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Abstract

Background: Two of our long term efforts are to discover compounds with synergistic antifungal activity from metabolites
of marine derived microbes and to optimize the production of the interesting compounds produced by microorganisms. In
this respect, new applications or mechanisms of already known compounds with a high production yield could be
continually identified. Surfactin is a well-known lipopeptide biosurfactant with a broad spectrum of antimicrobial and
antiviral activity; however, there is less knowledge on surfactin’s antifungal activity. In this study, we investigated the
synergistic antifungal activity of C15-surfactin and the optimization of its production by the response surface method.

Methodology/Principal Findings: Using a synergistic antifungal screening model, we found that the combination of C15-
surfactin and ketoconazole (KTC) showed synergistic antifungal effect on Candida albicans SC5314 when the concentrations
of C15-surfactin and KTC were 6.25 mg/mL and 0.004 mg/mL, respectively. These concentrations were lower than their own
efficient antifungal concentrations, which are .100 mg/mL and 0.016 mg/mL, respectively. The production of C15-surfactin
from Bacillus amyloliquefaciens was optimized by the response surface methodology in shaker flask cultivation. The Plackett-
Burman design found sucrose, ammonium nitrate and NaH2PO4.2H2O to have significant effects on C15-surfactin
production. The optimum values of the tested variables were 21.17 g/L sucrose, 2.50 g/L ammonium nitrate and 11.56 g/L
NaH2PO4?2H2O. A production of 134.2 mg/L, which were in agreement with the prediction, was observed in a verification
experiment. In comparison to the production of original level (88.6 mg/L), a 1.52-fold increase had been obtained.

Conclusion/Significance: This work first found that C15-surfactin was an efficient synergistic antifungal agent, and
demonstrated that response surface methodology was an effective method to improve the production of C15-surfactin.
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Introduction

Biosurfactants (e.g., glycolipids, phospholipids, lipoproteins or

lipopeptides, polymeric compounds, mycolic acids, and lipopoly-

saccharides) are a heterogeneous group of secondary metabolites

with surface active properties, and described to be synthesized by a

variety of bacteria [1,2]. Surfactin is an important biosurfactant

with superior surface activity and belongs to a group of cyclic

lipoheptapeptides containing beta-hydroxyl fatty acids and D2/L-

amino acid residues [3,4]. Surfactins are mainly composed of three

components: C13-surfactin, C14-surfactin, and C15-surfactin. Of

those C15-surfactin has the highest: (1) surface activity, about 1000

times higher than the traditional chemical surfactant sodium

dodecyl sulfate (SDS) [5,6], and (2) hemolytic activity [7,8]. C15-

surfactin also has other activites, including anti-tumor, anti-

microbial, and anti-mycoplasma functions [9,10,11,12,13]. Its

amphiphilic structural characteristics contribute to its unique

ability to interact with cell membranes and macromolecules such

as enzymes and lipopolysaccharides (LPSs). Specifically, C15-

surfactin non-competitively inhibits the activity of the alkaline

phosphatase due to the chelating action by the free carboxyl

groups of the Asp and Glu residues [14]. The binding of C15-

surfactin with LPS inhibits the activity of LPS, which leads to the

interruption of the LPS induced pathway [15,16]. These

properties demonstrate the commercial importance of C15-

surfactin, specifically in the biomedical science and pharmaceu-

tical fields [17,18].

Yet, even with significant investigations on C15-surfactin,

commercial production has been impeded by its high production

cost due to low product yield. To address this problem, the
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discovery of an alternative C15-surfactin producer or improved

methods for the efficient production of C15-surfactin is of

particular importance. We have constructed a high quality

microbial natural product library, from which Bacillus velezensis

strain H3, Saccharopolyspora sp. A9 and Streptomyces sp. B3 have been

recently identified to be biosurfactant producers [19,20,21]. This

microbial natural product library has been a rich source for the

discovery of C15-surfactin producing strains.

The goal of the current research is to demonstrate an efficient

method for the production of C15-surfactin and the novel

synergistic antifungal effects of surfactins with ketoconazole against

Candida albicans. On the basis of this discovery, the medium

composition was optimized to enhance the productivity of C15-

surfactin by a novel marine derived Bacillus amyloliquefaciens strain

MB199. This was achieved by combining the Plackett-Burman

design (PBD), the steepest ascent design, and the central composite

rotatable design (CCRD) of response surface methodology (RSM).

