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Abstract

Background: Data on the number of Open Reading Frames (ORFs) coded by genomes from the 3 domains of Life show the
presence of some notable general features. These include essential differences between the Prokaryotes and Eukaryotes,
with the number of ORFs growing linearly with total genome size for the former, but only logarithmically for the latter.

Results: Simply by assuming that the (protein) coding and non-coding fractions of the genome must have different
dynamics and that the non-coding fraction must be particularly versatile and therefore be controlled by a variety of
(unspecified) probability distribution functions (pdf’s), we are able to predict that the number of ORFs for Eukaryotes follows
a Benford distribution and must therefore have a specific logarithmic form. Using the data for the 1000+ genomes available
to us in early 2010, we find that the Benford distribution provides excellent fits to the data over several orders of magnitude.

Conclusions: In its linear regime the Benford distribution produces excellent fits to the Prokaryote data, while the full non-
linear form of the distribution similarly provides an excellent fit to the Eukaryote data. Furthermore, in their region of
overlap the salient features are statistically congruent. This allows us to interpret the difference between Prokaryotes and
Eukaryotes as the manifestation of the increased demand in the biological functions required for the larger Eukaryotes, to
estimate some minimal genome sizes, and to predict a maximal Prokaryote genome size on the order of 8–12
megabasepairs.These results naturally allow a mathematical interpretation in terms of maximal entropy and, therefore, most
efficient information transmission.
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Introduction

A substantial number of genomes from all three domains of Life

have been sequenced in the past few years. Quality data on many

of the individual properties of these genomes are now available.

Amongst the data is the total number of base pairs in each genome

(or genome size, G), which (for a number of cases) has been further

broken down into the number of ‘‘coding’’ base pairs, cDNA~c,

and ‘‘non-coding’’ base pairs, ncDNA~nc. In addition, the

number of Open Reading Frames (ORFs) in the genome has also

been tabulated. Both quantities are important in assessing the

functional complexity of the living system.

The relationship between genome size,

G~cDNAzncDNA:cznc and the number of ORFs in

a genome, yORF , is particularly interesting for many reasons that

have to do with genome structure, as well as a potential connection

with the regularities in the complexity of the organism. These

properties are believed to apply across all three domains of Life on

Earth, and have been extensively discussed in the literature, for

example in connection with genome evolution and architecture [1]

or as a means to explore and unravel the probability distribution

functions that control the dynamics of a genome, as in Ref. [2].

In this paper we report on the results of a phenomenological

study of the relationship between yORF and G (viz., yORF (G)) for

genomes from the three domains of Life. We base our work on the

genomic data that were openly available [3] in early 2010. These

data are plotted in Figure 1 for each domain.

The paper is organized into this Introduction followed by

Results, Discussion, Methods and Acknowledgments sections.

1. The Various Forms of the Benford (or Reciprocal)
Distribution with an Eye towards its Application to
yORF (G)
We will be dealing in the Results Section with the Benford [4]

(or reciprocal [5,6]) probability distribution function (pdf). This

distribution is central to this paper, and we introduce it here

together with a necessarily brief discussion of several aspects

(including some specific to our use in the biological context). There

are two aspects of the Benford distribution (whose pdf has the form

p(s)!1=s, where s is the stochastic variable; it is from this

algebraic form that derives its alternative name of the ‘‘reciprocal

distribution’’) that present formal problems: (1) it diverges as s?0,
and (2) it does not accommodate the fact that living systems cannot

exist for arbitrarily small genome size. (In other words, there exists

a minimum genome size below which a chemical system will not

‘‘boot-up’’ as a living system. We will denote this genome size by

G(min).) These difficulties can be formally avoided by either
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introducing a cut–off in the denominator of the standard Benford

pdf, as will be done in Eqn. (9), or by choosing appropriate limits

of integration over the Benford pdf. Both procedures must yield

the same result for yORF (G), and we demonstrate this next with

the standard notation used for ‘‘the law of significant digits’’,

which is the oldest and best-known application of Benford’s law [4]

(see also the last reference in [7–9]).

Assuming that the Benford distribution applies to yORF as

a function of G, we can formally write yORF (G) (for G§G(min)) as

an integral between appropriate limits of the Benford pdf:

yORF (G)~yORF (G
(min))zA

ðBzG

BzG(min)

ds

s
, ð1Þ

where B is the same parameter introduced later in Eqn. (9) and

yORF (G
(min)) is the number of ORFs corresponding to the

assumed minimal genome size, G(min), and physically measures

the minimal number of ORFs needed to ‘‘boot-up’’ a minimal

living system (L/S). (Unfortunately, we are not able to provide any

details on the nature of these ORFs or on how they operate.)

Note that the integral vanishes for G~G(min) (as it must for

consistency) and there is no problem for small values of s if either

B or G(min) is non-vanishing. Equation (1) (with G(min) set to zero)

can be recognized as the basic form that is used to derive Benford’s

Law (the ‘‘law of significant digits’’ [4]) from the eponymous

distribution [10].

Performing the integral in Eqn. (1) and using the notation

yORF (G
(min)):y

(min)
ORF leads immediately to

yORF (G)~ y
(min)
ORF{A: ln (1zG(min)=B)

n o
zA: ln (1zG=B) , ð2Þ

which is Eqn. (11) of the paper. This establishes the equality of the

two ways of parametrizing the Benford distribution.

2. Some Selected Properties of the Benford (or
Reciprocal) Distribution
In this paper we make use of several known properties of the

Benford distribution and we list them here for convenience. Their

proof and discussion as well as further references can be found in

Refs. [5–11].

