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Abstract

Negatively skewed data arise occasionally in statistical practice; perhaps the most familiar example is the distribution of
human longevity. Although other generalizations of the normal distribution exist, we demonstrate a new alternative that
apparently fits human longevity data better. We propose an alternative approach of a normal distribution whose scale
parameter is conditioned on attained age. This approach is consistent with previous findings that longevity conditioned on
survival to the modal age behaves like a normal distribution. We derive such a distribution and demonstrate its accuracy in
modeling human longevity data from life tables. The new distribution is characterized by 1. An intuitively straightforward
genesis; 2. Closed forms for the pdf, cdf, mode, quantile, and hazard functions; and 3. Accessibility to non-statisticians, based
on its close relationship to the normal distribution.
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Introduction

Variables with negatively skewed distributions can appear in

situations where data cluster near an upper limit. Examples of such

variables include human longevity [1], where most people in

developed societies live to old age but few survive past age 100; the

distribution of IQ scores [2]; in ectothermic animals, reproductive

fitness as a function of body temperature [3]; and in medicine, the

distribution of glomerular filtration rate in a population [4].

The methods for modeling such variables vary considerably. In

the case of IQ, the skew is typically ignored and a normal

distribution is imposed [5–6]. In other cases, reflections or power

transformations are applied [7–8]. In still others, the variable is

fitted to an extreme value distribution such as Weibull or

Gompertz [9].

We select human longevity as our motivating example, as it is a

variable of great interest and importance with a long history of

attempts to fit to a distribution. The distribution is characterized

by 1. Strong negative skew; 2. Bimodality, with peaks at infancy

and old age (Figure 1); and 3. Positive but finite values. Infant

mortality is typically treated as a separate topic from adult

mortality [10]. The former is driven by genetic errors, infectious

diseases, or exposure, while the latter is driven by aging. Thus,

parametric models for longevity generally exclude infant mortality;

when necessary, mixture distributions are used to accommodate

both.

Historically, adult longevity has been modeled with extreme

value distributions. In 1825, the Gompertz distribution was

proposed to model adult longevity [11]. In 1860, Makeham

proposed a refinement, deriving the three-parameter Gompertz-

Makeham distribution [12]. Since then, the Weibull distribution

has sometimes been used for the same purpose, when the analysis

is restricted to specific causes of death [13]. The Gompertz and

Weibull distributions are specific cases of the generalized gamma

or generalized extreme value distributions; the generalized

distributions are occasionally used in survival analysis [14].

Extreme value distributions have an emphasis on rare events,

such as the longest-lived individual, but longevity research is more

often interested in group averages. Do other families of

distributions offer alternatives?

In 2001, Kannisto [15] observed a relationship between

longevity and the normal distribution. He described the impor-

tance of the distributional mode (M) as a consistent quantity for

characterizing longevity: although life expectancy (as a mean) rose

rapidly during the 20th century due to decreases in infant

mortality, the mode rose less. He also observed that longevity

conditioned on survival past the mode was highly consistent with

the behavior of a normal distribution: the ratio of the standard

deviation above mode to life expectancy at mode was very close toffiffiffiffiffiffiffiffi
p=2

p
throughout different populations and time periods, with a

correlation of +.995. Finally, he noted the effect of compression:

over time, the right-hand slope has become increasingly vertical,

corresponding to a decreasing SD(M+), as if meeting a resistance

to further increases in the mode. These findings suggest that a

good distribution for modeling human longevity could involve a

Gaussian kernel that models compression past the mode. Are there

other generalized normal distributions that already accomplish

this?

Various generalizations of the normal distribution are in use.

The most well-known among them appears to be that proposed by

Nadarajah [16]; his version alters the kurtosis, adjusting the

sharpness of the peak, but maintains a zero-skew symmetry. The

inverse Gaussian distribution [17] is restricted to positive skew.
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The skew-normal distribution developed by Azzalini [18] does

allow for negative skew, but has the constraint that skewness is

limited to values between 21 and +1. Our survey of 74 life tables

from around the world found that in 70 cases (95%), the sample

skew of adult populations was less than 21. In our search, no

generalized normal distributions explicitly addressed a compres-

sion of the scale parameter.

