmentation method places more

emphasis on the vowel-consonant boundaries wherein the spectral change is often most prominent,

and perhaps most robust, in the presence of noise. Higher correlation with intelligibility scores was

obtained when including sentence segments containing a large number of consonant-vowel bounda-

ries than when including segments with highest entropy or segments based on obstruent/sonorant

classification. These data suggest that in the context of intelligibility measures the type of spectral

change captured by the measure is important. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.3695401]
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I. INTRODUCTION

Speech sounds can be separated into two broad catego-

ries, i.e., vowels and consonants. The relative contribution

of vowels and consonants to speech intelligibility has been

controversial. In some respects it is quite challenging to

completely isolate the individual contributions of vowels

and consonants, since the vowels carry co-articulatory infor-

mation about consonants at the vowel-consonant boundaries

and vowels are inherently longer in duration than conso-

nants. A number of studies based on a noise-replacement

paradigm suggested a remarkable advantage of vowels ver-

sus consonants for sentence intelligibility. Cole et al. (1996)

replaced vowel or consonant segments with speech-shaped

noise, harmonic complexes or silence in sentences taken

from the Texas Instruments/Massachusetts Institute of

Technology (TIMIT) corpus (Garofolo et al., 1993). Their

results showed that the vowel-only sentences (consonants

replaced) led to a 2:1 intelligibility advantage over the

consonant-only sentences (vowels replaced), regardless of

the type of segmental replacement. More specifically, the

word recognition rate of vowel-only sentences (consonants

substituted with white noise) was 87.4%, around two times

that of consonant-only sentences (47.9%) (Cole et al.,
1996). This intelligibility advantage was maintained even

when 10 ms was removed from the onset and offset of the

vowel segments. The 2:1 advantage of vowels was later

replicated by Kewley-Port et al. (2007). Young normal-

hearing (NH) and elderly hearing-impaired listeners were

presented with sentences at 70 dB and 95 dB sound pressure

levels (SPLs), respectively. Participants obtained signifi-

cantly better performance for the vowel-only sentences, by

a ratio of 2:1 across the two groups.

Using the same noise-replacement paradigm, Fogerty

and Kewley-Port (2009) further investigated how the percep-

tual contributions of consonants and vowels were mediated

by transitional information present at the consonant-vowel

(C-V) boundaries. They defined the speech signal preserved

between replacements as a glimpse window. The glimpse

windows contained proportional amounts of transitional

boundary information either added to consonants or deleted

from vowels, yielding two stimulus types, i.e., CþVP and

V�VP. The CþVP stimulus preserved the consonant infor-

mation, included some proportion of the vowel transitions,

and replaced the vowel centers with noise. The V�VP stim-

ulus preserved only a proportion of the vowel center infor-

mation, while replacing the consonants and remaining vowel

transitions at the C-V boundary with noise. Fogerty and

Kewley-Port (2009) found that the identification accuracy

increased linearly for the CþVP stimuli in proportion to the

amount of vowel transitions added. The intelligibility of the

vowel-only (i.e., V�VP) stimuli was unaffected when less

than 30% of the CV transitions was replaced with noise.

This was interpreted to indicate that CV transitions provided

information redundant with the information present in the

vowel centers, an outcome consistent with that reported by

Strange et al. (1983) with CVCs.
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Grounded on the well-known fact that perceptual sys-

tems respond primarily to change, Stilp and Kluender (2010)

recently suggested that cochlea-scaled entropy (CSE), not

vowels, consonants or segment duration, best predicts speech

intelligibility. They measured cochlea-scaled entropy in

TIMIT sentences and replaced portions of the sentences hav-

ing high, medium, or low entropy with equal-level noise.

Replacing low-entropy segments yielded relatively small

impact on intelligibility while replacing high-entropy seg-

ments significantly reduced sentence intelligibility. A

remarkably robust correlation was found with cochlea-scaled

entropy predicting listeners’ intelligibility scores. Stilp and

Kluender (2010) also reported that the duration of the signal

replaced and proportion of consonants/vowels replaced were

not significant predictors of intelligibility, and thus did not

account for the strong relationship between CSE and sen-

tence intelligibility.

The outcomes of the above studies are important in the

design of intelligibility measures, particularly the ones that

rely on short-term (20–30 ms) processing (Rhebergen and

Versfeld, 2005; Taal et al., 2010; Kates and Arehart, 2005;

Ma et al., 2009). Such measures typically place equal em-

phasis on all segments processed, paying the same attention

to transitional segments marked with significant spectral

change (e.g., vowel-consonant boundaries) and to steady-

state (or quasi steady-state) segments (e.g., vowel centers).

This is, however, contrary to existing speech perception lit-

erature pointing to differences in the contributions of vowels

vs consonants (e.g., Kewley-Port et al., 2007) and differen-

ces between low and high-entropy segments (Stilp and

Kluender, 2010) on speech recognition. If vowels do indeed

carry more information than consonants, that would suggest

the development of intelligibility measures that place more

emphasis on the vocalic segments rather than the consonant

segments. Such an emphasis could be implemented by some-

how placing a larger weight on those information-bearing

segments. Similarly, if high-entropy segments carry percep-

tually more information than low-entropy segments, then

one can devise a measure that applies greater weight on

high-entropy segments than low-entropy segments.