These properties are the following:

(a) if the sizes of a stochastic variable, s(k), are classified by their

rank k in that distribution and are geometrically distributed,

then the pdf of that stochastic variable as a function of the

size, p(s), must be the Benford distribution;

(b) the errors generated during the combination of quantities

distributed according to the reciprocal distribution are

smaller than the ones generated if the quantities were

uniformly distributed;

(c) the random combination of stochastic quantities selected

from a stochastic combination of pdf’s produces a stochastic
variable that is distributed according to the Benford

distribution, and

(d) if one combines two stochastic variables through indepen-

dent or mutually exclusive processes, and one of them is

Benford distributed, the resulting effective stochastic variable

Figure 1. The Number of ORFs in Each Genome vs. Genome Size for the Three Extant Domains of Life on Earth. The points are data
from 1128 genomes available on the GOLD database [3] in early 2010. In this log-log plot, the x-axis represents the genome size (G) in kilobasepairs.
For each genome we plot on the y-axis the number of ORFs quoted for the genome in the above database. In order to facilitate comparisons, we
have drawn a red diagonal line on a vertical/horizontal scale where 1 vertical axis unit corresponds to 1 kbp on the horizontal axis. The Prokaryotic
genomes cluster around this (slope= 1) line. The fit to the Prokaryotes given by Eqn. (6) is represented here as a cyan line. The dashed line represents
the best fit to the Eukaryotic ORFs and corresponds to a Benford distribution, Eqn. (11), if we neglect the statistically insignificant contribution from
the combination of the first two terms, y(min)

ORF{A: ln (1zG(min)=B). Note the wide range of genome sizes that the fit accommodates. See the
Discussion Section regarding the right-hand axis.
doi:10.1371/journal.pone.0036624.g001
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for the combined process is Benford distributed. This was

referred to by Hamming [5,6] as the ‘‘persistence’’ property

of the reciprocal distribution.

It is this combination of properties that prompted us to focus on

the Benford distribution introduced above and in the phenome-

nological fits to data performed below.

Property (a) above follows from the general relationship existing

between rank and size and the application of the inverse function

theorem. Its proof can be found in [10].

Since d(uv)~udvzvdu, the error resulting from multiplying

rounded numbers is dominated by the first significant digits of the

numbers being multiplied. However, [11], as the Benford

distribution favors the smaller first digits, it follows that the

Benford distribution tends to produce less error than if the first

digits were uniformly distributed. Property (b) then follows.

Property (c) is quite remarkable and is the consequence of

a theorem in probability theory proven by T. Hill in 1995 [7,8],

implying that the reciprocal or Benford distribution is in a sense

‘‘the distribution of distributions.’’ Unlike the case of property (d)

below, the proof of this deep theorem is technically quite

demanding. It holds under very general conditions and explains

a large body of facts known to apply to Benford distributed data.

The theorem can be regarded as the analogue for pdf’s of the

situation in the Central Limit Theorem (CLT), which relates the

law of large numbers for independent and identically distributed

(iid) stochastic variables to the Gaussian distribution. In the CLT

the superposition ‘‘of a large number of iid random variables with

finite means and variances, normalized to have zero mean and

variance 1, is approximately normally distributed.’’ Here one has

a large number of pdf’s instead of iid stochastic variables. This

theorem is general and applies to any stochastic system.

Property (d) is also remarkable. It follows from the fact that the

arithmetic combination of two stochastic variables via multiplica-

tion, division, addition or subtraction involves the product or the

sum of their respective pdf’s. Carrying this out in detail [5,6] shows

that if one of the pdf’s is the reciprocal distribution, due to the

properties of the integral of 1/x, the resulting distribution for the

combination is again the reciprocal.

In summary, the Benford distribution is then associated with

geometrically distributed quantities, generates lower error rates in

the combination of quantities than the uniform distribution, is

‘‘persistent’’ (or ‘‘contagious’’) and is the distribution for a random

mixture of stochastic variables chosen at random.

Results

1. Phenomenological Fits
A fit to the 953 data in the domain of Bacteria reveals that the

functional form

yBacteriaORF (G)~yB,0ORFzAB
:G , ð3Þ

with yB,0ORF~27+9 ORF and AB~0:943+:005 ORF/kbp

provides an excellent fit with an r-parameter of 0.988. (Unless

otherwise explicitly stated, G will be expressed in kilobasepairs.

Refer to the Methods Section of the paper and the Material S1 for

a description of fitting methods and assumptions.)

A similar fit to the 69 Archaea data yields

yArchaea
ORF (G)~yA,0ORFzAA

:G , ð4Þ

with yA,0ORF~231+57 ORF and AA~0:946+:030 ORF/kbp and

an r-parameter of 0.967.

The 106 data for the Eukaryotes are well represented when fit to

y
Eukaryotes
ORF (G)~yE,0ORFzAE

: ln (1zG=BE) , ð5Þ

with yE,0ORF~{95+140 ORF, AE~3926+310 ORF,

BE~3717+860 kbp and an r-parameter of 0.947. (A fit to the

functional form y
Eukaryotes
ORF (G)~yE,0ORFzAE

: ln (G=BE) does not do

as well, especially for the smaller Eukaryotes.)

