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Abstract

A hallmark of human cancer is heterogeneity, reflecting the complex series of changes resulting in 

the activation of oncogenes coupled with inactivation of tumor suppressor genes. Breast cancer is 

no exception and indeed, many studies have revealed considerable complexity and heterogeneity 

in the population of primary breast tumors and substantial changes in a recurrent breast tumor that 

has acquired drug resistance. We have made use of a Myc-inducible transgenic mouse model of 

breast cancer in which elimination of Myc activity following tumor development initially leads to 

a regression of a subset of tumors generally followed by de novo Myc-independent growth. We 

have observed that tumors that grow independent of MYC expression have gene profiles and 

histologies that are distinct from the primary tumors and have acquired features resembling 

epithelial-mesenchymal transition (EMT) and “tumor initiating” cells. Analyses of the genetic 

pathways underlying these histological changes revealed a strong correlation between activation of 

the Ras, TGFβ, and TNFα pathways with Myc-independent growth. Collectively, the data reveal 

genetic alterations that underlie an escape from Myc-dependent growth and tumor progression that 

may parallel what occurs in human cancers as they acquire drug resistance.
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Introduction

Human cancer, including breast cancer, is characterized by genetic complexity reflecting the 

acquisition of multiple mutations, amplifications, deletions, and gene arrangements over a 

period of time. Recent genome-scale studies of copy number variation and large-scale DNA 

sequencing efforts have provided direct evidence for this complexity (Ding et al., 2008; 

Mullighan et al., 2007; Sjoblom et al., 2006; Weir et al., 2007). This heterogeneity is 

manifested in the primary tumors that exhibit considerable patient to patient variation that 

determines disease outcome and response to therapies as well as in the recurrent tumors that 

may additionally acquire the ability to metastasize to distant organs. An ability to model the 

complexity that gives rise to tumor heterogeneity is thus essential to understanding the 

oncogenic process and would enable the development of additional therapeutics to target 

cancers that evade conventional therapy.

Mouse models genetically engineered to explore the concept of oncogene addiction have 

guided our understanding of the genetic complexity underlying the progression of cancers. 

Prior work using transgenic mouse models that conditionally overexpress the MYC 

oncogene has shown that inactivation of MYC can be sufficient to induce sustained tumor 

regression. Particularly in lymphomas, islet cell tumors and skin tumors, withdrawal of 

MYC expression resulted in rapid tumor cell elimination through apoptosis (Pelengaris et 

al., 2002). Similarly, MYC inactivation in osteogenic sarcoma resulted in terminal 

differentiation of tumor cells into mature bone cells resulting in cells that no longer have 

tumorgenic potential (Jain et al., 2002). While tumor initiation and progression in these 

systems appeared to be dependent on a single oncogenic event, more recent mouse models 

of MYC-induced epithelial cancers have exhibited a more complex situation apparently 

reflecting the action of multiple oncogenic events (Boxer et al., 2004; D’Cruz et al., 2001; 

Moody et al., 2005; Shachaf et al., 2004). In a majority of these studies, inactivation of the 

oncogene resulted in regression of only a subset of the tumors. Tumors that initially 

regressed, showing a dependence on a specific oncogenic pathway, generally recurred 

exhibiting acquired resistance to pathway inhibition similar to what is observed during the 

course of human cancers. Additional studies employing models that combine inducible Myc 

and Ras oncogenes have described further complexity with evidence of a hierarchy of 

oncogene dependence (Podsypanina et al., 2008). The evident heterogeneity observed in 

these transgenic mice that conditionally overexpress an oncogene or oncogenes with respect 

to dependency on the initiating event suggests that these models can serve to reveal the 

complexities of the oncogenic process.

A particularly powerful approach to the study of genomic complexities that underlie these 

complex phenotypes has been the use of whole genome expression analyses. Our previous 

work has made use of patterns of gene expression, as well as patterns of pathway activity 

revealed using signatures of pathway activation, to identify heterogeneity of tumors within 

mouse models. We have further explored this heterogeneity, now in the context of the 

genomic alterations that occur to allow tumors to lose dependence on the initial oncogene 

activating event similar to how human cancers may acquire drug resistance.
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Results

Genomic Analysis of Primary and Myc-independent Tumors

The transgenic line MMTV-rtTA (MTB) carries the reverse tetracycline-dependent 

transcriptional activator, rtTA, under the control of the mouse mammary tumor virus 

(MMTV). When mated to mice carrying the c-MYC transgene fused to a tetracycline-

dependent promoter (TetO-Myc )(TOM), bitransgenic animals (MTB/TOM) are produced in 

which Myc is induced in the presence of doxycycline, resulting in the development of 

adenocarcinomas with 100% penetrance. Tumors that develop are heterogeneneous since 

previous work has shown that upon withdrawal of doxycycline, approximately half of the 

adenocarcinomas regressed while the remaining half persisted independent of MYC 

expression(Boxer et al., 2004).

We induced 35 mice with doxycycline and consistent with previous observations, 

chronically induced MTB/TOM developed mammary tumors with a mean latency of 21.8 

weeks (Boxer et al., 2004; D’Cruz et al., 2001). From these 35 mice, we observed a total of 

43 tumors. Upon withdrawal of doxycycline, 17 out of 43 (40%) tumors regressed to a 

nonpalpable state while the remaining 26 tumors (60%) showed variable degrees of 

regression but did not reach a nonpalpable state (Figure 1B). Tumors that regressed to a 

nonpalpable state generally recurred within 1–6 months and mice were euthanized when 

tumors reached >1cm3. Among the tumors that did not reach a nonpalpable state, 16/43 

(37%) tumors showed variable degrees of regression (from >90% regression where the 

tumor was barely palpable to less than 10% reduction in tumor volume) and resumed growth 

within 1–2 months. The remaining 10/43 tumors (23%) showed no signs of regression and 

either remained dormant or continued to grow.

