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Most extant genus-level radiations in gymnosperms are of Oligocene
age or younger, reflecting widespread extinction during climate
cooling at the Oligocene/Miocene boundary [∼23 million years ago
(Ma)]. Recent biogeographic studies have revealed many instances of
long-distance dispersal in gymnosperms as well as in angiosperms.
Acting together, extinction and long-distance dispersal are likely to
erase historical biogeographic signals. Notwithstanding this problem,
we show that phylogenetic relationships in the gymnosperm family
Cupressaceae (162 species, 32 genera) exhibit patterns expected from
the Jurassic/Cretaceous breakup of Pangea. A phylogeny was gener-
ated for 122 representatives covering all genera, using up to 10,000
nucleotides of plastid, mitochondrial, and nuclear sequence per
species. Relying on 16 fossil calibration points and three molecular
dating methods, we show that Cupressaceae originated during the
Triassic, when Pangea was intact. Vicariance between the two sub-
families, the Laurasian Cupressoideae and the Gondwanan Callitroi-
deae, occurred around 153 Ma (124–183 Ma), when Gondwana and
Laurasia were separating. Three further intercontinental disjunctions
involving the Northern and Southern Hemisphere are coincidental
with or immediately followed the breakup of Pangea.
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Between the Early Triassic and the Middle Jurassic, virtually
all continents were joined to form the supercontinent Pangea

(1–3). Around 160–138 million years ago (Ma) (1, 3), Pangea
broke up into two supercontinents: Laurasia, comprising land that
eventually gave rise to North America, Europe, and much of Asia,
and Gondwana, made up of land that subsequently gave rise to
South America, Africa, India, Antarctica, and Australia. Bio-
stratigraphic data suggest that Late Triassic and Early Jurassic
Pangea had a warm and equable climate without glaciation or sea
ice and that it lacked significant geographic barriers from pole to
pole (4). However, because of Pangea’s great latitudinal expanse,
faunal provinces already had developed before its break-up, and
datedmolecular phylogenies of reptiles, amphibians, andmammals
have made clear that subsequent lineage divergence within these
groups matches the separation and fragmentation of Laurasia and
Gondwana (5–10). Until now, there has been no equivalent evi-
dence for any plant family.
The fossil record shows that gymnosperms dominated the veg-

etation of Pangea but declined in dominance and abundance from
the Mid-Cretaceous onwards (11, 12). Perhaps because of the ex-
tinction of entire clades, molecular-clock studies of gymnosperms
consistently have inferred young, usually Oligocene, ages for the
crown groups of living genera, e.g., Phyllocladus (13),Gnetum (14),
Cedrus (15), Agathis (16, 17), Ephedra (18), Juniperus (19), Pseu-
dotsuga (20), Podocarpus, Nageia, Dacrydium, Dacrycarpus (21),
and Pinus subgenera Pinus and Strobus (22, 23). Radiations are
especially young in the cycads (24–26).
Among the few spermatophyte clades that still may reflect events

related to the break-up of Pangea is the conifer family Cupressa-
ceae (including the former Taxodiaceae) (27–31). Cupressaceae

occur on all continents except Antarctica and comprise 162 species
in 32 genera (see Table S2 for subfamilies, genera, and species
numbers). The family has a well-studied fossil record going back
to the Jurassic (32–36). Using ancient fossils to calibrate genetic
distances inmolecular phylogenies can be problematic, because the
older a fossil is, the more likely it is to represent an extinct lineage
that diverged somewhere along the line leading to the extant taxon
with which it is being compared (37). However, probability dis-
tributions on fossil calibration ages allow somemanipulation of this
uncertainty (38), and judicious use of multiple fossils also may help
circumvent calibration pitfalls (39).
Here we present a phylogeny for 122 species from the 32 genera

of Cupressaceae (plus 22 species representing relevant outgroups)
and use 16 fossil calibration points and three dating approaches to
estimate divergence times in the Cupressaceae. We then perform
ancestral area reconstructions (AARs) using maximum likelihood
based on datasets with or without incorporated fossils. Possible
changes in diversification rates were inferred with an approach that
accounts for nonrandom taxon sampling in molecular phylogenies
(40). Nonrandom sampling arises when phylogenies include at
least one species per genus but not all congenerics, thereby over-
representing deep nodes (diversification events) in the tree. Ex-
periments have confirmed the theoretical expectation that such
sampling leads to the erroneous inference of diversification rate
downturns (41, 42). We aimed to test the hypothesis that, given
their fossil record, the deepest Cupressaceae divergences should
reflect the break-up of Pangea and that evolution of the family
then continued on the separating continental landmasses.

Results
Cupressaceae Phylogenetics.After sequence alignment and removal
of ambiguous regions, we obtained two datasets, one of 56 taxa and
10,472 aligned nucleotides from plastid, mitochondrial, and nuclear
DNA, the other of 144 taxa and 7,171 nucleotides from plastid
DNA only. Maximum likelihood, parsimony, and Bayesian opti-
mization inferred similar topologies from both datasets. Support

Author contributions: J.L., K.M., and R.I.M. designed research; K.M., R.I.M., L.Z., Y.P., P.T.,
R.R.M., and J.L. performed research; S.S.R. contributed new reagents/analytic tools; K.M.,
J.L., and S.S.R. analyzed data; and K.M., J.L., S.S.R., and R.I.M. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. C.C.D. is a guest editor invited by the Editorial
Board.