It is worth noting several features of these data and fits as plotted

in Figure 1. We see

(i) that the Archaea (A) and Bacteria (B) line up together on

a common curve, and that most of the Archaea are in the central

portion of a joint (with the B’s) Prokaryote (P) line. However, since

the A and B fits share the same functional form, Eqns. (3) and (4)

with equivalent slopes, we can also fit their combined data. This

yields

y
Prokaryotes
ORF (G)~yP,0ORFzAP

:G , ð6Þ

where yP,0ORF~35+9 ORF and AP~0:946+:005 ORF/kbp are

the values corresponding to a best fit with r=0.987. (The fact that

Archaea lie in the central portion of the Prokaryote (P) line could

be partly due to bias in organism selection when the sequencing

was done. We attribute significance to the fact that Archaea and

Bacteria line up along the diagonal of the plot.)

One also notices that

(ii) the quantity y
(min)
ORF for Prokaryotes corresponds to

y
Prokaryotes
ORF (G(min)) in Eqn. (6). But the tiny value of the straight-

line offset, yP,0ORF , strongly suggests that the slope term, AP
:G(min),

dominates and therefore without an additional scale to discrim-

inate between the two terms in that equation it is impossible to

produce an estimate for y
(min)
ORF . However, as will be seen in Results

Section C, a combined analysis of all data provides such a scale

and leads to a bound for Eukaryotes, y
(min)
ORFv167+400ORF. This

is dominated by the slope term with the large uncertainty being

dominated by the uncertainties for Eukaryotes. If we assume that

the G(min) values for the two domains are comparable, we can

expect a bound for Prokaryotes commensurate with that for

Eukaryotes given just above. In Eqn. (24) below we estimate G(min)

to be 906130 kbp, which is consistent with the arguments above.

(iii) At the other end of the essentially straight line where

Prokaryotes lie, their genome size is limited to roughly 10–13

megabasepairs (Mbp). As will be seen below, this feature can be

approximately understood in ‘‘simple’’ terms and may be related

to the fact that Prokaryotes are not equipped (complex enough) to

deal with the issues of non-linearity in the coding that would be

needed in order to maintain a longer (and, therefore, in principle

a more ‘‘capable’’) genome.

Finally, we notice that

(iv) while the smaller-genome Eukaryotes (E) are very close to

the P-line (including some genome sizes smaller than the largest

Prokaryotes), as G grows the E’s begin to depart noticeably from
the straight line and linear regime into a non-linear regime well

characterized for all Eukaryotes by yORF! ln (G=B). This occurs
at around the same value where the ratio ncDNA=cDNA becomes

§1 (cf. [2,12,13]). Furthermore, although we do not show it in our

plot, the data [3,2,12,13] clearly indicate that for those Eukaryotic

genomes where the ncDNA fraction is quoted in the databases,

one sees the well-known fact that most of the genomic material is

in the form of ncDNA, which (eventually) dominates by orders of

Genome Sizes and the Benford Distribution
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magnitude over the cDNA component as the total genome size

increases.

The features listed above can be accommodated, accounted for

and unified in a natural way by the properties of the Benford (or

reciprocal) distribution if the pdf for ORFs as a function of full

genome size is the Benford distribution. We briefly argue and

motivate this in the next subsection.

2. The Origin of the Benford Distribution for the
Distribution of ORFs in a Genome as a Function of Full
Genome Size

2.1. The cell environment is stochastic. The detailed

processes occurring within a cell are stochastic, as they take place

in a complex and noisy physico-chemical environment [14–16].

Then, just as for any ensemble of molecules (or any other many–

body system) genome dynamics can, in principle, be described by

statistical mechanics [16], where the central object for the

description of the dynamics is the probability distribution function

(pdf) for the stochastic variable involved in the process under study

[17].

For the genome, this pdf must take into account the many (and

very different) processes that occur under the control of the

genome, including how the nature of those processes changes as

a function of genome size or as time elapses and/or both the

internal and external environments change. We also note that in

general, there is a positive correlation between genome size and

organismic complexity or functions, so that a larger genome size

brings with it the potential for more functions. This will affect how

the larger number of base pairs contribute to the effective

dynamics of ORFs and, therefore, their pdf as a function of full

genome size pORF (cznc).
2.2 ORFs (Open Reading Frames). ORFs are defined

[18,19] as stretches of genome DNA base pairs contained between

a start and a stop codon. They contain all of the cDNA in the

genome, but may also contain some pieces of ncDNA, such as

introns, which (primarily) in Eukaryotes intersperse the stretches of

cDNA between the ORF’s start and stop codons.

An ORF is the part of a protein-coding gene that is translated

into protein. ORFs are present in genomes from all three domains

of Life. ORFs have special physical relevance due to the fact that

they carry all of the cDNA in the genome. ORFs are first

converted to pre-mRNA and then further converted to mRNA in

the process of transcription. Eventually the information originally

present in ORFs is translated into functional RNA and proteins.

(We note that since ORFs contain all the cDNA in the genome

they carry at least as much information as is contained in the

cDNA fraction of the genome).

Of course the transmission of information from ORFs to

mRNA and on to protein and functional RNA is an extremely

complicated process. However, for our present purposes where we

are interested in their overall effective pdf, it is only necessary to

notice (independent of the specific details) that the processes of

evolution in the nature of biological function must be closely

related to the evolution of the number of ORFs within a genome.

2.3. ORF phenomenology differs between Prokaryotes

and Eukaryotes. The number of ORFs is also sensitive
to the amount of ncDNA in the genome. Although ORFs are

present in all domains of Life, their phenomenology in Prokaryotes

and Eukaryotes is markedly different. For example, in relation to

genome size (and its various components), it is known that for

Prokaryotes the number of ORFs per mRNA is greater than 1,

whereas for Eukaryotes the number of ORFs per mRNA is, on

average, only slightly larger than 1. In Prokaryotes several

ORFs with their proteins are transcribed into a single mRNA. In

Eukaryotes one ORF corresponds essentially to one mRNA [18].