As an approach to the analysis of the genomic changes that might underlie the differential 

outcome following elimination of Myc, we utilized genome-scale gene expression analysis. 

We assessed gene expression profiles on Affymetrix 430A.2 gene expression arrays of 37 

out of 43 tumors collected when the mice were administered doxycycline (hereon referred to 

as the “primary” tumors) and 38 tumors that recurred or continued to grow after doxycycline 

withdrawal (hereon referred to as the “Myc-independent” tumors) (Figure 1A). As a starting 

point of our analyses, we first confirmed that MYC expression was tightly controlled by 

doxycycline, by comparing MYC pathway activity using a Myc gene expression signature 

that had previously been generated in our lab and validated on independent mouse data 

sets(Bild et al., 2006; Gatza et al.; Huang et al., 2003). The advantage of utilizing gene 

expression signatures is the ability to assess gene patterns represented by a collection of 

genes related to MYC expression thus offering an assessment of MYC activity rather than 

just MYC expression. Pathway analysis of the primary tumors showed high MYC activity 

when mice were still on doxycycline, as shown in Figure 1C. MYC pathway activity was 

diminished in recurrent tumors collected when the mice were off doxycycline with the 

exception of two tumors (238A and 279A). Not surprisingly, both of these tumors did not 

regress to a nonpalpable state following removal of doxycycline, consistent with continued 

MYC function. Although we have not looked further into the underlying cause of 

constitutive high MYC activity in these tumors, Podsypanina et al had previously reported 
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the acquisition of spontaneous somatic mutations in the rtTA transgene cDNA resulting in 

the enhanced ability of the rtTA to bind and constitutively activate the tetO promoter 

(Podsypanina et al., 2008). We speculate that this may be a possible explanation for the high 

MYC activity we observe in these tumors.

Numerous studies have documented the synergistic actions of MYC and mutant Kras2 in 

mammary tumorgenesis (Andrechek et al., 2009; Boxer et al., 2004; D’Cruz et al., 2001; 

Podsypanina et al., 2008). In principle, Ras activation could be an explanation for the 

development of Myc independence in a fraction of the tumors. To address this possibility, 

we sequenced the mutational hot spots in Kras2 (codons 12, 13, and 61 of exons 1 and 2). 

Sequence analyses reveal mutations in Kras2 in 49% of total tumors analyzed (Table 1). 

Among tumors that regressed to a nonpalpable state 35% of tumors harbored Kras mutations 

while tumors that regressed but were still palpable and tumors that were either dormant or 

continued growing after removal of Myc harbored K-ras mutations in 44% and 80% of 

tumors, respectively. A majority of the mutations were observed in codon 12 with the 

exception of two tumors with mutations in codon 61. The amino acid changes in the 

mutations varied with a majority of them being a glycine to aspartic acid mutation. 

Mutations in Kras2 that were observed in the primary tumor samples were also observed in 

the recurring tumors thus confirming that the tumors represent bona fide recurrences rather 

than de novo neoplasms. Four of the primary tumors (B114-4, B169, B179 and B233) that 

did not initially have mutations in Kras2 eventually acquired mutations in Kras2 when the 

tumors were collected upon necropsy. Our results suggest that although Kras mutation status 

initially plays a role in Myc-independent growth, additional genetic alterations have to also 

be involved since all tumors eventually thrive independent of MYC expression.

Cluster Analysis Segregate Mouse Mammary Tumors that Escape Dependence on Myc

The Myc-induced mammary tumors from the MTB/TOM mouse model, although initiated 

by one oncogenic event, showed variable responses to withdrawal of Myc expression likely 

reflecting additional alterations acquired in the tumors. To determine whether differential 

responses to Myc withdrawal is reflected in specific gene expression patterns dictating 

tumor outcome, we performed an unsupervised clustering of the microarray data we 

obtained from all the mouse mammary tumors. As shown in Figure 2A, there was a very 

clear distinction in gene expression patterns between the primary tumors initiated by Myc 

compared to tumors that recur or persist in the absence of Myc transgene expression (Figure 

2A).

To further characterize the mammary tumors we obtained from the MTB/TOM mouse 

model, we performed an unsupervised clustering again with tumors we previously 

characterized from a mouse model that constitutively expressed Myc (MMTV-MYC). Our 

prior work has described considerable heterogeneity in tumors from this MMTV-Myc 

mouse model as distinct gene expression patterns that correlated with distinct histological 

subtypes (Andrechek et al., 2009). Mammary tumors with papillary and microacinar 

histological types clustered in a group together apart from the EMT/squamous tumors. An 

EMT tumor signature that was generated from this data was shown to identify human breast 

tumors that were likely to metastasize. As shown in Figure 2B, cluster analysis revealed a 
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majority of the MTB/TOM primary tumors clustered most closely with the previously 

characterized microacinar tumors while the Myc-independent tumors primarily clustered 

with the previously characterized EMT and squamous tumors.