Freely available online through the PNAS open access option.

Data deposition: The sequences reported in this paper have been deposited in the Gen-
Bank database (JF725702–JF725991). GenBank accession numbers and provenance of se-
quenced samples are provided in Table S1.
1K.M. and R.I.M. contributed equally to this work.
2To whom correspondence should be addressed. E-mail: liujq@nwipb.ac.cn.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1114319109/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1114319109 PNAS | May 15, 2012 | vol. 109 | no. 20 | 7793–7798

EV
O
LU

TI
O
N

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114319109/-/DCSupplemental/st02.doc
http://www.ncbi.nlm.nih.gov/nucleotide/JF725702
http://www.ncbi.nlm.nih.gov/nucleotide/JF725991
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114319109/-/DCSupplemental/st01.doc
mailto:liujq@nwipb.ac.cn
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114319109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114319109/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1114319109


values for major groups are high, with three-quarters of the genus-
level nodes having >95% posterior probability (Fig. S1).

Divergence Times. Bayesian coestimation of topology and diver-
gence time (BEAST, using uniform prior distributions on cali-
bration ages) (43) generally gave the oldest ages, and Penalized
likelihood (44, 45) gave the youngest (Table S3). An alternative
Bayesian approach, which used a fixed topology (MULTI-
DIVTIME) (46), yielded ages for short-branched nodes (most
nodes within Cupressoideae; Fig. S1) that were similar to or
younger than those obtained with BEAST; ages for long-branched
nodes (most nodes within Callitroideae; Fig. S1) were similar to or
older than those obtained with BEAST. Confidence intervals
around estimates from the two Bayesian approaches overlapped
(Table S3). With all three dating approaches, the more densely
sampled 144-taxon dataset produced slightly older age estimates
(compare Fig. S2 A and B), a result that is consistent with the ef-
fects of undersampling observed elsewhere (47). Because BEAST
allows more complex nucleotide-substitution models than do the
other two dating approaches, and because dates from the 56-
taxon matrix might be less accurate because of undersampling,
the following discussion focuses on the results obtained with the
144-taxon matrix analyzed using BEAST (Fig. 1 and Fig. S2B).
Cupressaceae split from their sister lineage during the late

Permian and early Triassic (209–282 Ma; node 1 in Fig. 1, Table 1,
and Table S3) and began to diversify into seven major lineages
(commonly ranked as subfamilies) during the Triassic (184–254
Ma; node 2 in Fig. 1, Table 1, and Table S3). The genera be-
longing to each subfamily are shown in Fig. S1. The stem line-
ages of Cunninghamioideae, Taiwanioideae, Athrotaxidoideae,
Sequoioideae, and Taxodioideae appeared around 184–254 Ma,
170–238 Ma, 157–224 Ma, 150–215 Ma, and 140–201 Ma, re-
spectively (nodes 2–6 in Fig. 1, Table 1, and Table S3). The
youngest subfamilies are the Cupressoideae and Callitroideae,
which diverged from each other 124–183 Ma (node 7 in Fig. 1,
Table 1, and Table S3). Most cupressaceous genera with two or
more species diversified after the Cretaceous/Tertiary boundary
(65.5 ± 0.3 Ma) (48) (Fig. S2B); the only exception is Chamae-
cyparis, which is dated to 61–108 Ma (node 23 in Fig. S2B; note
that this is the crown age for the Chamaecyparis-Fokienia clade).
BEAST analyses with different uniform distribution priors on

the calibration closest to the root (calibration point P; Figs. S2
and S3) yielded largely overlapping 95% highest posterior den-
sity (HPD) age ranges for all nodes of interest, indicating that
the chosen maximum constraint (the only such constraint used in
the analysis) had no overly strong effect on the remaining dates
(Fig. S3; compare run 1 with runs 2–4). BEAST analyses with
different subsets of calibration points, all with uniform priors,
showed that calibration P plus calibrations A, B, E, F, G, J, K,
and L (subset VND; SI Text and Table S4) (Fig. S3, run 5)
yielded node ages similar to those obtained with calibrations A
through P (Table S4) (Fig. S3, run 1), whereas calibration P plus
calibrations C, D, H, I, M, N, O, and P (subset NVND; SI Text
and Table S4) gave much younger ages (Fig. S3, run 6).
A BEAST analysis that used lognormal prior distributions on the

ages of calibration P and subset VND (and uniform priors for
subset NVND) (run 7) generated age estimates younger than but
largely overlapping those obtained with uniform priors for cali-
brationA through P (run 1) (Fig. S3, Table 1, and Tables S3 and S4;
see SI Text for a detailed comparison). In all nine BEAST analyses,
effective sample sizes for each parameter were well above 200.