It is also well known that the ratio of the cDNA–component to

the ncDNA–component in a genome differs substantially between

Prokaryotes and Eukaryotes. One observes (see, for example,

[1,12,13]) that

cDNA

ncDNA

� �
Prokaryotes

&
cDNA

ncDNA

� �
Eukaryotes

ð7Þ

for all but the largest Prokaryotes. Put together with the remark

from the preceding paragraph, this implies that the probability

distribution function for ORFs in a genome must depend not

only on the amount of cDNA but also on the ncDNA fraction of

the genome and how they are apportioned.

Therefore, in developing the pdf pORF (c,nc), from which the

number of ORFs in the genome can be computed, one must

consider the coupled influence of cDNA and ncDNA in describing

the functionality of ORFs. (The pdf for ORFs as a function of

only the cDNA fraction of the genome was inferred for a species

from each of the three Domains of Life in Ref. [20]. There it was

found to be expressible in each case as the superposition of two

mutually exclusive pdf functions.)

That is, ORF dynamics depends on both the cDNA and the

ncDNA components of the genome and not only on the cDNA
component.

2.4. Evolution and the proliferation of gene

functions. During the course of evolutionary history there has

been a proliferation of gene functions (as compiled, for example, in

Gene Families). This is the result of the four forces of evolution [1]

acting on living systems. Through both adaptive and non-adaptive

processes evolution gives rise within the physico-chemical envi-

ronment of the living system, its ecological neighbors (of the same

or different species) and the external environment, to new genes

that enable the necessary functions to support Life. That is, new

ORFs are also generated.

The incorporation of new genes and gene functions into the

genome is generally the result of the evolution of pre-existing genes

and functions. The extra underlying base pairs come, for example,

from the relatively frequent duplication of regions in the genome

that may have contained one or more genes [21]. Thus, as

evolution takes place there are additional base pairs, both as

cDNAs and ncDNAs of different types, which bring with them the

potential for new and/or enhanced (biological) functions in larger

genomes (for example related to development and genomic

regulation). A qualitative description of some of the most

important known properties of ncDNA is available in many

current textbooks such as References [19,22].

But as genome size increases (in addition to the above) one can

anticipate that the increase in genome length will eventually

induce non–linearities as well as generate an enrichment of the

interactions between the various DNA components and their

functions in some non–trivial ways as more (biological) functions

are implemented (see refs. [23], [24] and [12,13]). Furthermore,

biological functions are usually related to domains in proteins

(segments of ORFs), which during genome evolution are subject to

rearrangement. In fact, domains act as modules and, in

Eukaryotes, they are particularly combined into multiple forms

in multi–domain proteins [25]. This rearrangement, particularly

enhanced in Eukaryotes, could synergistically increase the

functional repertoire encoded in the genome and therefore involve

non–linear information control.

In view of this, it is therefore reasonable to infer that a larger

genome size entails a concomitant increase in

Genome Sizes and the Benford Distribution
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(a) the number of biological functions that the living system can

potentially express, as well as in

(b) the number of chemical processes that are controlled by the

genome.

Since ORFs and genes are closely related, fulfilling these

requirements has important consequences for the statistical

mechanics of ORFs and hence their pdf. In this context, (a)

implies an increase in the number of distinct pdfs for the base pairs

that must combine in order to account for the statistical mechanics

of the genome, while (b) implies an increase in the probability of

errors taking place as a result of non-linearity, error combination

and accumulation. The latter expresses the biological fact that

segments of ORFs (domains) combine to produce further

complexity, without recourse to de novo ORF invention.

2.5. Putting the above together. We have seen that during

evolution the combination of adaptive and non-adaptive processes

leads to changes in genome size that accompany deep modifica-

tions to living systems. These functional changes affect gene

number, total genome length and the proportion of cDNA-to-

ncDNA packed inside the genome, which may be expected to lead

to speciation and beyond.

All these changes of course naturally have a reflection on the

statistical mechanics of the genome. And more specifically on

pORF (c,nc), the pdf for ORF number as a function of full genome

size. This function reflects the changes taking place in the

stochastic dynamics of the genome albeit at a very general level.

However, in view of properties (a) and (c) listed in Introduction

Section B, the combination of gene duplication and the emergence

of new functions during the evolutionary process can be

incorporated into ORF phenomenology if pORF (c,nc) is related

to the Benford distribution.

Furthermore, once the Benford distribution for ORFs sets in, its

persistence (property (d)) ensures that it will dominate other

effective distributions (e.g., uniform, normal or Poisson) while, in

view of property (b), also mitigating the size of errors in the

combination of functions.

Thus multiple lines of argument lead to the same conclusion:

the distribution of ORFs as a function of genome size, G, should

follow a Benford distribution.

2.6. A proposal for the pdf of the number of ORFs in

a genome. The above then suggests that we write

~ppORF (c,nc)~
A

G
~

A

cznc
, ð8Þ

with A.0.

However, as written, the above pdf has two problems for any

application to living systems: (1) it diverges as G?0 and (2) it does

not accommodate the fact that living systems cannot exist for

arbitrarily small genome size. These two difficulties can be

addressed by a straightforward generalization of the form given in

Eqn. (8) for the Benford pdf, namely, by introducing a new

pORF (c,nc) defined as

pORF (c,nc)~
A

Bz(cznc)
, ð9Þ

with A, B.0. The value of yORF (G) is then given by

yORF (G)~yORF (G
(min))z

ðG
G(min)

dg:
A

Bzg
, ð10Þ

where yORF (G
(min)):y

(min)
ORF is the number of ORFs corresponding

to the minimal genome size, G(min). Performing the integral in

Eqn. (10) gives

yORF (G)~ y
(min)
ORF{A: ln (1zG(min)=B)

n o
zA: ln (1zG=B) ð11Þ

for the number of ORFs in a genome of size G§G(min), and is

identical to what we derived in Eqn. (2).