Analysis of EMT Markers in Myc-independent Tumors

Previous studies with Her2/neu-induced mammary tumors have observed that tumors 

recurring independent of Her2/neu transgene expression generally exhibited EMT type 

histologies(Moody et al., 2005). The unsupervised clustering analysis presented in Figure 2 

panel B provides evidence that the Myc independent tumors are genetically distinct from the 

primary tumors and cluster with tumors that exhibit an EMT/squamous phenotype. To 

further confirm that the distinction in gene patterns reflects acquired genetic heterogeneity 

that allow tumors to become more resilient and escape Myc dependence rather than mere 

differences resulting from the absence of a Myc signature, we set out to investigate evidence 

for EMT in the MTB/TOM tumors. Histological analysis of hematoxylin and eosin stained 

mouse mammary tumor samples from the MTB/TOM mouse revealed the primary samples 

to be predominantly of the microacinar and large blue cell type while the Myc-independent 

samples were a mixture of large blue cell, squamous, papillary and spindle cell type that are 

often characteristic of EMT. Although not all of the primary samples were examined 

histologically, the squamous and EMT-like histology pattern was not observed among the 

primary tumor samples we examined (Supplementary Table I and Figure 3A).

To further investigate the EMT-like nature of these tumor samples, we first examined 

expression of several documented markers of EMT including E-cadherin, vimentin, and 

fibronectin from our microarray data (Thiery, 2002). Consistent with the EMT nature of 

these Myc-independent tumors, we observed increased expression of vimentin and 

fibronectin expression using probes on Affymetrix arrays (Figure 3B). Downregulation of E-

cadherin was also observed in a subset of the Myc-independent tumors. 

Immunohistochemistry by diaminobenzidine (DAB) staining on selected samples confirmed 

the expression of the EMT markers from the microarray analysis and additionally 

demononstrated a reduction in cytokeratin 18 (Figure 3C). Collectively, our results thus far 

show significant histological and genetic changes in the mouse mammary tumors as they 

escape MYC dependence and these changes are indicative of a transition to a more 

mesenchymal phenotype.

Activation of Ras, TGFβ and TNFα pathways

To further define and elucidate genetic differences between the primary and Myc-

independent tumors, we used human signatures of cell signaling pathway. These signatures 

represent the activation of a cell signaling pathways in the form of a pattern of gene 

expression unique to that circumstance and can be quantitated and assessed in other 

biological samples. We previously validated and applied the Myc and Ras pathway 

signatures on various mouse datasets (Andrechek et al., 2009; Bild et al., 2006; Huang et al., 

2003). We now extend this analysis for the TGFβ and TNFα pathway signatures using 

various mouse data sets (see Supplementary Figure I) and applied the TGFβ, Ras and TNFα 

gene signatures to the primary and Myc-independent MTB/TOM tumors. Our analyses 

showed the Myc-independent tumors have a higher probability of activation of these 
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pathways versus the primary tumors (Figure 4A). The numerical values representing 

predicted pathway probabilities with the upper and lower limits of the predicted values are 

provided in the Supplementary Tables. We additionally confirmed activation of these 

pathways by immunohistochemisty staining with antibodies to TNFα and phospho-Smad3 

as an indication of TGFβ activation Figure 4B.

An abundance of work has noted an association of TGFβ, TNFα and Ras activation with 

EMT-like features. We determined whether there was any correlation between activation of 

these pathways. A Pearson correlation test showed a positive correlation between these 

pathways that showed to be statistically significant by a two-tailed T-test (Figure 4C).

MYC-independent growth has features of cancer initiating cells

A variety of studies has proposed a role for so-called tumor-initiating cells as a component 

of the underlying mechanism of tumor recurrence and the acquisition of drug resistance. 

These cells generally display characteristics of EMT, show mammosphere-forming and 

higher tumor seeding capabilities, and are identified by expression of cell surface markers 

(CD44+/CD24−/low) (Al-Hajj et al., 2003; Creighton et al., 2009; Diehn et al., 2009). These 

“tumor-initiating” cells are thought to be resistant to therapy and may therefore contribute to 

cancer relapse. Given that the MTB/TOM mouse model studied here recapitulates some 

features of tumor recurrence and resistance comparable to human cancers, we sought to 

explore the extent to which the recurrent tumors were comparable to “tumor initiating” cells 

previously characterized from human breast cancers. For this analysis, we utilized data from 

human breast cancers that have been flow-sorted for expression of the CD44+/CD24−/low 

cell surface marker (GSE7513) (Al-Hajj et al., 2003). We generated a gene expression 

signature and validated this signature on an independent data set (GSE6883; Supplementary 

Figure II). We then examined the probability of this CD44+/CD24−/low gene signature in the 

primary and Myc-independent mouse mammary tumors. As shown in Figure 5A, tumors 

that have escaped MYC dependence had a statistically significant higher probability of 

exhibiting the CD44+/CD24−/low gene signature. Additionally, an analysis of our primary 

tumors showed a higher probability of the CD44+/CD24−/low gene signature in tumors that 

regressed to a nonpalpable state versus tumors that do not regress to a nonpalpable state in 

response to initial Myc removal (Figure 5B). Collectively, these results showed MYC-

independent growth is generally associated with a higher CD44+/CD24−/low gene signature 

probability and suggests that MYC-independent growth may be acquired through 

mechanisms reminiscent of how human tumors recur and acquire drug resistance.

Discussion

Perhaps the largest challenge facing the effective treatment of cancer, including breast 

cancer, is the substantial heterogeneity and complexity that is evident in these disease states. 

Breast cancer is not one disease but rather a multitude of disorders with distinct etiologies. 