This study will provide promising results for the development of

new antifungal drug combination.

Materials and Methods

Synergistic Antifungal Assay
A synergistic antifungal assay was performed with surfactins

according to the previously described method [22]. Briefly, Candida

albicans SC5314 cells (,16104) were inoculated in a final volume

of 80 mL mixture of RPMI 1640 medium, 8% Alamar blue

(BioSource International, Camarillo, CA), and 2 mL drugs in each

well of flat bottom, 96-well microtiter plates (VWR, West Chester,

PA). Candida albicans SC5314 cells was incubated overnight at

35uC, 80% humidity, and 5% CO2. Surfactins and KTC were

prepared as stock solutions in DMSO. Growths of fungus cells

were affected in the presence and absence of a sub-clinical

concentration of 0.004 mg/mL ketoconazole. To determine the

percentage of remaining viable cells, the fluorescence was

measured at an excitation wavelength (Ex) of 544 nm and an

emission wavelength (Em) of 590 nm using an EnVision 2103

multilabel reader (PerkinElmer, USA).

To determine the Minimum inhibitory concentrations (MICs),

concentrations of surfactins were diluted by a serial 2-fold

dilution method according to a modified protocol from the

Clinical and Laboratory Standards Institute (formerly National

Committee for Clinical Laboratory Standards) M-38A and M-

27A2 methods. The MIC was defined as a concentration of an

antimicrobial that prevented 100% of cell growth during 18-hr

incubation at 35uC.

To determine whether drug interaction was synergistic,

additive, or antagonistic for the combination of surfactins and

KTC, fractional inhibitory concentration index (FICI) was used.

FICI = (MIC drug A in combination/MIC drug A alone) + (MIC drug B in

combination/MIC drug B alone) [22]. The interaction was defined as

synergistic if the FICI was ,0.50, additive if the FICI was 0.50 to

4.0, and antagonistic if the FICI was .4.0.

Micro-organisms and Culture Medium
Four microbial strains Bacillus sp. MB198, MB245, MB199,

and MB200 were isolated from HuangBo Sea, China and

shown using mass spectrometry to produce surfactins (data not

shown). These strains were screened for the optimum surfactin

producer with the fermentation medium as described in the

following. The seed culture medium for all Bacillus strains was a

Luria Bertani (LB) medium consisting of 5 g/L yeast extract,

Figure 1. The structure of C15-Surfactin.
doi:10.1371/journal.pone.0034430.g001

Table 1. The Plackett-Burman design for screening variables
for C15-surfactin production.

Factors
(g/L) Code

Low
level
(21)

High
level
(+1) Coef* F-value p-value

Sucrose x1 10 30 29.98 26.10 0.0145

NH4NO3 x2 0 4 8.07 17.06 0.0257

K2HPO4?3H2O x4 0.5 6 4.98 6.49 0.0841

NaH2PO4?2H2O x5 5 15 8.55 19.16 0.0221

MgSO4?7H2O x7 0 0.4 20.88 0.20 0.6828

MnCl2?4H2O x8 0 0.004 2.48 1.62 0.2934

Yeast extract x9 0.05 0.35 24.61 5.57 0.0994

Temperature x10 27 30 1.72 0.78 0.4433

R2 = 96.25%, R2 (adj) = 86.25%.
*Coef: coefficient.
doi:10.1371/journal.pone.0034430.t001

Production of Surfactin with Synergistic Activity
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10 g/L NaCl, 10 g/L tryptone, and a pH of 7.2. The

fermentation medium used for shaker flask cultivation contained

20 g/L carbon source, 2.0 g/L nitrogen source, 3.0 g/L

K2HPO4?3H2O, 10 g/L NaH2PO4?2H2O, 0.2 g/L

MgSO4?7H2O, 0.002 g/L MnCl2?4H2O, and 0.2 g/L yeast

extract. Carbon source and nitrogen source were arranged

according to the description of the following section. Two

milliliter of seed medium was transferred to a 250 mL

Erlenmeyer flask containing 50 mL fermentation medium and

incubated at 28uC for 48 h on a rotary shaker (200 rpm).

