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Abstract

G-protein-coupled receptors (GPCRs) regulate a wide variety of physiological processes and are important pharmaceutical
targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively
track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP) strategy).
In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by
expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine
peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding
yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble
the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to
identify eligible peptides with agonistic activity for target human GPCRs.
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Introduction

G-protein-coupled receptors (GPCRs) constitute a large super-

family of cell surface receptors [1]. In humans, these 7-trans-

membrane proteins respond to external stimuli to regulate various

cellular processes including taste, smell, vision, heart rate, blood

pressure, neurotransmission and cell growth [2]. All members of

the guanine nucleotide binding protein family (G-proteins) share

a common mechanism for signal transmission following GPCR-

agonist binding [3]. This universal signaling mechanism has

become a central tenet in G-protein research, and GPCRs have

become major pharmaceutical targets for drug discovery [4].

The eukaryotic unicellular yeast, Saccharomyces cerevisiae, also

shares the G-protein-mediated signal transmission mechanism

with higher mammalian cells [3]. It is notable that S. cerevisiae offers

a crucial advantage to simplify the study of GPCR signaling

because it expresses only one kind of G-protein, which thereby

avoids potential problems such as signaling cross-talk in mamma-

lian cells [5–8]. Therefore, S. cerevisiae is a suitable host cell for the

screening of functional residues in GPCRs [5,9,10].

Yeast cell-surface display technology is a powerful platform that

enables proteins expressed in yeast to be tethered onto the cell

surface [11–15]. This is accomplished by the use of ‘‘anchor’’

proteins that naturally localize on the cell surface in yeast cells.

Typically, the gene encoding the target protein is fused to the

anchor protein together with a secretion signal sequence at the N-

terminus to both enable secretion of the fusion protein and to

tether it firmly to the cell surface. As typical anchor proteins, the

C-terminal domains of truncated a-agglutinin (Sag1p; a manno-

protein involved in sexual adhesion) and truncated Flo1p (a lectin-

like cell-wall protein involved in flocculation) containing the

glycosyl-phosphatidylinositol (GPI) anchor attachment signal

sequence at the C-terminus are fused to the target protein at

their N-termini [16,17]. Regarding other anchor proteins, the

Flo1p flocculation functional domain without the GPI anchor

attachment signal (FS anchor) permits the fusion of the target

protein to both its N- and C-termini [18]. These anchor proteins

are used to display the target proteins on the yeast cell wall. In

contrast, periplasmic invertase (Suc2 anchor) can be fused to both

the N- and C-termini of a target protein, enabling it to localize

into the periplasmic space [19]. To date, yeast cell-surface display

technology has been adopted for a broad range of applications

including enzymatic catalysis, immune adsorption and protein

engineering [16–18,20–23].

Here, we describe a unique concept using yeast cell-surface

display technology to selectively track eligible peptides that present

agonistic activity for human GPCRs. In our system, individual

yeast cells expressing human GPCRs fulfill a series of roles from

the manufacture of peptides to the sensing of agonistic activity.

Briefly, yeast cells synthesize candidate peptides in fusion with
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a secretion signal sequence and an anchoring motif. Agonistic

peptides are capable of binding cell surface GPCRs that transduce

the signal into the cell. Finally, the yeast traps the signaling peptide

on its cell wall (Figure 1). Here, we use a yeast strain that is

engineered to express a green fluorescent protein (GFP) reporter

gene in response to GPCR activation. Therefore, stimulation by

agonistic peptides can be recognized by the generation of a green

fluorescence signal [3]. In principle, because signaling peptides are

unable to diffuse to surrounding cells, our strategy has the

potential to build autonomous signaling complexes on a cell-by-

cell basis. Our peptide trapping method (cell wall trapping of

autocrine peptides (CWTrAP) system) will allow the identification

of lead peptides from combinatorial peptide libraries as starting

points for drug screening.

Results and Discussion

To corroborate the viability of cell-surface display technology to

track agonistic activity for GPCRs (CWTrAP system), we used a-
factor pheromone, a natural ligand for the endogenous yeast 7-

transmembrane GPCR, Ste2, which is specifically expressed in the

a-type-strain [24]. In nature, a-type yeast strains secrete a-factor
to induce mating signal transduction in the a-type strain by

binding to the Ste2 receptor on its cell surface [25]. The ability of

several types of protein motifs to anchor and transduce the

autocrine a-factor were tested in the recombinant a-type yeast

cells, which can express a GFP reporter gene in response to

pheromone signaling (Figure 1). All constructs of fusion proteins

that displayed a-factor peptides were designed to contain a Flag

tag between the a-factor peptides and anchor proteins (Figure 2A

and Table 1).