This can be seen in the variation evident in primary tumors that defines response to therapies 

as well as differential prognosis. It can also be seen in the recurrence of disease following 

initial therapy that most often is then associated with mortality. Elucidating the 

heterogeneity that permit tumor cells to escape blockade of a dominant oncogenic pathway, 
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survive in a latent state and eventually reestablish malignant growth is thus of fundamental 

importance to making progress towards the goal of effective treatments and improved 

disease outcomes. The ability to use a mouse genetic model as a means to study these 

events, particularly the distinctions amongst primary tumors that define response to therapy 

and subsequent disease progression, is a key opportunity to better understand the human 

disease. We suggest that the observations we describe here, that provide clear evidence for 

heterogeneity and complexity within a mouse model reflecting events seen in the human 

disease, is one such opportunity.

Although the mouse mammary tumors studied here were initiated by a single oncogenic 

event, it is nevertheless clear that there is substantial heterogeneity in the primary tumors 

that determined the response to Myc withdrawal and the likelihood for progression to the 

Myc-independent state. In reality, the withdrawal of Myc expression as enabled in this 

model is a mimic for a Myc-specific drug. As such, it is apparent that while some of the 

tumors are indeed more reliant on the action of Myc and thus their growth is subdued by the 

inhibition of Myc function, others are not. This variation, that determines the outcome of the 

‘Myc therapy’, mirrors similar situations in the treatment of human breast cancer where for 

instance there is variation in the response to Herceptin within the Her2 positive population 

of breast tumors. Although Ras activating mutations might be partly responsible for this 

variation, given the previous evidence for the coincidence of these mutations in the MMTV 

Myc model, it is apparent that this is perhaps not sufficient to explain the variability in 

outcome in a small subset of tumors that do not harbor ras mutations or pathway activity.

Prior work by Moody et al has shown an EMT phenotype to be associated with recurrence 

of Neu-induced mouse mammary tumors (Moody et al., 2002). In light of these observations 

together with our results, we suggest that the acquisition of an EMT phenotype in the mouse 

model is not specific to a particular oncogene initiating event but is a general event 

associated with more resilient tumors at a later stage of tumor progression. Our work 

provides novelty in that we have observed significant gene profile differences including 

activation of the TGFβ, TNFα, and RAS signaling pathways associated with an escape from 

oncogene dependent growth in the MTB/TOM mouse model. Consistent with this 

observation, an abundance of literature has reported the TGFβ, TNFα, and RAS signaling 

pathways to have a prometastatic role associated with an EMT phenotype during the later 

stages of tumorigenesis. (Acloque et al., 2008; Singh and Settleman, 2010; Thiery, 2002; 

Thiery et al., 2009). Our observations reported here suggest the MTB/TOM mouse to be a 

good model system for investigating future therapeutic opportunities in targeting a 

combination of these signaling pathways in more advanced human cancers.

Recent work has connected EMT to the emergence of cancer stem cells (Mani et al., 2008). 

Consistent with EMT-like features and the propensity for more aggressive tumor growth, a 

higher probability of the CD44+/CD24−/low gene signature was associated with MYC-

independent growth. Tumorgenic breast cancer cells that express high levels of CD44 and 

low CD24 in humans have been proposed to be resistant to chemotherapy and are thought to 

be responsible for cancer relapse (Creighton et al., 2009). We emphasize that although these 

results do not suggest that our recurrent tumors are cancer-initiating cells, these observations 

do suggest that these tumors share properties of EMT and are indicative of cells that are 
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more robust and resistant to cell death. Primary samples that did not regress after withdrawal 

of MYC expression were more likely to exhibit characteristics of the CD44+/CD24−/low 

phenotype. These results suggest CD44+/CD24−/low features may be a good predictor of the 

extent to which a tumor has escaped MYC dependence in this mouse model and further 

suggests this model to be good system for developing combination therapeutic strategies to 

target cells that are resistant to the ablation of one oncogenic pathway. Furthermore, studies 

by Creighton et al. have alluded to the similarities between CD44+/CD24−/low and 

mammosphere-forming cells to human breast cancers of the “claudin low” type, previously 

characterized by Herschkowitz et al (Herschkowitz et al., 2007). These findings highlight 

the value of further defining the potential of this MTB/TOM mouse model in studying the 

molecular complexity underlying specific groups of human cancers. .

Finally, an area of research that is becoming increasingly more intriguing is the mechanisms 

underlying the phenomenon of oncogene addiction and how some tumors escape this 

addiction. What is evident in the studies we present here is the degree of heterogeneity 

acquired in tumors that evolve to thrive independent of expression from the oncogene-

initiating event. The value in this determination is the extent to which the heterogeneity 

itself is a model of human disease and thus provides an opportunity for further dissection of 

this heterogeneity with the goal of working towards personalized therapeutics in human 

cancer.

Materials and Methods

Animals

Animal use and husbandry was in accordance with institutional and federal guidelines. 

Bitransgenic animals were induced by administering doxycycline (2mg/ml;Sigma) in their 

drinking water which was replaced weekly. Animals were monitored for tumor growth 

weekly.

Tissue collection

A biopsy was taken when mammary tumors were ~1cm. Mice with recurring tumors or 

tumors that did not regressed were euthanized when tumors were ~1.5–2 cm. Tumor tissues 

collected for RNA extraction were flash frozen in liquid nitrogen. Tumor tissues collected 

for histology were fixed in formalin and then were processed for routine histology.