Selection of Optimum Carbon Source and Nitrogen
Source

To optimize the carbon source, glucose, sucrose, galactose,

maltose, sucrose, glycerol, mannitol, soluble starch, and dextrin

were evaluated. To optimize the nitrogen source, ammonium

Table 2. The Placket-Burman design variables (in coded levels) with C15-surfactin yield as response.

Run Variable levels
Yield of C15-surfactin
(mg/L)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 1 21 1 1 1 21 21 21 1 21 1 12.7060.88

2 21 1 21 1 1 21 1 1 1 21 21 53.0060.29

3 1 21 1 1 21 1 1 1 21 21 21 15.1960.72

4 1 1 1 21 21 21 1 21 1 1 21 3.9260.42

5 21 21 21 21 21 21 21 21 21 21 21 14.5560.90

6 1 1 21 21 21 1 21 1 1 21 1 12.7360.99

7 21 21 1 21 1 1 21 1 1 1 21 38.2761.45

8 21 1 1 21 1 1 1 21 21 21 1 51.7261.69

9 1 21 21 21 1 21 1 1 21 1 1 17.8861.01

10 21 21 21 1 21 1 1 21 1 1 1 23.2260.99

11 1 1 21 1 1 1 21 21 21 1 21 47.9360.80

12 21 1 1 1 21 21 21 1 21 1 1 49.3160.18

doi:10.1371/journal.pone.0034430.t002

Table 3. Design and results of CCD.

Run Sucrose NH4NO3 NaH2PO4?2H2O Yield of C15-Surfactin (mg/L)

Code X1 X1 (g/L) Code X2 X2 (g/L) Code X3 X3 (g/L)

1 21 17 1 2.5 1 14 118.0861.23

2 0 20 0 2.0 21.68 17 45.5660.42

3 1 23 1 2.5 1 14 130.41612.94

4 0 20 0 2.0 1.68 17 100.6061.26

5 0 20 1.68 2.8 0 10 128.9662.38

6 1 23 1 2.5 21 6 106.7065.91

7 1 23 21 1.5 21 6 49.8461.71

8 0 20 21.68 1.2 0 10 96.0765.94

9 21.68 15 0 2.0 0 10 131.3960.87

10 1.68 25 0 2.0 0 10 98.41625.73

11 0 20 0 2.0 0 10 126.2763.13

12 0 20 0 2.0 0 10 121.3361.85

13 21 17 1 2.5 21 6 102.6863.83

14 0 20 0 2.0 0 10 119.3660.53

15 21 17 21 1.5 21 6 85.18610.36

16 1 23 21 1.5 1 14 106.2366.41

17 0 20 0 2.0 0 10 117.4967.01

18 21 17 21 1.5 1 14 107.4964.82

19 0 20 0 2.0 0 10 115.1465.95

20 0 20 0 2.0 0 10 124.47615.67

doi:10.1371/journal.pone.0034430.t003

Production of Surfactin with Synergistic Activity

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e34430



nitrate, ammonium sulfate, sodium nitrate, soybean flour,

peptone, casein acid hydrolysate, urea, and glutamic sodium were

evaluated. C15-surfactin (MW1035, Fig. 1) production was

calculated by the method described in the section of ‘‘Analytical

methods’’.

16S rDNA Sequence Analysis
Genomic DNA of Bacillus sp. was extracted using a TIANamp

Bacteria DNA Kit (DP302, Tiangen Biotech (Beijing) Co., LTD.,

Beijing, China). The PCR method was performed according to the

methods described previously [21]. Bacillus strains and calculations

of sequence similarity were carried out using CLUSTAL X1 [23].

A phylogenetic tree was constructed using the neighbor-joining

method and MEGA 4.0 software [24]. The topology of the

phylogenetic tree was evaluated by 1000 bootstrap resampling

replicates [25].