In the Methods section, we will derive a generalized normal

distribution that builds upon Kannisto’s observations. In section 3,

we will discuss its properties. In section 4, we will compare the fit

of this distribution to three other distributions using life table data

from around the world, and in section 5, we will offer a discussion.

Methods

1. Genesis
Many distributions, including the normal, contain the location-

scale transformation:

g(x)~
x{m

s
ð1Þ

The scale parameter in the denominator is a constant. One way to

model compression (or expansion) is to condition the scale

parameter on attained age. The function above can be altered as:

g(x)~
x{m

szkx
ð2Þ

When this function is applied to Q(N), the standard normal density,

a skew is induced: when k is positive, a positive skew occurs; when

k is negative, a negative skew occurs (Figure 2).

Figure 1. Density functions of life table data. The data for 2006 life tables were downloaded from the Centers for Disease Control (CDC).
doi:10.1371/journal.pone.0037025.g001

Figure 2. Plots of w
x{m

szkx

� �
, with m = 0 and s = 1.

doi:10.1371/journal.pone.0037025.g002
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When restricted to negative skew, it is also possible to specify an

equivalent parameterization of:

g(x)~
x{m

s(1{x=l)
ð3Þ

Above, l is an asymptotic upper bound of longevity and (12x/l)

is the unspent portion of longevity at age x. This is equivalent to a

normal distribution whose scale parameter decreases linearly with

attained age. The normalized density is then derived as:

f (x)~
1

W m
s

� � ffiffiffiffiffiffi
2p
p : 1{m=l

s(1{x=l)2
: exp {

(x{m)2

2s2(1{x=l)2

( )
ð4Þ

This distribution was found to fit the observed density of US life

table data well (Figure 3). We will denote this distribution as the

compressed normal distribution to distinguish from other gener-

alized normal distributions.

2. Properties of the Distribution
The distribution is supported on the domain (0, l). All three

parameters (m, s, l) are restricted to positive values. We assumed

0, s , m , l when deriving additional properties; such a

constraint was found to hold for all life tables we examined.

Additional properties of the distribution are provided in Table 1.

The detailed procedures for computing the mean and variance are

provided in Appendices S1 and S2.

3. Transformation of a Normal Distribution
This distribution can also be viewed as a transformation of a

truncated standard normal distribution. If Z is a standard normal

distribution truncated on the left at –m/s, then the distribution is

equivalent to:

X~g{1(Z)~l:
sZzm

sZzl
ð5Þ

At age x, the distribution’s pdf, cdf, and hazard function is the

same as Z at
x-m

s(1-x=l)
.

4. Behavior of the Right Tail
As the sample size approaches infinity, the maximum observed

longevity will converge to l. Since the normal distribution’s thin

right tail is made even thinner by compression, the maximum will

converge very slowly to l. We illustrate this in Figure 4, using

estimated parameter values for American white males. The means

and confidence intervals were computed from the first-order

statistic of a (0,1) uniform distribution, which were passed to the

Figure 3. Fit of new distribution to life table data. Deaths at age 0 were excluded.
doi:10.1371/journal.pone.0037025.g003
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quantile function. Although the upper limit is l = 135, the

expected first-order value for a population of 150 million is 110.3.

This corresponds closely to real-world data, where the oldest living

American male as of this writing is Shelby Harris, at 110 years of

age [19].

5. The Hazard Function
Some sample graphs of log-hazard functions are shown in

Figure 5. As apparent from the graph, this distribution can model

log-hazard rates that accelerate, increase linearly, or decelerate.

There are arguments that hazard rates decelerate in very old age

[20], although the author of the CDC’s 2006 life tables found no

evidence to support this notion [21]. The CDC author states that

the purported leveling of the hazard rate was likely an artifact of

age misreporting among the very old; this debate remains an open

topic.