Kras2 mutation analysis

cDNA was generated and PCR amplified for sequencing using Titanium one step RT-PCR 

(Clontech). DNA fragments from Kras2 were gel purified and sequence analysis was 

performed by Duke DNA Sequencing Facility.

Microarray analysis

Flash frozen RNA samples from mouse tissue were purified using the RNeasy Mini Kit 

(Qiagen) after roto-stator homogenization and submitted to the Duke Microarray facility for 

hybridization to Affymetrix Mouse Genome 430A 2.0 array platforms. The resulting .CEL 

files were normalized by Robust Multi-Array (RMA) or MicroArray Suite (MAS5) using 
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Affymetrix Expression Console. MAS5 normalized files were additionally log2 transformed. 

The RAW .CEL files have been deposited into the Gene Expression Omnibus (GEO) 

database under the accession number GSE22406.

Unsupervised Cluster Analysis

Unsupervised clustering was performed with the publicly available Cluster 3.0 software. 

Using the SD function under the “filter” tab, genes were filtered down to approximately 

1000 genes. Under the “adjusted” tab the option to center genes and center arrays was 

checked. Under the “hierarchical” tab, the option to cluster genes and arrays were checked 

and average linkage was chosen. The results were visualized with JavaTreeView. Matlab 

was then used to generate a color heat map of the results.

Statistical Analysis of Pathway Predictions

The statistical methods for pathway analysis have been thoroughly described but are 

reiterated here for clarification (Bild et al., 2006; Huang et al., 2003; West et al., 2001; 

Gatza et al.). The following explanation is from Gatza et al. In our pathway analysis, a 

signature represents a group of genes that collectively exhibit a consistent pattern of 

expression. This signature enables a distinction between two phenotypes. A metagene 

representing a group of genes that collectively demonstrate a consistent pattern of 

expression for a specific phenotype is identified from the training data (Phenotype A versus 

Phenotype B). Each signature summarizes its constituent genes as a single expression profile 

and is derived from the first principal component of that gene set. This factor corresponds to 

the largest singular value as determined by singular value decomposition (SVD). Bayesian 

methods are then used to estimate binary probability regression models based on a given set 

of expression vectors (values across metagenes) derived from the training data. Application 

of these models to an independent validation dataset enables the evaluation of predictive 

probabilities of each of the two phenotypic states for each sample in the validation dataset. 

In these analyses, gene selection and identification is based solely on the training data. 

Metagene values are computed using the principal components of the training data ensuring 

reproducibility of the signature irrespective of the composition of the validation dataset. 

Bayesian fitting of binary probability regression models to the training data enable 

assessment of the relevance of the metagene signature in within-sample classification as 

well as estimation and uncertainty assessment for the binary regression weights. This results 

in the mapping of metagenes to probabilities of relative pathway status. Evaluation of 

independent tumor or cell line samples results in the prediction of relative pathway status 

generating estimated relative probabilities, and associated measures of uncertainty, of 

activation or deregulation for each sample in the validation dataset.

To ensure that over-fitting does not occur in the generation of each signature, a leave-one-

out cross validation was performed for each set of training data to examine the stability and 

predictive capabilities of our model. In this analysis, each sample is left out, one at a time, of 

the dataset and the model was refitted (both the metagene factors and the partitions used) 

using the remaining samples. The software for this analysis can be downloaded from http://

www.duke.edu/~dinbarry/BINREG/.
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Pathway Predictions for MTB/TOM Mouse Mammary Tumors

The procedures for the generation of training data followed by predictions of pathway 

activity are described below.

I. Pathway Analysis of TNF alpha activity—Generation of TNFα training data: The 

TNFα training data was generated using datasets from GEO (GSE2838 and GSE2639). 

RAW.CEL files were Robust Multi-array Average (RMA) normalized using Affymetrix 

Expression Console Version 1.1. This file is provided in the Supplementary Information(SI) 

as “tnfa_train__rma”. In the “tnfa_train__rma” file, “0” represents untreated conditions and 

the columns designated as “1” represents cells treated with TNFα. The file was loaded onto 

BINREG2 which can be downloaded at http://www.duke.edu/~dinbarry/BINREG/ for 

binary regression analysis. The following parameters were chosen in BINREG2: 80 gene/ 3 

metagenes/ Shift scale norm/ no quantile norm/ data is already logged/ 1000 burn in / 5000 

iterations. The metagene scores for the training data is included in the SI as “Predicted 

Pathway Probabilities-Training.TNFalpha”

Converting Mouse Affymetrix probe IDs to Human probe IDs for Analysis: Mouse 430A 

2.0 mouse probe IDs from the MTB/TOM data and Mouse 430 probIDs from GEO-

GSE19272 were converted to human U133 probed IDs using Chip Comparer http://

chipcomparer.genome.duke.edu/ and File Merger http://filemerger.genome.duke.edu/.

Validation of TNFα signature on publicly available mouse data: The RAW .CEL files 

representing primary murine hepatocytes mock treated or treated with TNFalpha were 

downloaded from GEO with the gene accession number GSE19272. The data was RMA 

normalized using Affymetrix Expression Console Version 1.1. Mouse Affymetrix probe IDs 

were converted to human Affymetrix probe IDs as described above. Analysis in BINREG2 

was performed using the parameters described above to generate the training data. The result 

of this validation set is reported by BINREG2 as an output file denoted as validation.txt. 

Columns of output are: 1) the column number in input file, 2) phenotype call, 3) average 

probability, 4) and 5) upper and lower limits of the credible interval, 6) metagene score. The 

results are provided in the Supplementary Information as the “Predicted Pathway 

Probabilities-GSE19272.TNFalpha.validation” file. The average probabilities were then 

used to generate a heat map in Matlab.