The aim of the present study is to identify the segments

that carry most of the information in sentences and as such

should be included (or emphasized) in the computation of

intelligibility indices. The underlying hypothesis is that includ-

ing only these information-bearing segments in the computa-

tion of intelligibility indices ought to improve the correlation

with human listener’s intelligibility scores relative to the sce-

nario where all segments are included. Unlike previous studies

(e.g., Kewley-Port et al., 2007; Stilp and Kluender, 2010) that

replaced the segments of interest with equal-level noise and

assessed their importance with listening experiments, the pres-

ent study evaluates indirectly the perceptual importance of

these segments in the context of intelligibility measures with

the main goal of improving the prediction power of existing

intelligibility measures. Clearly, the method used for segment-

ing sentences (whether phonetically or not) into different units

will affect the predictive power of the intelligibility index. The

present study examines the intelligibility prediction perform-

ance of two intelligibility measures implemented using three

different sentence segmentation methods: one based on rela-

tive root-mean-square (RMS) levels, one based on cochlea-

scaled entropy and one based on the traditional phonetic

segmentation of obstruents and sonorants. Sentence segmenta-

tion based on explicit vowel/consonant boundaries is not pur-

sued here since that it is extremely challenging to implement

in practice even with using the most sophisticated phoneme

detection algorithms. In contrast, all three segmentation meth-

ods examined in the present study can be applied via an algo-

rithm to arbitrary speech stimuli without expert knowledge of

acoustics/phonetics. By examining and analyzing different

segmentation strategies, we can assess indirectly the percep-

tual contributions of various types of phonetic segments to

sentence intelligibility prediction.

II. SPEECH INTELLIGIBILITY DATA

The speech intelligibility data was taken from the intelli-

gibility evaluation of noise-corrupted speech processed

through eight different noise-suppression algorithms by a total

of 40 NH listeners (Hu and Loizou, 2007). IEEE sentences

(IEEE, 1969) were used as test material, and all sentences

were produced by a male talker. The sentences were origi-

nally sampled at 25 kHz and down-sampled to 8 kHz. The

masker signals were taken from the AURORA database

(Hirsch and Pearce, 2000) and included the following real-

world recordings from different places: babble, car, street,

and train. The maskers were added to the speech signals at

signal-to-noise ratio (SNR) levels of 0 and 5 dB. The proc-

essed speech sentence files, along with the noisy speech files,

were presented monaurally to the listeners in a double-walled

sound-proof booth (Acoustic Systems, Inc.) via Sennheiser’s

HD 250 Linear II circumaural headphones at a comfortable

listening level. Two IEEE sentence lists (ten sentences per

list) were used for each condition, and none of the sentence

lists were repeated. The intelligibility scores were obtained

from NH listeners in a total of 72 conditions (¼ 4

maskers� 2 SNR levels� 8 algorithmsþ 4 maskers� 2 noisy

references). The percentage intelligibility score for each con-

dition was calculated by dividing the number of words cor-

rectly identified by the total number of words in a particular

testing condition. More details about the noise-suppression

algorithms and the procedure used to collect the intelligibility

data can be found in Hu and Loizou (2007). The sentences

used in that study were produced by a male talker, but we do

not expect talker-specific factors to influence the prediction

power of the intelligibility measures considered in the present

study. This is so because none of the measures considered

here extracts F0-dependent features from the signal.

III. SPEECH INTELLIGIBILITY MEASURES

Present intelligibility indices employ primarily either

temporal-envelope or spectral-envelope information to com-

pute the index. For the temporal-envelope based measure, we

examined the intelligibility prediction performance of the nor-

malized covariance measure (NCM), which is classified as a

speech-transmission index (STI)1 based measure (see review

in Goldsworthy and Greenberg, 2004). For the spectral-

envelope based measure, we investigated the coherence-based
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speech intelligibility index (CSII) measure (Kates and Are-

hart, 2005).

The NCM index is similar to the speech-transmission

index (Steeneken and Houtgast, 1980) in that it computes a

weighted sum of transmission index (TI) values determined

from the envelopes of the probe (input) and response (output)

signals in each frequency band (Goldsworthy and Greenberg,

2004). Unlike the traditional STI measure, however, which

quantifies the change in modulation depth between the probe

and response envelopes using the modulation transfer func-

tion, the NCM index is based on the covariance between the

probe and response envelope signals computed in each band.

In its original implementation, the NCM index makes use of

the envelopes extracted for the whole utterance to compute

the TI value of each band (TI values are subsequently con-

verted to an apparent SNR and mapped to the NCM index

taking values between 0 and 1). In the present study, we

modified the NCM index as follows to account for different

segmentation methods, i.e., to account for a select set of seg-

ments entering its computation. Using the probe signal, the

time instances of the segments of interest (e.g., obstruent and

sonorant segments) are first determined according to the seg-

mentation methods described below. The envelopes falling

within each of the selected segments were then concatenated

into one composite envelope of each frequency band. This

was done for both the probe and response stimuli. Finally, the

corresponding composite (concatenated) probe and response

envelopes were used to compute the TI values for each band

and subsequently the NCM index. We believe that when using

the new composite envelope, formed by concatenating the

various segments together, the modified NCM index com-

putes a perceptually more relevant (apparent) SNR in each

band since only information-bearing segments are included in

its computation.

The speech intelligibility index (SII) (ANSI, 1997) is

based on the principle that the intelligibility of speech

depends on the proportion of spectral information that is au-

dible to the listener and is computed by dividing the spec-

trum into 20 bands (contributing equally to intelligibility)

and estimating the weighted average of the signal-to-noise

ratios in each band (Kryter, 1962a,b; Pavlovic, 1987; ANSI,

1997). The modified coherence-based SII index (CSII)

(Kates and Arehart, 2005) uses the base form of the SII pro-

cedure, but with the signal-to-noise ratio term replaced by

the signal-to-distortion ratio, which was computed using the

coherence function between the input and processed signals.