We used the IMG-4 yeast strain to display a-factor pheromone

on its cell surface because this strain can monitor signaling levels

through its endogenous Ste2 receptor via a GFP reporter gene

(Table 1). To test our concept, we evaluated the C-terminal 320 aa

of Sag1p (C-terminal half of a-agglutinin; AG) [16] and various

lengths of truncated Flo1p derivatives (C-terminal 42, 102, 146

and 318 aa of Flo1p; Flo42, Flo102, Flo146 and Flo318) [17] as

anchor proteins with GPI anchoring motifs (Figure 2A and

Table 1). A recombinant yeast strain, engineered to express the a-
factor autocrine peptide with a secretion signal sequence but

lacking an anchor motif, robustly generated a higher green

fluorescence signal than a strain harboring a mock plasmid

(Figure 3A, Mock and Sec). Immunofluorescence staining of Flag-

tagged a-factor peptide revealed no fluorescence on the surface of

engineered yeast cells (Figure 3B, Sec). These results suggest that

secreted a-factor could bind the endogenous Ste2 receptor and

transduce the signal inside the yeast cells.

Next, we tested the cell wall trapping (CWTrAP) strategy for a-
factor peptide with GPI anchoring motifs. All engineered yeast

strains expressing a-factor peptides fused to the N-termini of the

anchor proteins (AG and Flo42–318) with an inserted Flag tag

(Figure 2A) successfully generated a green fluorescence signal

(Figure 3A), confirming that the fusion peptide is able to activate

signal transduction in yeast. Using GFP fluorescence intensity as

an indicator of signaling strength, shorter anchor peptides

appeared more capable of activating the GPCR (Figure 3A).

The a-factor peptide fused to Flag and Flo42 exhibited higher

responsiveness compared to a-factor lacking the anchor protein.

This interesting result may arise from the transient enrichment of

the GPI-anchored peptide on the yeast cell membrane, although

the GPI-anchored peptide should be cleaved from the plasma

membrane by phosphatidylinositol-specific phospholipase C (PI-

PLC) and tethered on the cell wall [11–13].

Although shorter peptides tend to make detection of the Flag tag

more difficult, due to the report that shorter peptides can bury the

tag within the cell wall [17], we were able to confirm an anchor-

dependent association with the yeast cell wall by immunofluores-

Figure 1. Schematic illustration of our concept using yeast cell-surface display technology to selectively track eligible agonistic
peptides for human GPCRs by assembling the autonomous signaling complex within individual cells (cell wall trapping of
autocrine peptides (CWTrAP) strategy). The candidate autocrine peptides fused with the anchoring proteins are processed via secretion
pathways in engineered yeast cells. Their agonistic activities for heterologously-expressed human GPCRs are discerned on yeast cell membranes. Only
when the peptide possesses objective agonistic activity, membrane-peripheral G-proteins promote intracellular signaling and induce transcription of
the GFP reporter gene. Because the autocrine peptides are automatically trapped onto individual yeast cell walls, the captured peptides are unable to
diffuse toward surrounding yeast cells that express the target human GPCR and any other peptides. T.F. indicates transcription factor.
doi:10.1371/journal.pone.0037136.g001

Cell Wall Trapping of Autocrine Peptides (CWTrAP)
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cence staining (Figure 3B). Because peptides anchored to the cell

wall are unable to diffuse to surrounding cells, this result

emphasizes the viability of our concept for the assembly of the

autonomous signaling complex within individual yeast cells.

Additionally, we verified that a subset of Flo42 was highly

glycosylated (Figure S1); however, the agonistic activity of the a-
factor peptide was unlikely to be affected by the posttranslational

glycosylation of the anchor protein.

Next, we tested additional motifs that permit peptides to be

fused to both the N- and C-termini of the anchor proteins. We

replaced the GPI anchor proteins with the FS anchor [18] and the

Suc2 anchor [19] (Figure 2A, Table S2 and Document S1). Signal

transduction was more efficient when using the FS anchor,

compared to the Suc2 anchor (Figure S2). These results show that

agonistic peptides can be fused to both the N- and C-termini of

anchor proteins. Even though the FS anchor (1099 aa) served as

an efficient motif for transducing a-factor peptide signaling, we

used the Flo42 anchor motif, whose molecular mass is much lower

(Figure 2A), in all following experiments in order to minimize the

possibility of steric hindrance.