Experimental Design and Data Analysis
The most significant parameters affecting C15-surfactin pro-

duction from Bacillus amyloliquefaciens MB199 were determined

using the Plackett-Burman Design (PBD), as noted in Table 1

(Yeast extract is a good source of nitrogen and metals, so the low

levels of x2, x7 and x8 could be set as 0). The analysis of C15-

surfactin production was carried out in twelve experiments, each

of which was performed two times (Table 2). Three dummy

variables (x3, x6 and x11) were studied in 12 experiments to

calculate the standard error. The final result was expressed as the

average value of the two repeated experiments. The variables with

confidence levels above 95% were considered to have significant

effects on C15-surfactin production and were used for further

optimization. Using the trends in the data provided by the results

of the PBD, the experiments were adapted by increasing or

decreasing the concentrations of each variable following the result

of PBD [26]. Finally, a central composite rotatable design was

produced with the values of each variable noted with the design

matrix (Table 3). The low, middle, and high levels of each variable

were designated as 21.68, 21, 0, and 1, 1.68, respectively and a

response surface was produced.

Statistical Analysis
Design Expert (Version 7.0, Stat-Ease Inc., USA) was used to

generate the experimental designs and perform subsequent

regression analysis of the experimental data. The quality of the

polynomial model equation was judged statistically using analysis

of variance (ANOVA) to determine the coefficient of determina-

tion, R2. The statistical significance was determined using the F-

test and significance of the regression coefficients was determined

using the t-test.

Extraction of Surfactins
Isolation and extraction of surfactins were performed according

to the previously described method [27] with minor modifications.

Briefly, after 48 hours of fermentation 35 mL cell broth was

subjected to centrifugation at 8000 rpm for 5 min to remove the

bacteria cells. The supernatant was then subjected to an acid

precipitation with 6 M HCl by adjusting the pH to 2.0 and

refrigerated at 4uC for 24 h. The precipitant was collected by

centrifugation at 8000 rpm for 5 min followed by 24 h of

lyophilization at 250uC. The lyophilized powder was extracted

with 2 mL methanol for 4 h. Then the methanol extract was

filtered using a 0.45 mm filter.

Table 4. Synergy antifungal screening resulta.

Samples Anti-fungal MICs (mg/mL) Synergistic anti-fungal MICs (mg/mL)

Acid Precipitationb .100 50

Lipopeptide Mixturec 50 25

C14-surfactin .100 12.5

C15-surfactin .100 6.25

Cyclosporin A .64 4

aThe MIC of KTC is 0.016 mg/mL. The concentration of KTC in synergy antifungal screening experiment is 0.004 mg/mL, at which KTC does not show antifungal activity.
bAcid precipitation was obtained by centrifugation of cell broth at pH 2.0. It contains C13-surfactin, C14-surfactin, C15-surfactin and other kind of compounds.
cLipopeptide mixture is purified fraction from acid precipitation, and is the mixture of C13-surfactin, C14-surfactin, and C15-surfactin.
doi:10.1371/journal.pone.0034430.t004

Figure 2. Effects of carbon source on the production of C15-surfactin from B. amyloliquefaciens MB199.
doi:10.1371/journal.pone.0034430.g002
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Analytical Methods
The methanol extraction of surfactin was analyzed using a

HPLC system (Agilent 1100 Series, CA, USA) equipped with an

Agilent XDB C18 column (W 4.6 mm615 cm, 5 mm). The mobile

phase consisted of 90% methanol and 10% water (0.1% TFA).

After loaded with 40 mL filtered methanol extract, and column

was eluted at a flow rate of 1 mL/min. The elution was monitored

by the UV absorbance at 210 nm. C15-surfactin was identified to

be eluted at a retention time of 11.0 min according to LC-MS

results.

Results and Discussion

Synergistic Antifungal Activity of Surfactins
During the process of high throughput screening for the novel

synergic antifungal compound, C14-surfactin and C15-surfactin

were found to be most efficient when compared to the crude

extract-acid precipitation (Table 4). It showed that C14-surfactin

and C15-surfactin had synergistic antifungal activities with KTC

against Candida albicans at 12.5 mg/mL and 6.25 mg/mL, respec-

tively (Table 4). Based on these MIC values, the FICIs of C14-

surfactin and C15-surfactin were less than 0.4 and 0.3 (all of them

were less than 0.5), respectively, so the combination of surfactins

and KTC were synergistic.