The CSII measures have been used extensively to assess sub-

jective speech quality (Arehart et al., 2007) and speech dis-

tortions introduced by hearing aids (Kates, 1992; Kates and

Arehart, 2005). These measures have also been shown to

yield high correlations with the intelligibility of vocoded

speech (Chen and Loizou, 2011a), vocoded and wideband

(non-vocoded) Mandarin Chinese (Chen and Loizou,

2011b), and noise-masked speech processed by noise reduc-

tion algorithms (Ma et al., 2009). More details regarding the

definition and implementation of the NCM and CSII meas-

ures can be found in Ma et al. (2009).

This study assesses the intelligibility prediction per-

formance of the NCM and CSII measures implemented using

three different sentence segmentation methods. All combina-

tions of segmentations were incorporated in each measure

irrespective of the measure being temporal-envelope based

(NCM) or spectral-envelope based (CSII). The CSII mea-

sure, for instance, was implemented using a temporal RMS-

level based segmentation scheme (Kates and Arehart, 2005)

as well as the spectrally-based CSE segmentation scheme. A

detailed description of the three segmentation methods

examined is given next.

A. Scaled-entropy based segmentation

To compute the cochlea-scaled spectral entropy (Stilp

and Kluender, 2010), the sentence is first normalized

according to its RMS intensity, and then divided into 16 ms

segments. Segments are first bandpass filtered into M bands

using ro-ex filters (Patterson et al., 1982). The ro-ex filters

capture the non-linear weighting and frequency distribution

along the cochlea. In this study, M¼ 16 filters are used,

spaced one equivalent rectangular bandwidth (ERB) apart,

spanning 300 to 3400 Hz.2 Euclidean distances between ad-

jacent 16 ms segments are calculated across the M filter-

output levels. Distances are then summed in boxcars of five

successive segments (80 ms in duration). Cumulative Eu-

clidean distances within a boxcar are taken as the measures

of spectral entropy. More details on the computation of the

cochlea-scaled entropy can be found in Stilp and Kluender

(2010).

Figure 1(b) illustrates the cochlea-scaled entropy compu-

tation for one sentence. The sentence is segmented into two

regions, i.e., low-entropy (L-entropy) and high-entropy (H-en-

tropy) regions according to an entropy threshold Ethr. The en-

tropy threshold Ethr is determined according to a proportion

coefficient p (given in percent) such that p percent of all

entropies within the utterance are smaller than Ethr. Hence,

assuming that the entropy values are sorted in ascending

order, a value of p¼ 0.6 would suggest that 60% of the en-

tropy values (within the utterance) are smaller than Ethr. With

the above-prescribed entropy threshold, the low and high-

entropy regions are defined to include those segments whose

entropies are either smaller or larger than Ethr, respectively, as

shown in Fig. 1(b). In the present study, the proportion coeffi-

cient varied from p¼ 0.1 to p¼ 0.9 in steps of 0.1.

B. Relative RMS-level based segmentation

The relative-RMS-level-based segmentation is imple-

mented by dividing speech into short-term (16 ms in this

study) segments and classifying each segment into one of

three regions according to its relative RMS intensity (Kates

and Arehart, 2005). The high-level (H-level) region consists

of segments at or above the overall RMS level of the whole

utterance. The mid-level (M-level) region consists of seg-

ments ranging from the overall RMS level to 10 dB below

(i.e., RMS-10 dB), and the low-level (L-level) region con-

sists of segments ranging from RMS-10 dB to RMS-30 dB.

We adopt the same threshold levels (i.e., 0, �10 and �30

dB) as proposed by Kates and Arehart (2005). Figure 1(c)

shows an example sentence segmented into H-, M- and L-

levels based on the above RMS threshold levels. For the
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most part, H-level segments include vowels and semivowels,

M-level segments include consonants and vowel-consonant

transitions, and L-level segments include primarily weak

consonants (more on this later).

C. Sonorant/obstruent based segmentation

Speech sounds can generally be divided into two broad

classes, i.e., obstruents and sonorants based on the pres-

ence/absence of periodicity (Maddieson, 1984). Obstruents

(e.g., stops, fricatives and affricates) are typically voiceless

(aperiodic), while sonorants (e.g., vowels) are typically

voiced (periodic). Figure 1(d) shows an example of sen-

tence segmentation into sonorant and obstruent regions. In

the present study, we will be using the hand-labeled sono-

rant/obstruent segmentations of the IEEE sentence corpus

available from Loizou (2007).

IV. RESULTS

The average intelligibility scores obtained by NH listen-

ers in Sec. II were subjected to correlation analysis with the

corresponding values obtained by the NCM and CSII meas-

ures implemented using the above sentence-segmentation

methods. More specifically, correlation analysis was per-

formed between the mean (across all subjects) intelligibility

scores obtained in each of the 72 testing conditions (Sec. II)

and the corresponding mean (computed across the 20 senten-

ces used in each condition) intelligibility index values

obtained in each condition. The Pearson’s correlation coeffi-

cient (r) was used to assess the performance of the intelligi-

bility measures to predict intelligibility scores. Table I shows

the correlation coefficients r between speech recognition

scores and NCM/CSII measures implemented with the three

segmentation methods described in Sec. III. For comparative

purposes, Table I also includes the correlation coefficients

computed using all segments of the sentences, i.e., when no

differentiation is made between low- and high-entropy seg-

ments, or among low-, middle- and high-RMS level seg-

ments, or between obstruent and sonorant segments. These

correlation coefficients served as control and were r¼ 0.80

and r¼ 0.82 for the NCM and CSII measures, respectively.