To further demonstrate the viability of our concept, the IMFD-

70 yeast strain, which can monitor signaling levels from

recombinantly expressed heterologous GPCRs by a GFP reporter

gene [5] (Table 1), was used to test if signal transmission from

human GPCRs expressed on the yeast cell surface was possible.

For these experiments, human somatostatin receptor subtype 5

(SSTR5), and the natural intramolecular-cross-linked cyclic

peptide ligand, somatostatin 14 (S-14), were used [26,27].

To express the autocrine somatostatin and trap it on the yeast

cell wall, we designed the S-14 peptide with an N-terminal

secretion signal sequence and a C-terminal Flo42 anchor protein

with a Flag tag (Figure 2B and Table 1). We constructed several

negative controls by eliminating the S-14 peptide or by replacing it

with agonistic peptides for other GPCRs (Figure 2B and Table 1).

We expressed hemagglutinin (HA)-tagged human SSTR5 on the

yeast cell surface using previously reported plasmids [5,6] (Table 1).

We used these expression and mock plasmids to investigate the

ability of the S-14–Flag–Flo42 autocrine peptide to activate

GPCR signaling (Figure 4).

As shown in Figure 4A, the engineered yeast strain concom-

itantly expressing SSTR5–HA and S-14–Flag–Flo42 successfully

induced GFP reporter gene expression, whereas the other control

strains possessing either SSTR5–HA or S-14–Flag–Flo42 did not.

Similarly, a control strain expressing SSTR5–HA and the

autocrine Flag–Flo42 fusion protein lacking the S-14 peptide

was unable to express a green fluorescence signal (Figure 4A).

Figure 2. Schematic illustration of the fusion protein constructs used to display agonistic peptides on the yeast cell-surface. (A)
Constructs for displaying a-factor peptides. AG: C-terminal half of a-agglutinin anchor. s.s.: secretion signal sequence. The pre-pro-region derived
from a-factor was used as s.s. For the fusion of FS and Suc2 anchors to the a-factor peptides at their C-termini, the original s.s. encoded in the N-
termini of Flo1p or Suc2p were used, respectively. The uppermost construct for secretion of a-factor peptide contains no anchoring motifs. All
constructs contain the Flag tag. (B) Constructs for displaying S-14 by the Flo42 anchor. The upper construct displaying only Flag and Flo42 peptides
was used as a negative control for the SSTR5 signaling assay. The middle and lower constructs displaying, respectively, eligible peptide (S-14) and
negative control peptides (a-factor, AII and ET1) by Flag–Flo42 fusion proteins were also used for the SSTR5 signaling assay.
doi:10.1371/journal.pone.0037136.g002

Cell Wall Trapping of Autocrine Peptides (CWTrAP)
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These results demonstrate that autocrine activation of recombi-

nant SSTR5 by binding of the S-14 peptide fused to the Flo42

anchor mediates pheromone signaling via endogenous peripheral

G-proteins in yeast [5]. Furthermore, we were able to confirm the

specificity of the S-14 peptide because three control peptides in

which the S-14 peptide was replaced with the yeast Ste2 receptor

agonist, a-factor, the human angiotensin receptor agonist,

angiotensin II (AII), or the human endothelin receptor agonist,

endothelin-1 (ET1), did not generate a green fluorescence signal

(Figure 4B).

We confirmed the expression of SSTR5–HA receptor and S-

14–Flag–Flo42 fusion protein by western blot analysis (Figure 5).

Equal loading of the sodium lauryl sulfate (SDS)-extracted cell

lysate fraction from each pellet was confirmed using anti-b-actin.
SSTR5–HA receptor (anti-HA; lanes 2–4) and Flag–Flo42 anchor

or S-14–Flag–Flo42 fusion proteins (anti-Flag; lanes 3–5) were

successfully detected in the extracts of each appropriate transfor-

mant. The two unequal bands detected by the anti-Flag antibody

in the Flag–Flo42 and S-14–Flag–Flo42 transformants likely

represent the signal-cleaved and -uncleaved proteins, because the

pre-pro-region derived from a-factor was used as the secretion

signal sequence. We therefore tested the ability of the other active

somatostatin isoform S-28 [26] and other secretion signal

sequences (pre-region of a-factor and signal sequences derived

from S. cerevisiae Suc2p and Rhizopus oryzae glucoamylase) to

mediate signal transduction in the IMG-50 yeast strain. This strain

has a slightly different genetic background to IMFD-70 (FAR1-

intact strain [28], the description of the far1D allele can be found in

Materials and Methods; Table 1), but the expression profiles of the

GFP reporter genes remained essentially unchanged (Figure S3).