Dropping the statistically insignificant combination of the first

two terms in Eqn. (11) gives the best fit to the data for Eukaryotes:

A~4016+280 ORF and B~4106+680 kbp, which corresponds

to a slope for small G of A=B~0:978+:100 ORF/kbp, which is

consistent with the slopes in Eqns. (3), (4) and (6).

Except for the region of the largest Prokaryotes, the dashed line

in Fig. (1) shows that Eqn. (11) describes rather well the available

data for the three domains of Life.

Next we will show how Eqn. (11) also interpolates between the

genomic phenomenology of Prokaryotes and Eukaryotes.

3. Estimating the Size of the Region for the Split between
Prokaryotes and Eukaryotes
A cursory look at Eqn. (11) shows that it describes two regimes:

the first corresponding to G(min)
vGvB and a second where

G(min)
vBvG. In the (first) regime with B.G, expanding the

logarithm to lowest order produces (here

DyORF (G
(min)):y

(min)
ORF{A: ln (1zG(min)=B)).

yORF (G)&DyORF (G
(min))z

A

B
:GzO½A (G=B)2� , ð12Þ

while in the (second) regime with G.B we find

yORF (G)&DyORF (G
(min))zA: ln (G=B)zO½AB=G� : ð13Þ

The functional forms of these two regimes correspond to the two

functional forms found earlier from fitting the data in Fig. (1), and

quoted in Eqns. (5) and (6). We therefore infer that Prokaryotes are

well described by the linear regime of the same form of pdf as the

one that, in its non–linear regime, corresponds to the Eukaryotes.

Furthermore, as mentioned earlier, the slope for the Eukaryotes in

the linear regime is consistent with the slopes in Eqns. (3), (4) and

(6) for the Prokaryotes.

The regime change takes place at genome sizes near B and we

can estimate the approximate position and size of this region. In

fact, although we could equate Eqns. (11) and (6) and solve

analytically for their point(s) of intersection, it is more useful to

look for the region where a linear approximation to Eqn. (11)

matches Eqn. (6).

The region of genome sizes beyond which yORF (G) departs

from a straight line and the Prokaryotes and moves into the region

where Eukaryotes lie defines a ‘‘branching region’’ between

Prokaryotes and Eukaryotes.

A ‘‘branching point’’ with genome size g0 that formally
characterizes this region can be introduced into Eqn. (11) by

adding and subtracting it in the argument of the logarithm,

A ln 1z
G{g0

B
z

g0

B

� �
~
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A ln 1z
g0

B

� �
zA ln 1z

G{g0

Bzg0

� �
: ð14Þ

From the last term in Eqn. (14) we see that there are two obvious

(and mutually exclusive) G regimes: [P] (roughly corresponding to

Prokaryotes) and [E] (roughly corresponding to Eukaryotes)

½P� : G{g0

Bzg0

����
����v1 ½E� : G{g0

Bzg0

����
����w1 ð15Þ

with a boundary in the region of GP=E~Bz2g0. This value also

sets the scale for the maximum genome size of Prokaryotes to a few

times B, or around 8–12 Mbp.

Expanding Eqn. (14) in regime [P] around the (for now

arbitrary) point g0 and requiring that the calculated yORF (G)
match the fit line for Prokaryotes in Eqn. (6), we find that the

various constants must be related as follows (and to simplify the

notation and avoid clutter, in the following we have made the

substitutions from Eqn. (6) that yP,0ORF~a and AP~b):

g0~
A

b
{B , ð16Þ

and

y
(min)
ORF~azb:g0zA: ln

1zG(min)=B

1zg0=B

� �
: ð17Þ

Since we took G(min) to be the minimal genome size, it follows that

G(min)
vg0. Then from Eqn. (17) we have that y

(min)
ORFvazb:g0. A

lower bound is clearly provided by G(min)~0 in the form

y
(min)
ORFwazb:g0{A: ln 1zg0=Bð Þ. Applying the results from the

fits leads to g0~140+430 kbp, 32+17vy
(min)
ORFv167+400 ORF,

and GP=E~4385+290 kbp. The large errors on many quantities

are a direct reflection of the large scatter of data about the fit line

for the Eukaryotes. The uncertainties associated with the results

for Prokaryotes are much smaller. Nonetheless, we consider this

result highly suggestive, especially in view of other estimates of the

minimal genome size [26–30].

We also see that Eqn. (11) accommodates the main observed

features listed above under (i), (ii), (iii) and (iv).

4. Bounding the Minimal Eukaryotic Genome
A bound on the minimum Eukaryotic genome size, G

(min)
E , can

be produced by equating the phenomenological form in Eqn. (5) to

the more general expression in Eqn. (11). This produces

y
(min)
ORF~yE,0ORFzAE ln (1z

G
(min)
E

BE

) w0 , ð18Þ

where we have also implemented a minimal constraint on y
(min)
ORF .

Solving this simple inequality for G
(min)
E produces

G
(min)
E wBE exp {

yE,0ORF

AE

 !
{1

" #
&{

yE,0ORF BE

AE

, ð19Þ

where the second form applies only if yE,0ORF%AE (which is the

case). Using the fitted parameter values below Eqn. (3) produces

the result

G
(min)
E w90+130kbp , ð20Þ

which is consistent with the estimate for g0 (G
(min)
E vg0) produced

in the previous section.