Predicting TNFα pathway activity in MTB/TOM tumors: The data was RMA normalized 

using Affymetrix Expression Console Version 1.1. Mouse Affymetrix probe IDs were 

converted to human Affymetrix probe IDs as described above. Analysis in BINREG2 was 

performed using the parameters described above to generate the training data. The result of 

this validation set is reported by BINREG2 as an output file denoted as validation.txt. 

Columns of output are: 1) the column number in input file, 2) phenotype call, 3) average 

probability, 4) and 5) upper and lower limits of the credible interval, 6) metagene score. The 

results are provided in the Supplementary Information as the “Predicted Pathway 

Probabilities-MTBTOM.TNFalpha” file The average probabilities were then used to 

generate a heat map in Matlab.
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II. Pathway Analysis of TGFβ pathway activity—Generation of TGFβ training data: 

The TGFβ training data was generated from mock or TGFβ treated lung cancer cells. Gene 

expression profiles were assessed by Affymetrix U133 arrays and RAW.CEL files were 

Robust Multi-array Average (RMA) normalized using Affymetrix Expression Console 

Version 1.1. This file is provided in the Supplementary Information as “tgfb_train_rma”. In 

the “tgfb_train_rma” file, “0” represents mock treated and the columns designated as “1” 

represents cells treated with TGFβ. The file was loaded onto BINREG2 which can be 

downloaded at http://www.duke.edu/~dinbarry/BINREG/ for binary regression analysis. The 

following parameters were chosen in BINREG2: 125 gene/ 3 metagenes/ Shift scale norm/ 

no quantile norm/ data is already logged/ 1000 burn in / 5000 iterations. The metagene 

scores for the training data is included in the SI as “Prediceted Pathway Probabilities-

Training.TGFbeta”

Converting Mouse Affymetrix probe IDs to Human probe IDs for Analysis: Mouse 430A 

2.0 mouse probe IDs from the MTB/TOM data and Mouse 430 probIDs from GEO-

GSE13986 were converted to human U133 probed IDs using Chip Comparer http://

chipcomparer.genome.duke.edu/ and File Merger http://filemerger.genome.duke.edu/.

Validation of TGFβ signature on publicly available mouse data: The RAW .CEL files 

representing gene expression profiles from control mice or mice induced to express TGFβ 

were downloaded from the data set with the gene accession number GSE13986. The data 

was RMA normalized using Affymetrix Expression Console Version 1.1. Mouse Affymetrix 

probe IDs were converted to human Affymetrix probe IDs as described above. Analysis in 

BINREG2 was performed using the parameter described above to generate the training data. 

The result of this validation set is reported by Binreg as an output file denoted as 

validation.txt. Columns of output are: 1) the column number in input file, 2) phenotype call, 

3) average probability, 4) and 5) upper and lower limits of the credible interval, 6) metagene 

score. The results are provided in the Supplementary Information as the “Predicted Pathway 

Probabilities-GSE13986. TGFbeta.validation” file. The average probabilities were then used 

to generate a heat map in Matlab.

Predicting TGFβ pathway activity in MTB/TOM tumors: The data was RMA normalized 

using Affymetrix Expression Console Version 1.1. Mouse Affymetrix probe IDs were 

converted to human Affymetrix probe IDs as described above. Analysis in BINREG2 was 

performed using the parameters described above to generate the training data. The result of 

this validation set is reported by BINREG2 as an output file denoted as validation.txt. 

Columns of output are: 1) the column number in input file, 2) phenotype call, 3) average 

probability, 4) and 5) upper and lower limits of the credible interval, 6) metagene score. The 

results are provided in the Supplementary Information as the “Predicted Pathway 

Probabilities-MTBTOM.TGFbeta” file. The average probabilities were then used to generate 

a heat map in Matlab.

III. Pathway Analysis of Ras pathway activity—Generation of RAS training data: 

The RAS training data was generated from HMECs infected with an adenovirus expressing 

GFP or RAS. Gene expression profiles were assessed by Affymetrix U133 arrays and 

RAW.CEL files were MAS5 normalized using Affymetrix Expression Console Version 1.1 
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and log2 transformed. This file is provided in the Supplementary Information as 

“ras_train_mas5log2”. In the “ras_train_mas5log2” file, “0” represents cells infected with 

GFP-adenovirus and the columns designated as “1” represents cells expressing RAS-

adenovirus. The file was loaded onto BINREG2 which can be downloaded at http://

www.duke.edu/~dinbarry/BINREG/ for binary regression analysis. The following 

parameters were chosen in BINREG2: 350 gene/ 2 metagenes/Shift scale norm/ quantile 

norm/ data is already logged/ 1000 burn in / 5000 iterations. The metagene scores for the 

training data is included in the SI as “Predicted Pathway Probabilities-Training.Ras”

Converting Mouse Affymetrix probe IDs to Human probe IDs for Analysis: Mouse 430A 

2.0 mouse probe IDs from the MTB/TOM data and Mouse 430 probIDs from GEO-

GSE13986 were converted to human U133 probed IDs using Chip Comparer http://

chipcomparer.genome.duke.edu/ and File Merger http://filemerger.genome.duke.edu/.