Also, the insertion of GS linkers (GGGGS and GGGSGGGGS)

between the S-14 peptide and Flag–Flo42 did not improve GFP

expression (Figure S4). Because GPCR signaling has been

reported to decrease plasmid retention even in the far1D yeast

strain [28], false-negative signals (non-signaling cell cluster;

Figure 4A, SSTR5–HA/S-14–Flag–Flo42) may be caused by

plasmid loss. Because other secretion signal sequences and the

insertion of GS linkers had no effect on expression of the GFP

reporter gene, it is unlikely that a false-negative signal would be

caused by steric hindrance of the S-14 peptide (Figure S3 and S4).

Nevertheless, the presence of false-negative cells within an

identical cell cluster implies that peptides captured on the cell

wall have little influence on the surrounding cells (Figure 4, S3 and

S4). Therefore, we demonstrated that peptides captured on the cell

wall did not induce false-positive signals in surrounding non-target

cells, even when two types of cells, one expressing the S-14–Flag–

Flo42 (target cells) and the other expressing the Flag–Flo42 anchor

lacking S-14 (non-target cells or surrounding cells), were mixed

(Figure S5). Additionally, we successfully enhanced the weaker

green fluorescence signal of the IMFD-70 strain expressing

SSTR5–HA and S-14–Flag–Flo42 (Figure 4A) by concurrently

introducing a multi-copy plasmid harboring the GFP reporter gene

Table 1. Yeast strains and plasmids used in this study.

Strain or plasmid Relative feature Source

Yeast strain

BY4741 MATa his3D1 leu2D0 met15D0 ura3D0 [31]

IMG-4 BY4741 fus1::FUS1-EGFP-TGAPDH-HIS3 bar1D::LEU2 far1D::kanMX4 This study

IMG-50 BY4741 fus1::FUS1-EGFP-TGAPDH-HIS3 sst2D::AUR1-C ste2D::LEU2 [28]

IMFD-70 BY4741 fig1D::EGFP his3D::PFIG1-EGFP far1D sst2D::AUR1-C ste2D::LEU2 [5]

Plasmid

pESC-URAa Expression vector containing GAL1-GAL10 divergent promoter, 2m origin and URA3 marker Agilent Technologies

pUESCasf pESC-URA, a-factor–Flag peptide expression (for secretion) This study

pUESCaf-AG pESC-URA, a-factor–Flag–AGb fusion protein expression (for display) This study

pUESCaf-FLO42 pESC-URA, a-factor–Flag–Flo42 fusion protein expression (for display) This study

pUESCaf-FLO102 pESC-URA, a-factor–Flag–Flo102 fusion protein expression (for display) This study

pUESCaf-FLO146 pESC-URA, a-factor–Flag–Flo146 fusion protein expression (for display) This study

pUESCaf-FLO318 pESC-URA, a-factor–Flag–Flo318 fusion protein expression (for display) This study

pGK421a Expression vector containing PGK1 promoter, 2m origin and MET15 marker [5,6]

pGK-SSTR5-HA pGK421, SSTR5-HA human receptor expression [5,6]

pGK426a Expression vector containing PGK1 promoter, 2m origin and URA3 marker [36]

pGK42 pGK426, Flag–Flo42 anchor protein expression (for display) This study

pGK-S1442 pGK426, S-14–Flag–Flo42c fusion protein expression (for display) This study

pGK-alpha42 pGK426, a-factor–Flag–Flo42 fusion protein expression (for display) This study

pGK-AII42 pGK426, AII–Flag–Flo42d fusion protein expression (for display) This study

pGK-ET142 pGK426, ET1–Flag–Flo42e fusion protein expression (for display) This study

pMHG-FIG1 Multi-copy reporter plasmid containing FIG1 promoter, GFP reporter gene, 2m origin and HIS3 marker [6]

All transcription products for display or secretion contain the secretion signal sequence of a-factor.
aThe indicated vectors were used as mock controls.
bAG indicates C-terminal half of a-agglutinin anchor protein.
cS-14 encodes somatostatin 14 mature peptide.
dAII encodes angiotensin II mature peptide.
eET1 encodes endothelin-1 mature peptide.
doi:10.1371/journal.pone.0037136.t001

Cell Wall Trapping of Autocrine Peptides (CWTrAP)
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cassette (pMHG-FIG1 [6]) (Figure 6). These results strongly

support the feasibility of our conceptual CWTrAP system to

identify eligible agonistic peptides for human GPCRs.