Survival analysis makes extensive use of hazard rates. One

known drawback of modeling survival based on hazard rates is

frailty: those who survive to old age come from an increasingly

homogeneous pool of survivors, thus estimates of the hazard

function become biased [22]. The compressed normal distribution

offers one way to model the increasing homogeneity of the

population as it ages, and may improve the accuracy of estimated

hazard rates in future survival analyses; this topic will be explored

in further papers.

6. Application to Life Tables
We compared the fit of the compressed normal distribution

against other distributions using life table data from multiple

countries. We fitted the two-parameter Gompertz distribution as a

reference, and then compared the AIC (Akaike Information

Criterion) scores.

7. Selection of Life Tables
An excerpt from United States life table data is shown in

Table 2. Life tables for countries other than the United States were

downloaded from the Human Life-Table Database [23]. In order

for the life tables to meet sufficient standards of quality for this

analysis, the following restrictions were applied:

1. Availability of complete data in one-year increments.

2. Availability of data to at least age 90, well past the mode.

We found 74 life tables from 35 countries that met the above

criteria. From these countries, the most recent life tables were

selected. We excluded deaths before age 3, as the outcome of

interest was adult longevity.

Table 1. Properties of the distribution.

Quantity Formula

Parameters 0, s , m , l

Domain x [(0,l)

PDF
f(x)~

(1{m=l)

W
m

s

� � ffiffiffiffiffiffi
2p
p

s(1{x=l)2

exp {
(x{m)2

2s2(1{x=l)2

( )

CDF
f(x)~

(1{m=l)

W
m

s

� � ffiffiffiffiffiffi
2p
p

s(1{x=l)2

exp {
(x{m)2

2s2(1{x=l)2

( )

Hazard

1{m=lð Þ
s 1{x=lð Þ2

:
w

x{m

s 1{x=lð Þ

� �

1{W
x{m

s 1{x=lð Þ

� �

Quantile

l:
m{sW{1 W

m

s

	 

1{pð Þ

h i
l{sW{1 W

m

s

	 

1{pð Þ

h i
Median

m{sW{1
1

2
W

m

s

	 
� �

1{
s

l
W{1 1

2
W

m

s

	 
� �&m

Mode

l 1z
m{lð Þ {lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2z8s2

p	 

4s2

8<
:

9=
;

Mean Ðl
0

x(1{m=l)

W
m

s

� � ffiffiffiffiffiffi
2p
p

s(1{x=l)2
exp {

(x{m)2

2s2(1{x=l)2

( )
dx

Variance Ðl
0

x-E(X)ð Þ2(1{m=l)

W
m

s

� � ffiffiffiffiffiffi
2p
p

s(1{x=l)2

exp {
(x{m)2

2s2(1{x=l)2

( )
dx

doi:10.1371/journal.pone.0037025.t001

Figure 4. Estimated maximum longevity for a population N,
based on parameter estimates for American white males. The
dotted lines denote 95% confidence intervals. The parameter values
were {m, s, l} = {79.3, 32.8, 132.2}.
doi:10.1371/journal.pone.0037025.g004

Figure 5. Sample graphs of log-hazard functions. Here, m = 80,
s = 25, and l varied from 100 to 200.
doi:10.1371/journal.pone.0037025.g005
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8. Model
The life table data were fitted against five distributions:

Gompertz, Gompertz-Makeham, compressed normal, Azzalini

skew-normal, generalized gamma, and generalized extreme value.

The distributions’ parameters were estimated according to the

least squares method [24] of minimizing the SSE, i.e.:

XN

i~1

½Sparametric(tijh){Slife table(ti)�2: ð6Þ

We fitted the conditional probability of surviving to age x given

that they survived to age 3. Using nonlinear least squares, we fitted

the regression equation:

‘x

‘3
~

1{F (xjm,s,l)

1{F (3jm,s,l)
ze ð7Þ

The above was implemented through procedure nls in R 2.14.0.