KTC is a frequently used antifungal drug (MIC = 0.016 mg/

mL), which resulted in two drawbacks. One is the appearance of

the resistant fungi. The other is the side-effect on human being

produced by KTC at an efficient active concentration. So we

design this synergy antifungal model to screen compounds which

can synergize KTC with 1/4MIC (a concentration found to be no

antifungal activity and also less side-effect on the patient). With this

method C15-surfactin was identified to be best synergistic

antifungal agent for KTC. This result not only proved the

efficiency of our synergy screening model, but also highlights the

new application of surfactin as a synergistic antifungal agent of

KTC.

Figure 3. Effects of nitrogen source on the production of C15-surfactin from B. amyloliquefaciens MB199 with sucrose as the carbon
source.
doi:10.1371/journal.pone.0034430.g003

Figure 4. Neighbour-joining phylogenetic tree of B. amyloliquefaciens MB199 constructed by Mega 4.0. Numbers at nodes indicate levels
of bootstrap support (%) based on a neighbour-joining analysis of 1000 resampled datasets; only values .50% are given. NCBI accession numbers are
given in parentheses. Bar, 0.005 nucleotide substitutions per site.
doi:10.1371/journal.pone.0034430.g004
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It has been reported that surfactin has synergistic activity with

iturin on its hemolytic activity [28]. However, there is limited

knowledge about the antifungal and synergistic antifungal

activities of this compound. The results of our study showed a

new effect of surfactin when KTC was incorporated. Surfactin has

been known to interact with the cell membrane and disturbs the

membrane’s stability [29,30,31,32]. Among C13-surfactin, C14-

surfactin and C15-surfactin, C15-surfactin was the most effective

compound to interact with membranes because the longer fatty

acid chain induces a greater interfacial activity of surfactins with

the membrane [29]. This performance was helpful to explain our

result that C15-surfactin was more active than C14-surfactin.

Selection of Optimum Carbon Source, Nitrogen Source
The effect of the carbon source on C15-surfactin production of

strain MB199 was given in Fig. 2. The optimum carbon source

was found to be sucrose, which enabled MB199 to reach a

maximum yield of 102.0 mg/L C15-surfactin.

With sucrose as the carbon source, the effect of the nitrogen

source on C15-surfactin production for strain MB199 is given in

Fig. 3. The maximum yield of surfactin (99.6 mg/L) was produced

by the MB199 strain with ammonium nitrate used as the nitrogen

source.

Identification of Surfactin Producing Bacillus sp. MB199
The analysis of the 16S rRNA gene sequence (GeneBank

accession no. HM212413) revealed that MB199 was similar to

B. amyloliquefaciens NBRC 15535T (similarity, 100%/1472 bps,

based on 16S rRNA) (Fig. 4). Through the alignment and cladistic

analysis of homologous nucleotide sequences of known Bacillus,

phylogenetic relationships could be inferred. The approximate

phylogenetic position of the strain is shown in Fig. 4. According to

the gene sequence, the strain Bacillus sp. MB199 was identified as a

strain of B. amyloliquefaciens, and named B. amyloliquefaciens MB199.

The selection of high amounts of surfactin producing strains is

necessary for future mutation or bioengineering studies. Previous-

ly, our laboratory has constructed a high quality marine microbial

natural product library containing novel microorganisms from

marine environments. In this study, B. amyloliquefaciens was

discovered to an efficient C15-surfactin producer from four Bacillus

species. Actually, a recent report revealed that B. amyloliquefaciens is

a producer of both lipopeptide and polyketide antibiotics [33].

These studies proved that B. amyloliquefaciens could be a promising

strain used for the C15-surfactin production in the further

engineering studies.

Optimization of C15-surfactin Production by PBD
The importance of the eight parameters, namely, sucrose,

NH4NO3, K2HPO4?3H2O, NaH2PO4?2H2O, MgSO4?7H2O,

MnCl2?4H2O, yeast extract and temperature for C15-surfactin

production was investigated by PBD. Table 1 shows the effects of

these parameters on the response along with significant levels.