Validation of RAS signature on publicly available mouse data: The RAW .CEL files 

representing gene expression profiles from control mice or mice induced to express RAS 

were downloaded from the data set with the gene accession number GSE13986. The data 

was RMA normalized using Affymetrix Expression Console Version 1.1. Mouse Affymetrix 

probe IDs were converted to human Affymetrix probe IDs as described above. Analysis in 

BINREG2 was performed using the parameter described above to generate the training data. 

The result of this validation set is reported by Binreg as an output file denoted as 

validation.txt. Columns of output are: 1) the column number in input file, 2) phenotype call, 

3) average probability, 4) and 5) upper and lower limits of the credible interval, 6) metagene 

score. The results are provided in the Supplementary Information as the “Predicted Pathway 

Probabilities-GSE13986. Ras.validation” file. The average probabilities were then used to 

generate a heat map in Matlab.

Predicting RAS pathway activity in MTB/TOM tumors: The data was RMA normalized 

using Affymetrix Expression Console Version 1.1. Mouse Affymetrix probe IDs were 

converted to human Affymetrix probe IDs as described above. Analysis in BINREG2 was 

performed using the parameters described above to generate the training data. The result of 

this validation set is reported by BINREG2 as an output file denoted as validation.txt. 

Columns of output are: 1) the column number in input file, 2) phenotype call, 3) average 

probability, 4) and 5) upper and lower limits of the credible interval, 6) metagene score. The 

results are provided in the Supplementary Information as the “Predicted Pathway 

Probabilities-MTBTOM.Ras” file. The average probabilities were then used to generate a 

heat map in Matlab.

IV. Analysis of Myc Pathway Activity—Prediction of Myc pathway activity was 

performed as described above for prediction of probabilities for TGFβ, TNFα and Ras 

pathway activity. The Myc training data published in Huang et al, Bild et al, and Gatza et al 

was used (Bild et al., 2006; Gatza et al.; Huang et al., 2003). Gene expression profiles were 

previously assessed by Affymetrix U133 arrays and RAW.CEL files were MAS5 

normalized using Affymetrix Expression Console Version 1.1 and log2 transformed. The 

training data is provided in SI as “myc_train_mas5log2”. Given that the Myc training data 

has already been validated on mouse samples previously, we did not validate this training 
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data on additional mouse data here. Mouse probe IDs from the 430A.2 microarray chip were 

converted to human U133 probe IDs using Chip Comparer and File Merger and described 

above and the probability of Myc pathway activity was assessed using BINREG2 using the 

following parameters: 500 gene/ 2 metagenes/Shift scale norm/ quantile norm/ data is 

already logged/ 1000 burn in / 5000 iterations.

Generation of a CD44+/CD24−/low Gene Signature and Analysis of Data

Generation of CD44+/CD24−/low training data: The CD44+/CD24−/low training data was 

generated from GEO dataset GSE7513. RAW.CEL files were RMA normalized using 

Affymetrix Expression Console Version 1.1. This file is provided in the Supplementary 

Information as “CD44.CD24_train_RMA”. In the “CD44.CD24_train_RMA” file, “0” 

represents unsorted cells and the columns designated as “1” represents CD44+/CD24−/

sorted cells. The file was loaded onto BINREG2 which can be downloaded at http://

www.duke.edu/~dinbarry/BINREG/ for binary regression analysis. The following 

parameters were chosen in BINREG2: 400 genes/ 3 metagenes /1000 burn in /5000 

iterations. The metagene scores for the training data is included in the SI as “Predicted 

Pathway Probabilities-Training.CD44+CD24−(GSE7513).”

Converting Mouse Affymetrix probe IDs to Human probe IDs for Analysis and merging of 

datasets: Mouse 430A 2.0 mouse probe IDs from the MTB/TOM data were converted to 

human U133 probed IDs using Chip Comparer http://chipcomparer.genome.duke.edu/ and 

File Merger http://filemerger.genome.duke.edu/. The GSE7513, GSE6883 and MTB/TOM 

data were then normalized again and merged using Bayesian Factor Regression Model 

(BFRM) (Carvalho et al., 2008; Lucas et al., 2009)to remove technical variation between 

data sets.

Validation of CD44+/CD24−/low signature on publicly available mouse data: The 

RAW .CEL files representing sorted and unsorted cells were downloaded from the data set 

with the gene accession number GSE6883. The data was RMA normalized using Affymetrix 

Expression Console Version 1.1 and merged and normalized to GSE7513 as described 

above. The result of this validation set is reported by BINREG2 as an output file denoted as 

validation.txt. Columns of output are: 1) the column number in input file, 2) phenotype call, 

3) average probability, 4) and 5) upper and lower limits of the credible interval, 6) metagene 

score. The results are provided in the Supplementary Information as the “Predicted Pathway 

Probabilities-GSE6883.CD44+CD24−.validation” file.

Predicting CD44+/CD24−/low pathway activity in MTB/TOM tumors: The data was RMA 

normalized using Affymetrix Expression Console Version 1.1. Mouse Affymetrix probe IDs 

were converted to human Affymetrix probe IDs as described above. Analysis in BINREG2 

was performed using the parameters described above to generate the training data. The result 

of this validation set is reported by BINREG2 as an output file denoted as validation.txt. 

Columns of output are: 1) the column number in input file, 2) phenotype call, 3) average 

probability, 4) and 5) upper and lower limits of the credible interval, 6) metagene score. The 

results are provided in the Supplementary Information as the “Predicted Pathway 

Probabilities-MTBTOM.CD44+CD24−(GSE7513)” and “Predicted Pathway Probabilities-

MTBTOM(primaries_only).CD44+CD24−(GSE7513)” file.
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Comparison of Predicted CD44+/CD24−/low probabilities: Predicted probabilities were 

graphed on Graph Pad Prism 4.0. A two-tailed T-test was used to statistical significance of 

the comparisons between “Primaries” vs. “Myc-independent” samples and “Regressed” vs. 