Finally, to examine whether the yeast cell wall did indeed trap

the autocrine peptide fused to the Flo42 anchor, transformants

were analyzed by immunofluorescence staining with anti-Flag

primary antibody and Alexa Fluor 594 conjugated secondary

antibody (Figure 7). We observed red fluorescence on the cell

surfaces of appropriate transformants that expressed Flag–Flo42

anchor or S-14–Flag–Flo42 fusion proteins. In addition, we only

observed a morphology change [29] on cells expressing both

SSTR5–HA and S-14–Flag–Flo42, supporting our hypothesis that

the autocrine S-14 peptide specifically triggered signal trans-

duction via the SSTR5 receptor in the recombinant yeast cells.

Thus, we successfully verified that the S-14 autocrine peptide

fused to the Flo42 anchor protein was trapped on the yeast cell

wall.

In this study, we have demonstrated how a strategy for cell wall

trapping of autocrine peptides (CWTrAP system) functions to

discern agonistic activity for human GPCRs expressed in yeast

Figure 3. Evaluation of the CWTrAP system using a-factor peptide for yeast endogenous Ste2 receptor. (A) Pheromone signaling assays
of a-factor-displaying yeast strains. Error bars represent the standard deviation of three independent experiments. (B) Immunofluorescence staining
of a-factor displaying yeast strains. Anti-Flag antibody and Alexa Fluor 546-conjugated secondary antibody were used for detection of secreted a-
factor or a-factor-anchor fusion proteins. IMG-4 was used as the host strain. The transformants used in these experiments are listed in Table S3. Sec:
free, secreted form of a-factor. AG: C-terminal half of a-agglutinin anchor.
doi:10.1371/journal.pone.0037136.g003

Cell Wall Trapping of Autocrine Peptides (CWTrAP)
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cells, by using the intramolecular-cross-linked cyclic peptide S-14

and its specific receptor as our model. Our motivation was to

selectively track eligible agonistic peptides for human GPCRs by

assembling an autonomous signaling complex within individual

cells. By combining cell-surface display technology and established

yeast combinatorial genetic engineering technology with flow

cytometric single-cell screening [30], we aim to identify eligible

peptides from peptide libraries. Here, the feasibility of our concept

is demonstrated by peptide capture, and subsequent signal

transduction, by heterologously-expressed human GPCRs, which

prevent the captured peptides from diffusing to surrounding yeast

cells and eliciting a false-positive response. Therefore, the captured

peptides are successfully presented by yeast cell-surface display

technology.

Materials and Methods

Media
Synthetic raffinose (SR) media contained 6.7 g/l yeast nitrogen

base without amino acids (YNB) (BD-Diagnostic Systems, Sparks,

MD, USA) and 20 g/l raffinose. For SRGC media, 20 g/l

galactose and 20 g/l casamino acids (BD-Diagnostic Systems)

were added into SR media. Synthetic dextrose (SD) media

contained 6.7 g/l YNB and 20 g/l glucose. For SDM71 media,

SD media was adjusted to pH 7.1 with 200 mM MOPSO buffer

(Nacalai Tesque, Kyoto, Japan). Amino acids and nucleotides

(20 mg/l histidine, 60 mg/l leucine, 20 mg/l methionine or

20 mg/l uracil) were supplemented into each medium to provide

the relevant auxotrophic components.

Figure 4. Evaluation of the CWTrAP system using somatostatin peptide for the human SSTR5 receptor. (A) SSTR5 signaling assays of the
cyclic somatostatin peptide displaying yeast strain and control strains. (B) SSTR5 signaling assays of non-target peptide displaying yeast strains. IMFD-
70 was used as the host strain. The transformants used in these experiments are listed in Table S3. S-14 indicates 14 aa of somatostatin cyclic peptide,
a-factor indicates 13 aa of yeast pheromone peptide, AII indicates 8 aa of angiotensin II peptide, and ET1 indicates 21 aa of endothelin-1 peptide.
doi:10.1371/journal.pone.0037136.g004

Cell Wall Trapping of Autocrine Peptides (CWTrAP)
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Yeast Strains
Yeast strains used for assays were generated from BY4741 [31]

as a parental backbone strain and are listed in Table 1. The

transformation procedure using linear DNA fragments followed

the lithium acetate method [32]. All primers used for the strain

constructions are listed in Table S1. The bar1D alleles that relieve

the degradation of a-factor pheromone [33] were conferred to

BY4741far1D (obtained from Saccharomyces Genome Deletion

Project [34]) by homologous recombination with the amplified

LEU2 fragments, producing the IM-4 strain. The FUS1-GFP

reporter gene was integrated into the FUS1 genomic loci of IM-4

with a fragment prepared by digestion of pUC119-FUS1-EGFP-

HIS3 [28] with EcoRI and SphI, producing the IMG-4 strain.