For the correlation coefficients obtained using the scaled

entropy-based segmentation in Table I, the proportion coeffi-

cient was set to p¼ 60% (correlations with other p values are

provided later in Fig. 2). As can be seen, compared with the

CSII correlation obtained using all segments (r¼ 0.82), no

improvement was noted when using the high-entropy seg-

ments to predict intelligibility. When incorporated into the

implementation of the NCM index, however, the entropy seg-

mentation slightly improved the resulting correlation, i.e.,

r¼ 0.82 using high-entropy segments versus r¼ 0.80 using

all segments.

FIG. 1. (a) The spectrogram of the TIMIT sentence “Be careful not to plow over the flower beds.” (b) The segmentation of the sentence based on scaled-

entropy, (c) RMS levels, and (d) sonorants/obstruents classification. The proportion coefficient in (b) was set to 60%. The sonorants and obstruents in (d) are

indicated as levels of 1 and 0, respectively, and the dotted line indicates the silent regions at the beginning and end of the sentence.
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As reported in our previous study (Ma et al., 2009), the

M-level based CSII measure performed the best (r¼ 0.91)

compared to the other two RMS-level segmentations, i.e.,

r¼ 0.91 (M-level) vs 0.85 (H-level) and 0.86 (L-level) in Ta-

ble I. As can be seen, the NCM indices when implemented

using M-level segmentation also correlated highly with intel-

ligibility scores (r¼ 0.89). Ma et al. (2009) proposed several

signal-dependent band weighting functions (BWFs) for pre-

dicting the intelligibility of speech corrupted by fluctuating

maskers. The highest correlation obtained with the NCM

index was r¼ 0.89 when signal-dependent BWFs were used

for predicting the same dataset of intelligibility scores (Ma

et al., 2009). In this regard, the above finding shows that the

M-level segmentation can be used as an alternative and sim-

pler method for improving the intelligibility prediction per-

formance of the NCM index. This benefit (i.e., using M-level

RMS segmentation instead of signal-dependent BWFs to

predict sentence intelligibility) has also been noted in other

studies, involving datasets of vocoded English (Chen and

Loizou, 2011a) and vocoded and wideband Mandarin Chi-

nese (Chen and Loizou, 2011b).

It is evident from Table I that the sonorant and obstruent

segments had a differential impact on the correlation with sen-

tence scores. The correlation coefficients obtained by both

measures using only sonorant segments were higher than those

obtained when using all segments. More precisely, the result-

ing correlations were r¼ 0.84 vs 0.80 for the NCM index and

r¼ 0.85 vs 0.82 for the CSII measure. Use of obstruent seg-

ments alone led to a much lower correlation compared with

that using all segments, i.e., r¼ 0.64 vs 0.80 and r¼ 0.69 vs

0.82 for the NCM and CSII measures, respectively.

Tables II and III show the statistical comparison

between the correlation coefficients reported in Table I. Sta-

tistical analysis was performed as per Steiger (1980). When

compared to the standard normal curve rejection points

of 6 1.96, the correlation coefficients of the NCM and CSII

indices implemented with the M-RMS-level segmentation

were found to be significantly (p< 0.05) higher than those

obtained with other types of segmentation methods.

A. Scaled-entropy analysis

To investigate the influence of the proportion coefficient

p used in entropy-based segmentation on intelligibility pre-

diction, we examined the correlation of the CSII and NCM

indices with sentence intelligibility for different values of

the proportion coefficient p ranging from 10% to 90%. The

resulting correlations are plotted in Fig. 2. The intelligibility

prediction of the L-entropy CSII measure [Fig. 2(a)]

improved with increasing values of the proportion coefficient

p, i.e., as more L-entropy segments were added. Correlation

improved, for instance, from r¼ 0.10 to 0.82 as p varied

from 10% to 60%, respectively. This suggests that in order

to achieve a fairly good intelligibility prediction, segments

with at least 60% lowest entropy need to be included in the

CSII computation. The correlation pattern with H-entropy

segments was found to be flat. At one end, the correlation

was nearly the same as the control correlation (i.e., r¼ 0.81

TABLE I. Correlation coefficients (r) between listeners’ sentence recognition scores and intelligibility index values computed with three different segmenta-

tion strategies. The scaled entropy was computed with proportion coefficient p¼ 60%.

Scaled entropy RMS-level Sonorant/Obstruent

Intelligibility measure All segments H-entropy L-entropy H-level M-level L-level Sonorants Obstruents

NCM 0.80 0.82 0.78 0.83 0.89 0.77 0.84 0.64

CSII 0.82 0.82 0.82 0.85 0.91 0.86 0.85 0.69

FIG. 2. Correlation coefficients (r) between listeners’ sentence recognition scores and (a) CSII values and (b) NCM values computed using L-entropy and H-

entropy segmentation methods for varying values of the proportion coefficient p.
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and 0.82 for CSII implemented with H-entropy and all seg-

ments, respectively), while at the other end the correlation

slightly dropped to r¼ 0.79 when the proportion coefficient

p reached 90% (i.e., when segments with 10% largest entro-

pies were utilized in the computation of the CSII measure).