Discussion

We now discuss the physical interpretation and some of the

consequences of the above results. The key points on which this

discussion is based are that there exist clearly differentiated

patterns for ORF number vs. genome size in Prokaryotic and

Eukaryotic genomes, and in the observation that, except for

statistical fluctuations, all the genomes are below the red diagonal

line in the figure.

Our interpretations rely on entropy arguments, and in

particular the consequences of maximal entropy. The Gibbs

entropy for classical physical systems and the Shannon entropy

[31,32] used in Information Theory [33] share a common form

(although with different constants, k): H:{k:
PW

i~1 pi log pi,
where the W states i of a stochastic variable have (normalizable)

probability distribution functions, pi. Maximizing H with respect to

the pi requires that those pi be equally probable, or pi~1=W for

the normalized pdf. Thus Hmax~k: log (W ), which only requires

counting the states W to deduce Hmax. Of course, this is also the

form of the Boltzmann entropy for closed physical systems in

equilibrium, written in its usual notation: SBoltzmann~kB: logW ,

where W is the number of equiprobable states and kB is

Boltzmann’s constant.

Because our focus is on genome information storage and

transmission, Shannon entropy is most relevant. That entropy is

interpreted as ‘‘the measure of information received when the

actual value of the stochastic variable is observed’’ [34].

Alternatively, it can be interpreted (cf. [31,32], Section 7, pp.

53–54) as the rate at which information in the stochastic variable

can be transmitted by the communication system. The maximum

entropy of a variable then characterizes the achievable
maximum information that can be carried by the variable.

In what follows we ignore the constant, k, which plays no

essential role, and assume that we are treating equally probable

events and maximal attainable entropy (simply denoted by H). A

good example is provided by tossing a single fair die, which has

W=6 equally probable outcomes and thus a maximal entropy of

H~ log (6). If one tossed N such dice and considered the tosses to

be statistically independent, the number of states for the N dice

would then be W~6N and maximal entropy H~N: log (6).
For a genome of length G one has that if each of the G positions

in the genome can be occupied by one of four nucleotides the

number of (equiprobable) states is W!4G . (This is the exact

analogue of the dice example given above. Of course, as is well

known, this is only an idealization and an approximation. See, e.g.

Ref. [35].) Therefore for genomes the maximum entropy is

achieved when HGenome~( log 4):G. In the log-log plot of Fig. 3.1

this corresponds (using the right-hand axis label) to an appropri-

ately shifted diagonal, parallel to the red line drawn there. This

can be suitably interpreted as the maximum total information that

a genome of length G can handle. In other words, full genome size

dictates its maximum achievable entropy. We see at once from the

figure that to a good approximation, yORF for Prokaryotes falls

exactly on this line, and that Eukaryotes clearly have departed

from this line for genome sizes beyond *4 Mbp (around the size

of the quantity B in the fits).

Information is, by definition, an additive quantity. For a living

system (L/S) it resides in many places. Fundamentally, it is in the
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selection of components used by Life for their basic architecture

and the way the L/S operates (which defines a Shannon entropy

H (0)), in the genes and ORFs (HORF) and in the ncDNA piece

(HncDNA). (Naturally, each of the above locations for information

can be split into many others for which the rules of information

theory, in turn, apply.)

However, for the remainder of this discussion we will restrict

ourselves to some of the most generic features of the information

associated with the ORF-component of the L/S, (HORF
L=S ), as they

relate to Information Theory.

We examine the maximum value that HORF
L=S can reach. This

will happen when the pdf for the frequency of expression of the

ORFs in a genome, pORF
L=S (k), which describes the k states that

empower the information carried by the ORFs in the L/S, is the

uniform distribution. That is, when pORF
L=S (k)~r~constant for all

k. That is, for maximum potentially achievable entropy we assume

that each of the yORF in a genome of size G, given in Eqn. (11), is

equiprobable and independent of the others. Then, for each

genome, the normalization of pORF
L=S (k) trivially yields that

r~1=yORF (G). Therefore, under these assumptions, the

maximum Shannon entropy for the ORFs is given by

HORF
L=S ~ log (yORF (G)) and measures the maximum informa-

tion that can be carried by the ORFs in a L/S whose genome size

is G.

But Eqn. (11) has the two regimes identified in Eqn. (15)

depending on whether GvGP=E or GwGP=E . Thus, there also

exist two different regimes for the information carried by ORFs in

extant Life: one for Prokaryotes and another for Eukaryotes. They

are roughly separated by the value of GP=E , which as was found

earlier has a magnitude consistent with what other authors (for

example [36]) have identified using completely different argu-

ments.

Using Eqn. (12) we find that for genomes where G,B,

1. and also such that A:G=(B:DyORF )v1 the maximum in-

formation in ORFs is MaxHORF
L=S ~ log (yORF )!G,

2. w h i l e i f A:G=(B:DyORF )w1 t h e n

MaxHORF
L=S ~ log (yORF )! logG.

That is, when G,B, the information carried by the ORFs in the

smaller Prokaryotes (or small Eukaryotes) approaches the maxi-

mum value accessible to a genome of size G.