Based on the statistical analysis, the parameters that significantly

(confidence level .95%) affected the C15-surfactin production

were sucrose, NH4NO3, and NaH2PO4?2H2O with coefficients of

(2) 9.98, (+) 8.07, and (+) 8.55, respectively. Other factors had no

obvious effects and the low confidence levels indicating insignif-

icant influence on the yield of C15-surfactin. With these significant

parameters, the R2 was found to be 0.9625, which indicated the

model could explain 96.25% of the total variations in the system.

Optimization by the Path of Steepest Ascent Experiment
PBD results indicated that the effect of sucrose was negative,

whereas those like NH4NO3 and NaH2PO4?2H2O were positive.

Thus, decreasing sucrose concentration and increasing concen-

trations of NH4NO3 and NaH2PO4?2H2O should result in a

higher production of C15-surfactin. For each of these factors, the

average values from the PBD experiments were used as initial

points for the path of steepest ascent experiments, and the

concentrations were either increased or decreased as indicated by

the PBD experiments. It showed the maximum production of C15-

surfactin (124.1863.53 mg/L) (Table 5). This was obtained when

the parameters were 20 g/L sucrose, 2 g/L NH4NO3 and 10 g/L

Table 5. Design and results of path of steepest ascent
experiment.

Run Factor

Yield of C15-
surfactin (mg/
L)

X1 (g/L)a X2 (g/L) X3 (g/L)

1 23 1.54 6.2 71.90611.53

2 20 2 10 124.1863.53

3 17 2.46 13.8 103.7161.61

4 14 2.92 17.6 101.7567.68

aX1, X2 and X3 represent Sucrose, NH4NO3 and NaH2PO4N2H2O, respectively.
doi:10.1371/journal.pone.0034430.t005

Table 6. Regression coefficients and their significance for
response surface model.

Term Coef Standard Error P

Intercept 120.62 2.63 ,0.0001

X1
a 25.54 1.75 0.0099

X2 12.04 1.75 ,0.0001

X3 15.40 1.75 ,0.0001

X1*X1 21.64 1.70 0.3576

X2*X2 22.48 1.70 0.1749

X3*X3 216.43 1.70 ,0.0001

X1*X2 6.62 2.28 0.0159

X1*X3 5.30 2.28 0.0427

X2*X3 24.95 2.28 0.0554

aX1, X2 and X3 represent Sucrose, NH4NO3 and NaH2PO4N2H2O, respectively.
doi:10.1371/journal.pone.0034430.t006

Table 7. ANOVA of regression model.

Source DF1 Seq SS2 Adj MS3 F P

Regression 9 10310.53 1145.61 27.48 ,0.0001

Pure error 5 88.64 17.73

Lack of fit 5 328.26 65.65 3.70 0.0886

Total 19 10727.43

Determination of coefficient R2 = 0.9611; adjusted determination coefficient Adj
R2 = 0.9262.
1DF, Degree of freedom;
2SS, sum of squares;
3MS, mean square.
doi:10.1371/journal.pone.0034430.t007

Production of Surfactin with Synergistic Activity
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Figure 5. Response surface plot for C15-surfactin production by B. amyloliquefaciens MB199.
doi:10.1371/journal.pone.0034430.g005

Figure 6. HPLC profile of surfactin produced by B. amyloliquefaciens MB199. The elution was monitored at 210 nm at a flow rate of 1 mL/
min. The dashed line and the real line represent the HPLC profiles of surfactins produced in optimized and original culture media, respectively.
doi:10.1371/journal.pone.0034430.g006
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NaH2PO4?2H2O.

Optimization by Response Surface Methodology
The data shown in Table 3 were analyzed using Design Expert

software. The t-test and P-values were used to identify the effect of

each factor on C15-surfactin production (Table 6), with a P-value

of less than 0.05 indicating significance. Sucrose, NH4NO3 and

NaH2PO4?2H2O had significant effects on C15-surfactin yield

(P,0.05) and were able to explain 96.11% of the model

variability. Therefore, the present prediction model reflected a

good degree of correlation between the observed and predicted

responses, implying the model was reliable for C15-surfactin

production in the present study. The adjusted determination

coefficient (R2 = 86.25%) was also satisfactory to confirm the

significance of the model. The model can be shown as following:

Y~120:62{5:54X1z12:04X2z15:40X3

{16:43X3 �X3z6:62 X1 �X2z5:30 X1 �X3
ð1Þ

Where Y is the predicted C15-surfactin yield, X1 is sucrose, X2 is

NH4NO3, and X3 is NaH2PO4?2H2O.