“No Regression” as shown in Figure 5.

Correlation Analysis of Signaling Pathways

A Pearson correlation analysis between signaling pathways were performed using GraphPad 

Prism version 4.00 for Windows. Predicted pathway probabilities were enter into GraphPad 

followed by selection of the “Analyze”, “Built-in analysis”, and “Correlation” options, 

sequentially. A Pearson correlation and a two-tailed P value were then selected for the 

analysis and a “r squared” value representing the coefficient of determination was reported. 

The data was graphed in Excel.

Immunohistochemistry—Mouse mammary tissues were sectioned and paraffin 

embedded by Duke Pathology Department. H&E staining Immunohistochemical staining of 

tissues for EMT markers were performed using the Vector M.O.M Immunodetection 

Peroxidase Kit. In brief, paraffin embedded mouse mammary tissues were deparaffinized 

and hydrated using standard procedures. Antigen unmasking was performed by heating 

slides in a citrate buffer solution (10mM Citric Acid, pH 6.0, 0.05% Tween 20). Endogenous 

peroxidase activity was blocked in 3% hydrogen peroxide and Avidin/Biotin blocking was 

performed using Vector Avidin/Biotin Blocking Kit (cat. No. SP-2001). 

Immunohistochemistry staining was performed using the Vector M.O.M Immunodetection 

Peroxidase Kit following manufacturer’s instructions. Diaminobenzidine (DAB) was used as 

a substrate and haemotoxylin was used as a counterstain. Slides were mounted and viewed 

on a confocal microscope. The following antibodies were used: E-cadhering G-10 (sc-8426), 

Cytokeratin18 RGE53 (sc-32324), Vimentin RV202 (sc-32322), pSmad3 (sc-130218) and 

TNFα (sc-52746) were from Santa Cruz. Fibronectin (610077) was from BD Transduction 

Laboratories.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Flow diagram describes when tumors were collected in MTB/TOM mice. Genome-scale 

expression of the “primary” and “Myc-independent” tumors was assessed on Affymetrix 

Mouse 430A.2 arrays. B. Approximately 40% of tumors regressed to a nonpalpable state 

while 60% of tumors never reached a nonpalpable state after removal of Myc expression. 

Among the 60% of tumors that never reached a nonpalpable state, 37% showed some extent 

of regression but quickly resumed growth while 23% showed no signs of regression and 

either remained dormant or continued to grow. C. MYC pathway activity in tumor samples 

growing in the presence of doxycycline and tumor samples growing after withdrawal of 

doxycycline.
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Figure 2. 
A. Unsupervised hierarchical clustering of MTB/TOM mammary tumors. The primary and 

Myc-independent tumors are separated into two different groups as denoted by the labels at 

the bottom. The middle “mixed” group contains both primary and Myc-independent tumors. 

B. Unsupervised clustering of mouse mammary tumors from the MTB/TOM model together 

with the MMTV-MYC model that constitutively expressed MYC. The “primary” samples 

cluster primarily with the papillary and microacinar group while the “recurrent” samples 

extend to all groups with most of them clustering with the EMT squamous group. The red 

bars represent groups of MTB/TOM tumors comprised of the following: Group I- one 

recurrent tumor, 82A; Group II-mix of primary tumors (B13R, B61, and B172) and 

recurring tumors (36-2A and 238A); Group III- primaries and two recurrent samples (9A 

and 279A); Group IV- recurrent samples.
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Figure 3. 
Histological differences are observed between primary tumors initiated by MYC and tumors 

that have escaped MYC-dependence. A. Hemotoxylin and eosin staining of a sample 

histology of a “primary” tumor with the corresponding tumor Myc-independent tumor is 

shown. B. Heat map showing microarray probe expression of E-cadherin, fibronectin and 

vimentin. Downregulation of E-cadherin and upregualtion of fibronectin and vimentin are 

observed in the Myc-independent tumors. C. Expression of EMT markers from microarray 

expression analysis. E-cadherin and cyotokeratin 18 expression is downregulated and 

expression of fibronectin and vimentin are upregulated.
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Figure 4. Analysis of pathway activity in the MTB/TOM mammary tumors
A. Heat maps showing TGFβ, TNFα, and Ras pathway activity in primary and Myc-

independent MTB/TOM mouse mammary tumors. Numerical values for predicted pathway 

probabilities with upper and lower limits for all pathway predictions and training data are 

provided in the Supplementary Tables. B. Immunohistochemical staining to confirm 

activation of TNFalpha, and TGFbeta. C. Graph showing correlation between predicted 

pathway probabilities of Ras vs. TGFbeta; TNFalpha vs. TGFbeta; and Ras vs TNFalpha.
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Figure 5. 
C and D. The probability of the CD44+/CD24−/low gene expression signature generated in 

“A” was assessed in our primary and recurrent samples.
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Table 1

Kras mutation status in MTB/TOM mouse mammary tumor samples.

Kras mutation status % of tumors with Kras mutations

Tumors regressed to a nonpalpable state(17/43) 6/17 * 35%

Tumors regressed but were still palpable(16/43) 7/16 44%

Tumors were dormant or continued growing (10/43) 8/10 80%

*
One sample not determined
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