Reducing p to 60% only slightly increased the correlation

coefficient to r¼ 0.82 and further extending to include more

H-entropy segments did not seem to improve the correlation

of the CSII measure. This finding indicates that a small

amount (i.e., 10%) of high entropy segments carries suffi-

cient information to yield high intelligibility prediction

(r¼ 0.79). The same correlation pattern was also observed

for the NCM index, as shown in Fig. 2(b). Overall, the data

in Fig. 2 are consistent with the findings of Stilp and

Kluender (2010): high entropy segments contribute more to

intelligibility than low entropy segments. The cutoff point,

however, beyond which no benefit is observed seems to be

around p¼ 60%. That is, correlation is about the same

regardless of whether the 40% highest entropy segments are

used in the CSII computation or the 60% lowest entropy seg-

ments are used.

B. RMS segmental level analysis

As mentioned earlier, H-level segments contain primarily

vowels, M-level segments contain a subset of the consonants

along with vowel-consonant transitions, and L-level segments

contain weak consonants. This can be easily inferred from the

RMS plot shown in Fig. 1. The accurate distribution, how-

ever, of the various sound classes (e.g., vowels, consonants)

in the three levels is lacking and was not clearly quantified in

the literature. For that reason, we performed a detailed analy-

sis of the distribution of phonemes contained in the H-, M-

and L- level segments using the TIMIT corpus (Garofolo

et al., 1993). The TIMIT corpus was used because of lack of

accurate phonetic transcriptions with the IEEE corpus. A total

of 40 TIMIT sentences were used in the analysis, and Table

IV tabulates the classification of TIMIT symbols into the vari-

ous sounds. The 40 TIMIT sentences were extracted from the

Southern dialect region (DR5). Each sentence was produced

by a different talker, and overall, 20 male and 20 female talk-

ers were used. Similar to the study by Kewley-Port et al.
(2007), consonant strings were treated as a single unit, as

were vowel strings. Therefore, a C-V boundary only occurred

between consonant and vowel units, such as a vowel followed

by a consonant or vice versa (note that the C-V boundary is

defined here to be bi-directional, i.e., consonant transition into

a vowel and vice versa). The 40 sentences contained an aver-

age of 7.8 words/sentence (range: 6–10 words), 37.5 pho-

nemes/sentence (12.0 vowels, 25.5 consonants), and 22.7 C-V

boundaries/sentence. The phoneme distributions of the

selected TIMIT sentences were consistent with those reported

by Kewley-Port et al. (2007).

Table V shows the distribution of vowels and consonants

present in the three types of RMS-level segments. This distri-

bution was computed in terms of relative duration expressed

in percentage of vowels or consonants present in a specific

type of RMS-level segment. The non-phonetic segments in

Table V include pauses and epenthetic silence contained in

TIMIT sentences. As shown in Table V, H-level segments are

dominated by vowels (79.5%), while L-level segments are

dominated by consonants (84.5%). The duration of vowels

and consonants was nearly the same (46.2% vs 53.7%) in M-

level segments. Table V also lists the percent durations of the

consonants when further sub-classified into semivowels,

nasals, stops, fricatives and affricates. Semivowels are the

TABLE III. Statistical comparison (based on a¼ 0.05) between the correlation coefficients of the CSII measure (with sentence intelligibility scores) imple-

mented with various types of segmentation (as reported in Table I). Asterisk indicates that the difference in correlation is statistically significant (p< 0.05).

CSII All segments H-entropy L-entropy H-RMS-level M-RMS-level L-RMS-level Sonorants Obstruents

All segments –

H-entropy 0.02 –

L-entropy 0.01 0.02 –

H-RMS-level 1.49 0.91 1.87 –

M-RMS-level 4.84* 4.11* 5.03* 3.88* –

L-RMS-level 1.40 1.27 1.47 0.38 5.03* –

Sonorants 1.87 0.89 2.83* 0.15 4.54* 0.47 –

Obstruents 3.00* 2.66* 3.19* 3.76* 6.12* 3.90* 4.02* –

TABLE II. Statistical comparison (based on a¼ 0.05) between the correlation coefficients of the NCM index (with sentence intelligibility scores) imple-

mented with various types of segmentation (as reported in Table I). Asterisk indicates that the difference in correlation is statistically significant (p< 0.05).

NCM All segments H-entropy L-entropy H-RMS-level M-RMS-level L-RMS-level Sonorants Obstruents

All segments –

H-entropy 1.46 –

L-entropy 0.61 1.22 –

H-RMS-level 1.32 0.73 1.26 –

M-RMS-level 4.97* 4.12* 4.44* 3.50* –

L-RMS-level 0.78 1.33 0.40 1.44 4.45* –

Sonorants 3.00* 1.83 1.82 0.55 4.04* 1.87 –

Obstruents 3.79* 3.85* 3.72* 3.71* 6.34* 4.22* 4.40* –
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dominant (i.e., 14.9%) consonants present in H-level seg-

ments, while the stops, fricatives and affricates when com-

bined make up only a small portion (i.e., 5.2%) of the H-level

segments. As sonorant segments consist of vowels, semi-

vowels and nasals, the H-level segmentation captures mainly

sonorant segments (i.e., 94.8%). Thus, it is not surprising that

the correlation coefficients obtained using H-level segments

are nearly equal to that obtained using sonorant segments

(i.e., r¼ 0.83 and 0.84 for the NCM index, and r¼ 0.85 for

the CSII measure in Table I).