Furthermore, the ANOVA analysis for the response surface

quadratic model was presented in Table 7, which reported a

statistically significant (P,0.05) regression at a 95% confidence

level. To check the fitness of the polynomial model, the significant

lack-of-fit was also reported in Table 7, which means there is some

variation unaccounted for in the predicted model (the selected

model does not well describe the data). In this study, P = 0.0886

indicated that the model was statistically insignificant lack of fit, so

it was adequate for the prediction of C15-surfactin yield within the

range of variables tested. The 3D response surface graphs provide

a more complete representation of the effects of variables on the

production of C15-surfactin (Fig. 5).

Validation of the Optimized Condition
On the basis of medium optimization, the model predicted the

maximum production of surfactin as132.61 mg/L, in the presence

of 21.17 g/L sucrose, 2.50 g/L NH4NO3, and 11.56 g/L

NaH2PO4?2H2O. To verify the predicted results, a validation

experiment was performed in triplicate tests. Under the optimized

condition, the observed experimental yield of average C15-

surfactin was 134.2 mg/L, which is a 1.52-fold increase as

compared to the yield in non-optimized media, suggesting that

experimental and predicted values of C15-surfactin yield were in

good agreement. This result therefore corroborated the predicted

values and the effectiveness of the model, indicating that the

optimized medium favors the production of C15-surfactin.

Actually, the pH value of the culture medium also has an effect

on surfactin production. Surfactins have emulsification activities,

so we use the emulsification index (EU/mL) as a parameter to

evaluate the production of surfactins in cell broth. Our previous

data showed that the production of surfactin will decrease in a

culture medium with a pH less than 5 or larger than 9 [21]. In the

present work, a pH of 7.2 was used throughout the optimization

experiment. Noteworthy, the data on growth of Bacillus amyloli-

quefaciens was not measured in the present optimization experi-

ment, so there was no information on the ‘‘specific productivity’’ of

C15-surfactin by Bacillus amyloliquefaciens. However, a recent thesis

showed that surfactin productivity was cell growth associated for

Bacillus subtilis ATCC 21332 [34].

In the literature, a medium containing glucose (10.0 g/L) and

ammonium nitrate (4.0 g/L) could lead to the highest quantity of

surfactins (439.0 mg/L) by B. subtilis ATCC 21332 [35]. However,

C15-surfactin was not clearly reported in these experiments due to

the different analysis methods. Our present study focused on C15-

surfactin production not only due to its effective biological

activities, but also because purification of this compound was

relatively easy by using HPLC (Fig. 6). In this respect, the present

study was useful for the further investigations of the industrial

production of C15-surfactin. Additionally, it has been found that

surfactin producing B. subtilis strain S499 could produce a novel

lipopeptide fengycin after the optimization of medium composi-

tion for the surfactin production [36]. In order to find out how the

culture medium components influence the production of the other

homologues of C15-surfactin, the HPLC profile of surfactins of

B. amyloliquefaciens MB199 was measured. The results showed an

increase in the yield of other homologues of C15-surfactin without

influencing the diversity of the surfactins produced in the cell broth

(Fig. 6).

In conclusion, the present work shows that C15-surfactin as a

biomaterial could be utilized as a synergistic antifungal agent with

ketoconazole for novel applications in biomedical and pharma-

ceutical fields. This study also offered a novel marine derived B.

amyloliquefaciens strain MB199 which could efficiently produce C15-

surfactin in shaker flasks. It showed that sucrose as a soluble

carbon source and ammonium nitrate as a nitrogen source gave

higher C15-surfactin production. The production of C15-surfactin

was found to depend greatly on the key media components that

were sucrose, ammonium nitrate, and NaH2PO4?2H2O. Using the

RSM, it was possible to model individual and interactive effects of

media and efficiently enhance the production of C15-surfactin.
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