On the other hand for genomes where G.B, which includes the

largest Prokaryotes and the vast majority of Eukaryotes, one finds

using Eqn. (12) that

1. if G is also such that A=(B:DyORF ): log (G=B)v1 then the

m a x i m u m i n f o r m a t i o n i n O R F s i s

MaxHORF
L=S ~ log (yORF )! logG,

2. w h i l e i f A=(B:DyORF ): logGw1 t h e n

MaxHORF
L=S ~ log (yORF )! log logG.

Therefore, since Gw logGw log ( logG) for all G, we see that

the ORFs at maximum Shannon entropy are always below the

maximum entropy that the full genome would potentially be

capable of achieving.

The above has an interesting consequence. Since the in-

formation carried by the cDNA fraction of the genome is in the

ORFs, the necessary complement for the genome to achieve its

maximum information content for genomes with G§B is clearly

provided by the non-coding fraction of the genome that, when

added to the coding piece of the genome represented by cDNA,

saturates the information to G from ‘‘only’’ log logG. In other

words, the ncDNA component contributes to the entropy what the

ORFs and, therefore, the cDNA fraction cannot. As a conse-

quence, we see why the fraction of ncDNA has the potential to be

much larger than the cDNA fraction, all of which is contained in

the ORFs.

For genomes smaller than 8 or so Mbp in the linear regime for

yORF , the cDNA fraction suffices to saturate the maximum

information possible (actually to about 90%, as the fit to the

Prokaryotes shows), but for longer genome sizes the contribution

of spliceosomal introns and other forms of ncDNA is necessary in

part to help support the function of ORFs and mostly in order to

saturate the maximum information value possible for the genome.

This ‘‘information crisis’’ occurs for genomes with G*B, and
provides a non-adaptive reason for the increase in genome size. It

impacts on the fact that new opportunities arise for novel activities

controlled by the ncDNA fraction but, since the ORFs are Benford

distributed and property (b) of Introduction Section B applies, it

also opens a new avenue for reducing the effective mutation rates

in larger genomes. One can imagine that since the inverse of the

product of the effective population Ne with the mutation rate u
controls the power of genetic drift, a further reduction in u
originating in improved control due to Benford allows for

a somewhat larger Ne than the ones usually contemplated in the

literature [36]. Phylogenetically and qualitatively speaking we see

that a reduced mutation rate u with genome size (due to Benford)

is consistent with the observation that there is ‘‘an inverse

relationship between organism size (and therefore genome length)

and Neu’’ [36].

1. Conclusions
In conclusion, the genomic data from all three domains of Life

support the proposition that the ORFs belonging to a genome of

cznc base pairs are distributed according to a ‘‘reciprocal’’ (or

Benford) pdf. This observation helps unify and explain some

salient features of the observed phenomenology, but needs some

qualification. Eukaryotes are represented by the full non-linear

regime of a Benford distribution for the number of ORFs as

a function of G, while Prokaryotes correspond to the linear

regime of the same (viz., they have consistent slopes) Benford

distribution.

More specifically, Eqn. (11) accommodates the facts that in

a plot of the number of ORFs in a genome vs. full genome size

expressed in kbp, (i) the Archaea and Bacteria line up on

a common curve fitted by Eqn. (4) (and consistent with Eqn. (11) in

its linear regime), (ii) the minimal size of Prokaryotes is bounded
from above by 167+400 ORF, (iii) that there is a maximal
Prokaryote size on the order 8–12 Mbp, below which the non-

linear effects associated with the Benford regime are not felt, but

beyond which (iv) the non-linearity of Eqns. (5) or (11) dominates

and encompasses Eukaryotes with genome sizes approximately

larger than 4–5 Mbp. In addition this distribution also allows one

to compute a minimum genome size for Eukaryotes (which with

the data used in this paper also turns out to have a large error) of

about 90+130 kbp.

In other words our results apply to all of Life, with Prokaryotes

being in the linear regime of a Benford distribution, while

Eukaryotes are in the non–linear regime of the same Benford

distribution.

The Benford distribution depends only on the full genome size,

G, and necessarily mixes cDNA and ncDNA fractions. We infer

from this that the relative sizes of these two fractions must also

depend on the full genome size, and therefore are not independent

of each other: for a given genome of size G the ratio of these two

fractions is a function of the full genome size. If the average size of

a Prokaryote ORF is 1 kbp (see below), then the values quoted for

the linear slope parameters (viz., AB and AA in Eqns. (3) and (4))
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indicate that the ncDNA fraction in most Prokaryotes is less than

(or the order of) 10% of the total genome length.

By appealing to the most basic notions of information theory,

we have seen that information is bounded in a genome of size G

and must lie below a maximum possible value of log(G).

If the average size of an ORF is of the order of 1 kbp in

Prokaryotes (as is usually assumed [16,21]) the cDNA fraction

(expressed as ORFs) almost saturates the maximum information

that can be packed into the genome. But in Eukaryotes the

situation is very different: the information in cDNA (ORFs) is far

less than the information potentially contained in ncDNA, which

could (at least in principle) be somehow expressed at a level that

eventually saturates the upper bound mentioned above.

Whatever their specifics we see that the mechanisms for ORF–

information management in Eukaryotes must involve non–linear

information control. In Prokaryotes, on the other hand, the

expression of the cDNA is essentially linear and therefore

potentially simpler, albeit limited.

Finally we remark that information theory can provide us with

a promising starting point for understanding and interpreting the

results of our ‘‘Life-wide’’ fits.

Methods

We give here a short description of the data and the methods we

have used for obtaining and interpreting our fits.

1. Fits and Statistical Analysis
The data that we analyze were obtained from the completed

entries (more than 1000) in the GOLD database [3] in early 2010.