The parameter estimates were then applied to likelihood equations

for the life table cohorts of 10,000 hypothetical subjects in order to

derive the AIC. Deaths before age 3 were excluded. Finally, we

compared the AIC scores using ordinary least squares. The

outcome variable was AIC, and the predictor variables were

distribution type and life table type. Technical details are provided

in Appendix S3.

Nonlinear least squares require the specification of initial values

for parameter estimates. As a secondary analysis, we varied the

initial values to determine its effect on final estimates. This was

done using data from the life table for white females in the United

States.

Results

In 46 out of 74 life tables (62%), the compressed normal

distribution provided the best fit as judged by AIC (Table 3). The

average AIC for a life table fit with the two-parameter Gompertz

distribution was 750,480. The generalized gamma, skew-normal,

and generalized extreme value distributions had significantly

higher AIC scores. The Gompertz-Makeham distribution had a

lower average score than Gompertz, but was not statistically

significant. The compressed normal distribution was significantly

lower by an average of 1,937 points. Whether we adjusted for

individual life tables as fixed effects or random effects, the results

were identical within 4 significant figures. Detailed results

including the parameter estimates are provided in Appendix S4.

When we varied the initial values supplied to the model, the

final estimates were identical for all cases when the model

converged (Table 4). This suggests that the identifiability of

parameter estimates is not a major problem with this distribution.

The m, s, and l parameters respectively tolerated misspecifica-

tions of up to 15, 20, and 30 from their ‘‘true’’ values.

Discussion

Our preliminary demonstration made use of default settings in

R’s nls procedure, which invoked the Gauss-Newton algorithm.

Potentially, all of the distributions could have achieved better fits

with more sophisticated algorithms, though we did not wish to

make it the focus of this paper. Nevertheless, we did demonstrate

the accessibility of good estimates for the compressed normal

distribution without resorting to advanced programming. In future

papers, we will explore more details of finding estimates and their

variances.

The good fit of the distribution came at the expense of two

problems: 1. the mean is an infinite sequence; and 2. the normal

Table 2. Excerpt from the 2006 CDC life tables.

Probablity of dying between
ages x to x +1

Number surviving
to age x

Number dying
between ages x
to x +1

Person-years
lived between
ages x to x +1

Total number of
person-years lived
above age x

Expectation of life at
age x

Age qx lx dx Lx Tx ex

0–1 0.006119 100,000 612 99,462 7,566,361 75.7

1–2 0.000398 99,388 40 99,368 7,466,899 75.1

2–3 0.000296 99,349 29 99,334 7,367,531 74.2

3–4 0.000227 99,319 22 99,308 7,268,197 73.2

4–5 0.000182 99,297 18 99,288 7,168,889 72.2

5–6 0.000171 99,279 17 99,270 7,069,601 71.2

6–7 0.000161 99,262 16 99,254 6,970,331 70.2

7–8 0.000148 99,246 15 99,238 6,871,078 69.2

8–9 0.000127 99,231 13 99,225 6,771,839 68.2

9–10 0.000100 99,218 10 99,213 6,672,615 67.3

doi:10.1371/journal.pone.0037025.t002

Table 3. AIC Regression Results.

Variable Coefficient SE p-value

Intercept (Gompertz) 750,480.0 2,287.6 ,.0001

Compressed Normal 21,936.5 891.6 0.0305

Gompertz-Makeham 21,186.3 891.6 0.1842

Generalized Gamma 2,580.3 891.6 0.0040

Skew-Normal 3,056.3 891.6 0.0007

Gen. Extreme Value 16,793.8 891.6 ,.0001

factor(country/sex)Australia M 25,761.5 3,131.1 ,.0001

factor(country/sex)Austria F 223,508.1 3,131.1 ,.0001

…

doi:10.1371/journal.pone.0037025.t003

Compressed Normal Distribution

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e37025



equations lack closed-form solutions, as the three parameters

depend on each other’s values. We have addressed limitation #1

by providing software that automatically computes the mean.