As expected, more consonants are present in M-level

segments than in H-level segments. The duration (in percent-

age) of stops and fricatives is increased to 9.3% and 19.4%,

respectively. M-level segments also contain fewer vowels

(46.2%). Based on the threshold value used for classifying

M-level segments, more vowel-consonant transitions are to

be expected to be present in M-level segments. To further

quantify this, Table VI shows the distribution of vowel-

consonant boundaries present in the three RMS levels. The

percentages shown in Table VI were computed by dividing

the number of C-V boundaries contained in a specific seg-

ment (e.g., M-level) by the total number of C-V boundaries

(numbers were averaged over 40 TIMIT sentences). As

shown in Table VI, more than half (i.e., 53.6%) of the total

number of C-V boundaries present in sentences are con-

tained in M-level segments. In comparison, the numbers of

C-V boundaries present in H-level and L-level segments are

much less, i.e., 18.9% (H-level) and 27.5% (L-level) vs

53.6% (M-level). Hence, in brief, M-level segments capture

the majority of the C-V transitions present in sentences.

Finally, Table VII shows the H-, M- and L-level segment

durations of the IEEE sentences used in this study when no

differentiation is made between vowels and consonants. The

L-level segments occupy the largest portion of the sentences

(39.1%). The M-level and H-level segments were nearly equal

in duration (28.9% vs 29.1%). Yet, the corresponding correla-

tions were markedly different (e.g., r¼ 0.89 vs r¼ 0.83 for

the NCM indices implemented with M-level and H-level seg-

ments, respectively), suggesting that the overall duration of

the segments included in the computation of the intelligibility

measures did not influence the prediction of sentence intelligi-

bility. For comparison, Table VII also shows the obstruents/

sonorants duration distribution. As expected, the duration of

sonorant segments was longer than that of obstruent segments,

i.e., 57.2% vs 36.5%. The sentence intelligibility prediction

was better when sonorant segments were included, but this

was also better than that obtained when all segments were

included. This provides additional confirmation that the over-

all duration of the segments included in the computation of

the intelligibility measures did not influence the prediction

power of the measures.

V. DISCUSSION AND CONCLUSIONS

A. Contributions of vowels and consonants to
sentence intelligibility prediction

Based on the above analysis, we know that the H-level

segments are dominated by vowels while the L-level seg-

ments are dominated by (weak) consonants (Table V). With

the exception of one condition with the CSII measure, better

intelligibility prediction was obtained with H-level segments

(r¼ 0.83, NCM index) than with L-level segments (r¼ 0.77,

NCM index). A similar outcome was also obtained when

using the sonorant/obstruent segmentation. Sonorant segments

contain vowels and a small portion of consonants (e.g., semi-

vowels and nasals), with vowels comprising of about 79% (in

duration) of the sonorant segments. Better intelligibility pre-

diction was obtained with sonorant segments (r¼ 0.84 with

NCM, and r¼ 0.85 with CSII) than with obstruent segments

(r¼ 0.64 with NCM, and r¼ 0.69 with CSII). The difference

in correlation was statistically significant (see Tables II and

III). To some extent, these outcomes are consistent with the

findings of Kewley-Port et al. (2007) regarding the contribu-

tions of vowels vs consonants to sentence intelligibility. It

should be pointed out, however, that the vowel/consonant

boundary assignments and the corpora used were different.

Furthermore, the RMS-based segmentation did not yield

TABLE IV. Classification of TIMIT symbols.

Vowels iy, ih, eh, ae, aa, er, ax, ah, ao, uw, uh, ow, ay,

oy, aw, ey, ux, ix, axr, ax-h, axr, ax-h

Consonants

Semivowels w, l, r, y, hh, hv, el

Nasals m, em, n, en, nx, ng, eng

Stops b, d, dx, g, p, t, k, bcl, dcl, gcl, pcl, tcl, kcl

Fricatives v, dh, z, zh, f, th, s, sh

Affricates jh, ch

TABLE V. Duration distribution (in percentage) of vowels and consonants across the three types of RMS-level segments. The nonphoneme segments denote

the pauses and epenthetic silence contained in the TIMIT sentences.

Consonants

Vowels Consonants Non-phoneme Semivowels Nasals Stops Fricatives Affricates

H-level 79.5% 20.5% 0.0% 14.9% 0.5% 1.2% 3.3% 0.7%

M-level 46.2% 53.7% 0.1% 12.7% 9.4% 9.3% 19.4% 2.8%

L-level 6.8% 84.5% 8.7% 5.8% 11.3% 33.3% 31.6% 2.6%

TABLE VI. Distribution of C-V boundaries in terms of percentage of C-V

boundaries present in each type of scaled-entropy and RMS-level segments.

The scaled entropy was computed with proportion coefficient p¼ 60%.

Scaled entropy RMS-level

H-entropy L-entropy H-level M-level L-level

C-V boundaries 49.8% 50.2% 18.9% 53.6% 27.5%
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precise vowel/consonant boundaries as available in the TIMIT

corpus as it is not based on a priori acoustics/phonetics

knowledge. Overall, the above data suggest that better sen-

tence intelligibility prediction can be obtained when using

vowel-dominated segments. In fact, intelligibility prediction

is better compared to the control condition (r¼ 0.85 vs

r¼ 0.82, CSII measure) in which all segments are used.

Although high correlation was obtained when including

vowel-dominated segments in the intelligibility measures, that

was not the highest correlation attained in this study suggest-

ing that other segmentations (not based on vowels or conso-

nants) provided better intelligibility prediction, and this is

discussed next.