The PFUS1-FUS1-GFP or PFIG1-GFP reporter gene was used to

monitor signal transduction promoted by stimulating GPCRs in

yeast (IMG-4, IMG-50 or IMFD-70 [5]). far1D alleles were used

to avoid G1 arrest and promote cell-cycle progression during

signal activation [5,28,35] (IMG-4 and IMFD-70). sst2D and

ste2D alleles were used to obtain hypersensitivity for ligand

stimulation and to inhibit competitive expression of endogenous

yeast GPCRs [5,28] (IMG-50 and IMFD-70).

Plasmids
All plasmids used for assays are listed in Table 1. All primers

used for plasmid constructions are listed in Table S1. The

amplified pre, pro (containing secretion signal sequence, s.s.) and

first mature sequences of a-factor peptide including a C-terminal

Flag tag and stop codon were inserted into the pESC-URA yeast

expression vector (Agilent Technologies, Santa Clara, CA, USA)

at the BamHI and XhoI sites, creating pUESCasf. As the

backbone for a-factor-displaying plasmids, pUESCaf and

pUESCaf(AG) without stop codons were constructed in essen-

tially the same manner. The amplified genes encoding Flo42,

Flo102, Flo146 and Flo318 anchors were inserted into pUESCaf
at the XhoI and NheI sites, resulting in pUESCaf-FLO42, -

FLO102, -FLO146 and -FLO318, respectively. pUESCaf-AG
was produced in a similar procedure by inserting the gene

encoding the C-terminal 320 aa of Sag1p (C-terminal half of a-
agglutinin anchor, AG) into pUESCaf(AG) at the XhoI and

NheI sites. As the backbone for somatostatin-displaying plasmids,

we constructed pGK426-tgFLO42 by inserting the amplified

FLO42 anchor gene with FLAG at the N-terminus into pGK426

at the SalI and BglII sites [36]. The DNA fragment containing

s.s. of a-factor and S-14 mature peptide was amplified by

overlapping PCR and inserted into pGK426-tgFLO42 at the

NheI and SalI sites, producing pGK-S1442. We generated pGK-

alpha42 as an a-factor peptide-displaying control plasmid, using

essentially the same procedure. As other peptide-displaying

control plasmids, the gene containing s.s. of a-factor and the

mature peptide sequences of angiotensin II (AII) or endothelin-1

(ET1) was inserted into pGK426-tgFLO42 at the NheI and SalI

sites, generating pGK-AII42 and pGK-ET142, respectively. As

a peptide-non-displaying control plasmid, pGK42 was created in

a similar procedure by using the DNA fragment containing s.s. of

a-factor without the peptide sequence. pGK-SSTR5-HA [5,6]

was used to express human SSTR5 receptor fused to a C-

terminal HA tag. Transformation of plasmids was performed

using the lithium acetate method. All transformants used for

assays are listed in Table S3.

Pheromone Signaling Assay
To assay signal activation from the endogenous Ste2

pheromone receptor, the IMG-4 yeast strains harboring the

Figure 5. Confirmation of protein expression. Western blots of
extracts from somatostatin displaying yeast strains. Lane 1: Mock/Mock,
2: SSTR5/Mock, 3: SSTR5/Flag–Flo42, 4: SSTR5/S-14–Flag–Flo42, 5: Mock/
S-14–Flag–Flo42. Anti-b-actin antibody was used as loading control.
Anti-HA antibody was used for detection of SSTR5 receptor. Anti-Flag
antibody was used for detection of Flag–Flo42 anchor or S-14–Flag–
Flo42 fusion proteins. IMFD-70 was used as the host strain. The
transformants used in these experiments are listed in Table S3.
doi:10.1371/journal.pone.0037136.g005

Figure 6. Improved fluorescence signal in the CWTrAP system using somatostatin peptide for the human SSTR5 receptor. SSTR5
signaling assays of the cyclic somatostatin peptide displaying yeast strain and the non-displaying control strain, which contain the multi-copy
plasmid harboring a GFP reporter gene cassette (pMHG-FIG1). IMFD-70 was used as the host strain. The transformants used in these experiments are
listed in Table S3.
doi:10.1371/journal.pone.0037136.g006