When working with longevity, medians are generally preferred

over means. The median is closely approximated by the value of m
(within 0.1); exact values can also be computed using the formula

provided. Changes in m can be understood as changes in the

median.

For limitation #2, we have found that the parameters exhibited

unimodal likelihood properties, making estimation straightfor-

ward. The use of gradient functions led to rapid convergence when

using nonlinear optimization software; we will elaborate on this in

a future paper. For the purposes of this demonstration, we

supplied initial parameter estimates of {m, s, l} = {80,24,140}.

The support of the distribution depends on the parameter l, but

we did not encounter difficulties in estimability; l lies well outside

the range of observed values. The secondary analysis found that

the final estimates were robust to misspecification, yielding

identical estimates whenever the model converged.

As a final check, we compared the characteristics of this

distribution to Kannisto’s observation that the ratio of the

standard deviation above mode to life expectancy at mode was

very close to
ffiffiffiffiffiffiffiffi
p=2

p
< 1.2533 across life tables. Kannisto’s ratios

were slightly below this value, with a mean value of 1.2386 and an

SD of 0.0112 (Table 1 of [15]). We ran simulations based on the

estimated parameter values for life tables from Table 4. We varied

the sample size from 1,000 to 5 million. At the smaller sample

sizes, the mean ratio straddled Kannisto’s values (Figure 6);

however, at larger sample sizes, it appeared to converge toward a

lower value of 1.231. We will investigate the nature of this possibly

novel constant in future papers.

The compressed normal distribution shows promise as a model

for human longevity, particularly survival analysis. Even today, the

semi-parametric Cox model is still preferred over parametric

models when conducting survival analyses, due to small but

consistent discrepancies between estimated and empirical values

[25]. Parametric models, when accurate, offer the advantage of

directly estimating changes in average life expectancies. Addition-

ally, parametric models can estimate median longevity even when

the censoring rate is above 50%.

In future work, we will develop methods for parametric survival

analysis using this distribution to determine the association of BMI

and other chronic disease risk factors with longevity at the

population level. Additionally, we believe this distribution is not

only useful for modeling human longevity, but also other variables

with skewed distributions.
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Table 4. Results of varying initial parameter values.

Initial Values Distance Final Values

m0 s0 l0 m s l

79.3 32.8 132.2 0.0 79.33128 32.83232 132.1717

69.3 32.8 132.2 10.0 79.33128 32.83232 132.1717

89.3 32.8 132.2 10.0 79.33128 32.83232 132.1717

64.3 32.8 132.2 15.0 79.33128 32.83232 132.1717

94.3 32.8 132.2 15.0 79.33128 32.83232 132.1717

79.3 12.8 132.2 20.0 79.33128 32.83232 132.1717

79.3 52.8 132.2 20.0 79.33128 32.83232 132.1717

79.3 32.8 102.2 30.0 79.33128 32.83232 132.1717

79.3 32.8 162.2 30.0 79.33128 32.83232 132.1717

75.0 25.0 100.0 33.4 79.33128 32.83232 132.1717

75.0 45.0 100.0 34.7 79.33128 32.83232 132.1717

65.0 45.0 100.0 37.3 DNC

70.0 45.0 100.0 35.6 DNC

75.0 45.0 105.0 30.1 DNC

75.0 35.0 105.0 27.6 79.33128 32.83232 132.1717

95.0 35.0 105.0 31.4 DNC

95.0 35.0 110.0 27.2 79.33128 32.83232 132.1717

DNC = Did not converge. ‘‘Distance’’ was defined as the Euclidean distance
between the initial values and final estimates.
doi:10.1371/journal.pone.0037025.t004

Figure 6. Simulation results based on 480 hypothetical
populations with 500,000 members each. The slope of 1.2295
was closer to Kannisto’s estimates than

ffiffiffiffiffiffiffiffi
p=2

p
:

doi:10.1371/journal.pone.0037025.g006
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