B. Contributions of vowel-consonant boundaries to
sentence intelligibility prediction

Relatively lower correlations were obtained with both

NCM and CSII measures when using L-level and H-level

RMS segments than when using M-level RMS segments (i.e.,

r¼ 0.89 and 0.91 for the NCM and CSII measures, respec-

tively). As shown in Table V, neither vowels nor consonants

dominated the M-level segments as equal duration of vowels

and consonants were present. This raises the question: What

contributed to the improvement in sentence intelligibility pre-

diction with M-level segmentation? As shown in Table VI,

the M-level segments contained a larger number of vowel-

consonant boundaries compared to those present in the H- and

L-segments (see Fig. 1). The H-level segments, for instance,

only contained 18.9% of C-V boundaries suggesting that these

segments captured the inner (and perhaps steady-state) por-

tion of the vowels. Hence, based on the relatively higher

occurrence of C-V boundaries in M-level segments (i.e., Ta-

ble VI), we hypothesized that the vowel-consonant boundaries

accounted for much of the variance in intelligibility scores

and contributed to the higher correlation.

The highest correlations with both NCM and CSII meas-

ures were obtained when including segments containing a

large number of consonant-vowel boundaries (see Table VI).

To some extent, this outcome is consistent with that of Stilp

and Kluender (2010) since these segments contain a great deal

of spectral change, i.e., they have the highest entropy. Com-

pared to the scaled-entropy metric, however, which captures

spectral change present within and between vowels and conso-

nants, the M-level segmentation focuses primarily on

consonant-vowel transitions. In Fig. 1 for instance, an H-

entropy segment was identified within the vowel (see t¼ 0.6

to 0.7 s) capturing the F2 and F3 formant movements in /eh r/.

This same vocalic segment, however, was classified as an

H-level segment and not as an M-level segment.

Lee and Kewley-Port (2009) recently examined the intel-

ligibility of interrupted sentences (using the noise-replacement

paradigm) preserving four different types of sub-segmental

cues, namely steady-state cues at centers or transitions of

vowel-consonant margins, and vowel onset or offset transi-

tions. They found that intelligibility scores were not signifi-

cantly different among the various types of sub-segmental

information used. Dynamic transition cues did not provide

more benefit than quasi-steady-state cues. To some extent, this

differs with the finding of the present study on the contribution

of C-V boundaries for intelligibility prediction. The duration

of sub-segmental cues in Lee and Kewley-Port (2009), how-

ever, was constrained to be 50% or 70% of sentence duration.

No such duration constraint on the M-level segmentation was

imposed in this study. We believe this might account for the

discrepancy on the role of C-V boundaries for intelligibility

prediction between the present study and the study by Lee and

Kewley-Port (2009). Further studies are warranted to assess

the effect of segment duration (containing C-V boundaries) to

intelligibility prediction.

Both the entropy and M-level methods capture spectral

change, however, with the following two differences. First,

the M-level segmentation is instantaneous (in that it requires

no past temporal or spectral information) and perhaps more

accurate (at identifying vowel-consonant boundaries),

whereas the entropy-based segmentation requires an 80 ms

accumulation of spectra changes prior to the computation of

the entropy (Stilp and Kluender, 2010). In Fig. 1 for

instance, the computed scaled-entropy was low at

t¼ 1.6–1.8 s (segments /v/ /r/ /ix/ /dh/) despite the spectral

changes present (i.e., the distinct /v/ to /r/ transition). En-

tropy was found to be low because it was computed based on

spectral information accumulated in the past 80 ms, which in

this case happened to contain stationary (steady) vowel in-

formation (vowel /aw/ followed by vowel /ow/). Put differ-

ently, the scaled entropy computation seems to be influenced

by past contextual information particularly when the imme-

diate past spectral information is relatively stationary and

subsequently of low entropy. In contrast, the M-level seg-

mentation method is able to capture the rapid spectral

changes, such as those occurring at t¼ 1.6–1.8 s (segments

/v/ /r/ /ix/ /dh/) in Fig. 1. The second difference is that the

entropy-based segmentation is designed to capture all spec-

tral changes occurring within and between vowels and con-

sonants, whereas the M-level segmentation captures

primarily spectral changes occurring at the consonant-vowel

boundaries. To some extent, these spectral changes are the

most distinct (and largest) and perhaps contribute the most

to speech recognition in noise. Furthermore, these spectral

changes are perhaps more robust in the presence of noise

compared to the changes occurring within vocalic segments,

which might be masked by noise.

In terms of mere number of CV transitions, both M-

level and H-entropy segmentations yielded the same number

(see Table VI). Both methods captured about 50% of the CV

transitions, but the characteristics of these transitions were

not the same (see example in Fig. 1). The overall duration of

the segments falling in those transitions was longer for the

H-entropy method than the M-level method (see Table VIII).

An average 85% of the total duration of the H-entropy seg-

ments was classified as CV transitions compared to 55% of

TABLE VII. The average duration (in percentage) for RMS-level and sono-

rant/obstruent based segmentation for IEEE sentences.