Cell Wall Trapping of Autocrine Peptides (CWTrAP)
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pESC-URA-based plasmids were grown in SR media at 30uC,
and cells were then inoculated into 100 ml of SRGC media to

give an initial optical density of 0.03 at 600 nm. Cultures were

grown at 30uC with shaking at 150 opm for 72 h. The cells were

collected and diluted into test tubes containing sheath solution

and GFP fluorescence was measured using a BD FACSCalibur

flow cytometer (BD Biosciences, San Jose, CA, USA). The green

fluorescence signal from 10,000 cells was excited with an argon

laser and collected through a 530/30 nm band-pass (FL1) filter.

The data were analyzed using BD CELLQuest software (BD

Biosciences). The ‘‘relative fluorescence unit’’ was defined using

the FL1-H geometric mean of IMG-4 harboring mock plasmid

(pESC-URA) as the benchmark.

SSTR5 Signaling Assay
To assay signal activation from human SSTR5 receptor, the

IMFD-70 yeast strains harboring the pGK-SSTR5-HA and

pGK426-based plasmids were grown in SD media at 30uC, and
cells were then inoculated into 20 ml of SDM71 media to give

an initial OD600 of 0.03. Cultures were grown at 30uC with

shaking at 150 opm for 15 h. The cells were collected and

diluted into test tubes containing sheath solution and GFP

fluorescence was measured using a BD FACSCanto II flow

cytometer (BD Biosciences). The green fluorescence signal from

10,000 cells was excited with a blue laser and collected through

a 530/30 nm band-pass (GFP) filter. The data were analyzed

using BD FACSDiva software (BD Biosciences).

Western Blotting
Collected cells were suspended in 10 mM Tris-HCl (pH 7.8)

containing 1 mM phenylmethylsulfonyl fluoride (PMSF) to give

an OD600 of 5, and 200 ml of cell suspension was disrupted using

a Multi-beads shocker (Yasui Kikai, Osaka, Japan) with 0.5 mm

glass beads. Cell lysates were centrifuged at 1,0006g for 5 min

and the pellet was then washed three times with 10 mM Tris-

HCl containing 1 mM PMSF. The pellet was resuspended in

200 ml of SDS solubilization buffer (50 mM Tris-HCl [pH 7.8],

2% SDS [w/v], 100 mM ethylene diamine tetraacetic acid

[EDTA], 40 mM 2-mercaptoethanol [2-ME]), and the suspen-

sion was boiled at 95uC for 5 min and then centrifuged at

10,0006g for 5 min. The supernatant was collected and diluted

with an equivalent volume of 26 sample buffer (25 mM Tris-

HCl [pH 6.8], 4% SDS [w/v], 20% glycerol [w/v], 10% 2-ME

[v/v], 0.1 mg/ml bromophenol blue [BPB]). Twenty microliters

of each sample was loaded onto a 12.5% SDS-polyacrylamide

gel and proteins were separated by electrophoresis and then

transferred to polyvinylidene fluoride (PVDF) membrane (Im-

mobilon-FL; Millipore, Billerica, MA, USA) by electroblotting.

Western blots were performed as follows: mouse anti-b-actin
monoclonal antibody (Abcam, Cambridge, UK) as loading

control, rabbit anti-HA antibody (Bethyl Laboratories, Mon-

tgomery, TX, USA) for HA-tagged SSTR5 receptor, and mouse

anti-Flag M2 monoclonal antibody (Sigma-Aldrich, St. Louis,

MO, USA) for fusion proteins with S-14 peptide, Flag tag and

Flo42 anchors were primarily used at dilutions of 1:5,000 in

TBST (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.05%

Tween-20 [v/v]). Anti-mouse or anti-rabbit secondary antibodies

conjugated with alkaline phosphatase (Promega, Madison, WI,

USA) were used at dilutions of 1:5,000 in TBST. Chemilumi-

nescent visualization was performed with Amersham CDP-Star

Detection Reagent (GE Healthcare, Buckinghamshire, UK) and

the signal was detected using a lumino-image analyzer LAS-

1000mini system (Fujifilm, Tokyo, Japan).