These data specify the genome size (in kilobasepairs: kbp), the

number of ORFs identified, and the metadata (specifying the

organism) for each organism. There were a number of

typographical errors in the database that we corrected using the

accompanying publication information. A few additional entries

for recently sequenced Eukaryotes that had not yet been added to

the database were made from the literature.

The 953 separate data for Bacteria ranged in size from 188

ORF for Candidatus Hodgkinia cicadicola to 9771 ORF for Sorangium

cellulosum, a range of nearly two orders of magnitude. The 106

separate data for Eukaryotes ranged in size from 464 ORF for

Guillardia theta to 50000 ORF for Oryza sativa, which is two orders of

magnitude, in contrast to nearly four orders of magnitude in

genome sizes. The 69 Archaea range from 643 ORF for

Nanoarchaeum equitans to 4853 ORF for Methanosarcina acetivorans,

a span slightly less than one order of magnitude.

In the Results Section we fit the number of ORFs to functions of

the total genome size. In order to perform these fits we need

a calculational scheme that takes into account appropriate

uncertainties for the data that we use. We assume no uncertainty

in the number of base pairs in each genome, and use this as our

independent variable. The spread in the data as a function of the

number of ORFs (or genome size) provides an estimate of the

uncertainties associated with our data. It is shown in Figs. (S1) and

(S2) of the SM that the data for Bacteria have small spread for

small genome size and large spread for large size, which removes

from consideration a uniform error (used in ordinary least-squares

fitting). A similar result holds for Eukaryotes, as shown in Figs. (S3)

and (S4) of the SM. We therefore assume that the uncertainty in

the number of ORFs for each genome size is proportional to the

number of ORFs in each datum, yiORF . That is, we assume

a common fractional uncertainty per ORF (denoted by l), which is

consistent with the spread in the fractional residuals from our fits

(see Figs. (S2) and (S4) of the SM, and the discussion in the next

paragraph). Denoting the uncertainty in the i-th datum by

si~lyiORF , the fitting is done by minimizing the usual X2

function with respect to all parameters in the fitting function, F:

x2~
XN
i~1

yiORF{Fi

si

� �2

, ð21Þ

where N is the number of data and Fi is the value of the fitting

function corresponding to the i-th datum. This is a form of

weighted least-squares minimization (an extensive discussion of

this is provided in the SM). Although the parameter l plays no role
in the determination of the best-fit parameters, it is required for

estimating uncertainties in those parameters and we used the

maximum likelihood estimate for l (as described in detail in the

SM). Note that the maximum likelihood estimate for l is identical

to adjusting the fitted value of X2 per degree of freedom to 1 (cf.

the SM).

Had we resorted to ordinary least-squares minimization

(corresponding to uniform si), the large range of ORF sizes

would have rendered the fits sensitive only to the largest genomes,

and therefore largely useless. In contrast an important conse-

quence of our form of si is that the fits are equally sensitive to all

data, large or small. We emphasize that for any fit the resulting

distribution of fractional residuals [(yiORF{F fit
i )=si] for any

genome size should be roughly independent of that size (e.g.,

a uniform variance). This is demonstrated in the in Figs. (S1) and

(S2) for Bacteria, in Figs. (S3) and (S4) for Eukaryotes, and the

extensive accompanying discussion. We also tested the fractional

residuals against the hypothesis that they were Gaussian distrib-

uted. Outliers for the Bacteria case (defined as being more than

three standard deviations from the fit) were too many (roughly 2%

compared to an expected 1/4%) to achieve a good P-value. The

effect of the outliers was tested by deleting them and refitting,

resulting in fits that were statistically equivalent to the full fits that

were reported in the Results Section. Other than the excessive

number of outliers the Gaussian comparison was quite satisfactory;

the SM should be consulted for details.

In the Results Section we quoted standard deviations for the

fitted parameters, rather than P-values. The latter can be deduced

from the t-statistic, which is the ratio of a parameter’s value to its

standard deviation. Any value greater than about 2 satisfies the

usual 95% criterion for a significant result (viz., statistical

fluctuations alone cannot account for the fit). The quality of our

fits (for at least one fit parameter and thus for the fit as a whole)

generates t-statistics and F-statistics that are far larger than needed

to satisfy this criterion. The corresponding P-values are tiny and

thus uninformative and have not been quoted in the text (details

are in the SM).

Supporting Information

Figure S1 Bacteria Data, Fits and Residuals. Distribution

of Bacteria data about the fit line (in red) and absolute residuals

relative to that line (in green) as a function of genome size in kbp.

Fractional residuals are shown in blue.

(TIFF)

Figure S2 Bacteria Fractional Residuals. Distribution of

Bacteria fractional residuals (in blue) as a function of genome size

in kbp. The black line corresponds to the fit, while the red dashed

lines are one standard deviation away, and the dotted black lines

are two standard deviations away.

(TIFF)
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Figure S3 Binned Eukaryota Fractional Residuals. Eu-

karyota fractional residuals (in black) sorted into 7 one-standard-

deviation-wide bins compared to an assumed Gaussian distribu-

tion with the same mean and variance (in red).

(TIFF)

Figure S4 Eukaryota Fractional Residuals. Distribution of

Eukaryota fractional residuals (in blue) as a function of genome

size in kbp. The black line corresponds to the fit, while the red

dashed lines are one standard deviation away. The dotted

magenta line at 0.285 is the mean of the fractional residuals in

units of (one) standard deviation, while the other two dotted

magenta lines are one standard deviation away from the mean.

(TIFF)

Material S1 Material on Fits, Fitting Procedures, and
Statistics. Detailed notes and derivations.

(PDF)
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