RMS-level SON/OBS

H-level M-level L-level Sonorants Obstruents

Average duration 29.1% 28.9% 39.1% 57.2% 36.5%
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the total duration of the M-level segments. This was

expected given that the H-entropy method captures all spec-

tral changes including transitions within vowels, while the

M-level method captures only transitions from vowels to

consonants and vice versa. We believe that it was this differ-

ence that contributed to the difference in correlations

between the H-entropy and M-level segmentation methods

when incorporated in the computation of the intelligibility

measures (i.e., NCM and CSII) (Table I). A higher correla-

tion was obtained with the M-level method (r¼ 0.89 and

0.91 for NCM and CSII, respectively) than the H-entropy

method (r¼ 0.82 for both NCM and CSII). A second poten-

tial reason for the difference in correlations is the variability

in the spectra/temporal characteristics of the segments

included in the computation of the measures of the two

methods. A higher variability (i.e., large proportion of non-

homogeneous segments) was present in the H-entropy

method and a lower variability (i.e., relatively large propor-

tion of homogeneous segments) was present in the M-level

method. This difference in variability might have affected

the predictive power of the intelligibility measures.

Despite their differences, the entropy and RMS segmen-

tations share something in common: both methods do away

with the traditional phonetic distinction between vowels and

consonants. The RMS segmentation makes no use of a priori
knowledge about the temporal or spectral characteristics of

vowels or consonants other than the fact that vowels are gen-

erally higher in intensity than consonants. In contrast, the so-

norant/obstruent segmentation assumes knowledge of the

presence of periodicity (F0) as introduced by the vibration of

the vocal folds in voiced sounds or aperiodicity in unvoiced

sounds. It is worth noting that while the present study

showed the importance of vowel-consonant transitions as

captured by M-level segmentation in English, the contribu-

tion (and importance) of vowel-consonant transitions in

intelligibility prediction might shift in other languages. In

tonal languages (e.g., Mandarin Chinese), for instance, we

have shown previously (Chen and Loizou, 2011b) that the

H-level segments carry perceptually more important infor-

mation and are better predictors of intelligibility than the

M-level segments. This was attributed to the increased im-

portance of F0 information needed for reliable tone recogni-

tion in Mandarin Chinese. These F0 cues are present in the

vowel-dominated H-level segments.

In brief, the present data suggest that the consonant-

vowel boundaries contributed the most in terms of (English)

sentence intelligibility prediction in noise. The importance

of these boundaries as potential acoustic landmarks in the

signal has also been implicated in lexical access models

(Stevens, 2002), at least in quiet. Stevens’ lexical access

model (Stevens, 2002) comprises of multiple steps with the

first step being responsible for signal segmentation, i.e., the

signal is segmented into acoustic landmarks (present at the

boundaries of the vowels, consonants, and glide segments)

based on detection of peaks and spectral discontinuities in

the signal. This initial step is important because if the acous-

tic landmarks are perceptually not clear or distinct owing to

corruption of the signal by external noise, it would affect the

subsequent stages of the model. In noise and/or reverbera-

tion, for instance, these landmarks might be blurred and

arguably could play an even more important role (Li and

Loizou, 2008) in lexical segmentation than in quiet. Li and

Loizou (2008) assessed the contribution of acoustic land-

marks in noise, and in particular those signified by spectral

discontinuities at the onsets/offsets of obstruent consonants,

and found that listeners received a large benefit in intelligi-

bility when provided with access to these landmarks in oth-

erwise noise-masked sentences.

Overall, the data from the present study suggest that

intelligibility models need to account, and perhaps place

more emphasis, on spectral changes that can be quantified

using either the M-level or scaled-entropy segmentation

methods. The main difference between the two methods is

the emphasis placed on the various forms of spectral change

occurring throughout the utterance. While the scaled-entropy

method makes no distinction between spectral changes

occurring at vowels/consonants or at vowel/consonant transi-

tions, the M-level method places more emphasis on the

vowel/consonant transitions wherein the spectral change is

often most prominent, and perhaps most robust in the pres-

ence of noise. Data collected in our study suggests that the

M-level method better predicts the listeners’ intelligibility

scores, and the difference in correlation was found to be stat-

istically significant (Tables II and III).
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1The STI measure (Steeneken and Houtgast, 1980) is based on the idea that

the reduction in intelligibility caused by additive noise or reverberation

can be modeled in terms of the reduction in temporal envelope modula-

tions. The STI metric has been shown to predict successfully the effects of

reverberation, room acoustics, and additive noise (e.g., Steeneken and

Houtgast, 1982; Houtgast and Steeneken, 1985). In its original form

(Houtgast and Steeneken, 1971), the STI measure used artificial signals

(e.g., sinewave-modulated signals) as probe signals to assess the reduction

in signal modulation in a number of frequency bands and for a range of

modulation frequencies (0.6–12.5 Hz) known to be important for speech

intelligibility.
2In the original form of the CSE calculation (Stilp and Kluender, 2010), 16

ms slices of TIMIT sentences (sampled at 16 kHz) were passed through 33

filters, spaced one ERB apart, spanning 26 to 7743 Hz. This bandwidth is

twice the bandwidth used in the present study (300–3400 Hz) and the num-

ber of ro-ex filters used in the present study is half as many as that used

by Stilp and Kluender (2010). In the CSE calculation, however,

TABLE VIII. Comparison of duration distribution (in percentage) of CV

transitions between M-level and H-entropy segmentation methods. The H-

entropy was computed with proportion coefficient p¼ 60%.

Non-CV-transition

CV-transition Vowels Consonants Non-phoneme

M-level 55.0% 15.9% 29.1% 0%

H-entropy 84.8% 6.9% 7.8% 0.5%
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high-frequency information is attenuated relative to the emphasized

low-frequency information. Hence, there exists the possibility that both

analyses yield qualitatively similar results, and further work is needed to

confirm this.
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