Figure 7. Confirmation of peptide trapping on yeast cell surfaces. Immunofluorescence staining of somatostatin displaying yeast strains.
Anti-Flag antibody and Alexa Fluor 594-conjugating secondary antibody were used for detection of Flag–Flo42 anchor or S-14–Flag–Flo42 fusion
proteins. Red fluorescence images are shown in false-color. IMFD-70 was used as the host strain. The transformants used in these experiments are
listed in Table S3.
doi:10.1371/journal.pone.0037136.g007
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Immunofluorescent Staining
For a-factor displaying yeasts (IMG-4), collected cells were

diluted to give an OD600 = 10 with distilled water and the cell

suspension was used for immunofluorescence staining by in-

cubating with mouse anti-Flag M2 monoclonal antibody (Sigma-

Aldrich) at a dilution of 1:500 for 1 h at room temperature. After

washing in triplicate, anti-mouse secondary antibody conjugated

with Alexa Fluor 546 (Invitrogen Life Technologies, Carlsbad,

CA, USA) at a dilution of 1:500 was incubated with the cell

suspensions for 1 h at room temperature. After washing in

triplicate, cells were resuspended in distilled water and observed

on a fluorescence microscope with a monochrome CCD camera.

To obtain micrographs of better clarity, essentially the same

procedure was used for somatostatin displaying yeasts (IMFD-70),

but the density of the collected cells was adjusted to OD600 = 5.

Antibodies were used at a dilution factor of 1:100. Anti-mouse IgG

conjugated with Alexa Fluor 594 (Invitrogen Life Technologies)

was used as the secondary antibody.

Supporting Information

Figure S1 Western blotting of SDS-extracted fractions
from the IMG-4/pUESCaf-FLO42 yeast strain. EndoHf

(Endoglycosidase H) was used to confirm glycosylation of the

Flo42 anchor. Anti-Flag M2 monoclonal antibody and anti-mouse

secondary antibody conjugated with alkaline phosphatase were

used to detect the a-factor–Flag–Flo42 fusion protein. NBT (nitro

blue tetrazolium) and BCIP (5-bromo-4-chloro-3-indolyl-phos-

phate) were used for the colorimetric reaction.

(TIF)

Figure S2 Pheromone signaling assays of a-factor-
displaying yeast strains with various anchor motifs
(color histograms). Gray histograms show the data from

control strains (mock). IMG-4 was used as the host strain. The

transformants used in this experiment are listed in Table S3.

(TIF)

Figure S3 SSTR5 signaling assays of somatostatin-
displaying yeast strains with various secretion signal
sequences (color histograms). The Flo42 anchor was used

for somatostatin display. S-28 indicates the 28 aa active isoform of

somatostatin peptide. Gray histograms show the data from control

strains (mock). Cultures were grown in SDM71 media for 22 h.

IMG-50 was used as the host strain. The transformants used in this

experiment are listed in Table S3.

(TIF)

Figure S4 SSTR5 signaling assays of somatostatin-
displaying yeast strains with different length GS linkers
(color histograms). The S-14 peptide and Flo42 anchor were

used for display. Gray histograms show the data from control

strains (mock). Cultures were grown in SDM71 media for 12 h.

IMG-50 was used as the host strain. The transformants used in this

experiment are listed in Table S3.

(TIF)

Figure S5 SSTR5 signaling assays of somatostatin-
displaying yeast strain (target cells) mixed with somato-
statin-non-displaying strain (non-target cells). S-14–Flag–
Flo42 and Flag–Flo42 fusion proteins were used as target and non-

target cells, respectively. R1 regions in the dot plots show the gates

for FACS sorting. The ratio of initial cell densities was adjusted to

10:1 (non-target cells : target cells), and the cultures were grown in

SDM71 media. IMG-50 was used as the host strain. The

transformants used in this experiment are listed in Table S3.

(TIF)

Table S1 List of primers.

(PDF)

Table S2 Plasmids used in Supplementary data.

(PDF)

Table S3 List of strains and transformants used for
assays.

(PDF)

Document S1 Supplementary Materials and Methods
(Plasmid constructions for supporting information).

(PDF)

Acknowledgments

We thank Dr. Ikuo Fujii, Dr. Takeshi Tsumuraya (Osaka Prefecture

University), and Dr. Mitsuyoshi Ueda (Kyoto University) for helpful

discussion.

Author Contributions

Conceived and designed the experiments: JI NY KT SK CO HF AK.

Performed the experiments: JI. Analyzed the data: JI. Contributed

reagents/materials/analysis tools: JI. Wrote the paper: JI AK.

References

1. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, et al. (2007)
Crystal structure of the human b2 adrenergic G-protein-coupled receptor.

Nature 450: 383–387.
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