Ancestral Areas and Diversification Rate Changes. Likelihood AARs
were implemented under the dispersal-extinction-cladogenesis
model in LAGRANGE (49). We defined eight continent pairs
(NS, NE, SF, NA, AE, FE, SU, NF; area codes are explained
in Materials and Methods and are illustrated in Fig. 2A) and one
continent group (NAE), which reflect continental connections

known from plate tectonics (1, 3). The most likely scenarios
(Fig. 2B) required 31 dispersal events, 21 vicariance events, and
five local extinctions. Likelihood AAR for living Cupressaceae
(Fig. 2B) suggested that the family originated in Asia and its
early members expanded to North America from where Calli-
troideae and Athrotaxis entered Gondwanan South America. The
integration of fossil Cupressaceae (Fig. 2 C–E, Fig. S4, and Table
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Fig. 1. (Upper) Chronogram for 122 Cupressaceae species and 22 outgroups
based on an alignment of >7,000 nucleotides of plastid DNA (144-taxon
dataset). A geological time scale is shown at the bottom (48). Blue lines rep-
resent Cupressoideae restricted to the area of Laurasian continents. Red lines
represent Callitroideae restricted to Gondwanan continents. Pink lines repre-
sent species occurring in Africa in and north of the Sahara. Yellow lines rep-
resent species occurring in Africa south of the Sahara. Gray hexagons
represent calibration points. Gray bars represent 95% HPD intervals for nodes
1–10. Gray (run 1) and purple (run 7) normal distributions represent the pos-
terior for the BEAST age estimate of node 7 when uniform or lognormal priors
were applied to calibration points. Orange shading indicates the period of
decreasing feasibility of floristic exchange between Laurasia and Gondwana.
Divergence times of nodes 5, 6, 7, 8, and 10 overlap with the fragmentation
of Pangea. (Lower) Maps show (A) a paleocontinent reconstruction at 150
Ma and (B) the current distribution of Callitroideae and Cupressoideae. The
stippled circle in A emphasizes island chains between North and South
America; Ath, Athrotaxidoideae; Cun, Cunninghamioideae; Seq, Sequoioi-
deae; Tai, Taiwanioideae; Tax, Taxodioideae. Reprinted with permission from
Ron Blakey, Colorado Plateau Geosystems.
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S5) in likelihood AAR resulted in a similar scenario but with two
more incursions from Laurasian to Gondwanan continents
(Austrosequoia and Austrohamia minuta). Reconstructions using
alternative placements of certain fossil taxa (two Austrohamia
species and Sewardiodendron laxum) affected only the ancestral
areas inferred for the nodes closest to them (compare Fig. 2 B
and C–E).
Because the 122 species that we sequenced are not a random

sample of the family’s 162 species but instead overrepresent deep
nodes, we fitted birth/death diversification models to the maxi-
mum likelihood topology after statistical completion, assuming
nonrandom species sampling (40). When the nonsequenced 40
species were added to the tree under a constant-rate birth-death
model, assuming they originated during the past 10 million y, the
best fit to the 1,000 simulated completed trees was a two-rate
model with a decrease in diversification rate at 1.37 Ma. Of the
alternative models [constant-rate pure-birth (CR-PB), constant-
rate birth-death, logistic density dependence, and exponential
density dependence], the CR-PB model provided the second-
best fit to the completed trees.

Discussion
The dense taxon sampling and large amount of sequence data used
here yielded a solidly supported phylogeny for the Cupressaceae
(Fig. S1), which are monophyletic and sister to the Taxaceae sensu
lato (i.e., Taxaceae sensu stricto plus Cephalotaxaceae and Amen-
totaxaceae) (31), as found previously (50, 51). The divergence
of Cupressaceae from their sister lineage occurred >200 Ma (node
1 in Fig. 1 and Table 1; 209–282 Ma), while Pangea was still
intact, matching fossil evidence of Cupressaceae in the Jurassic of
Europe (Hughmillerites juddii) (35), Asia (Sewardiodendron laxum
and Austrohamia acanthobractea) (32, 36), and South America
(Austrohamia minuta) (34). Cupressaceae diversified into seven
major lineages (subfamilies) during the Triassic and Jurassic (nodes
2–7 inFig. 1, Fig. S2, Table 1, andTable S3), predating or coinciding

with the separation of Gondwana and Laurasia (orange column in
Fig. 1). Furthermore,AAR (with orwithout fossil taxa) yieldedAsia
as theancestral area for the family (Fig. 2).Cunninghamioideaemay
have originated in Asia (Fig. 2), and the divergence of Taiwanioi-
deae from their sister lineage (Fig. 2B) maymatch the separation of
Asia from North America at ∼200 Ma (3); the three subfamilies,
Athrotaxidoideae, Sequoioideae, and Taxodioideae (nodes 4–6 in
Fig. 1) probably diverged from their sister lineage inNorth America
(Fig. 2 C–E); the divergence of Callitroideae from Cupressoideae
was dated to 124–183 Ma (node 7 in Fig. 1 and Table 1; mean: 153
Ma), an age range almost coinciding with the separation of Gond-
wana from Laurasia (Fig. 1) during the Late Jurassic (160–138Ma)
(1, 3). Living members of Cupressoideae occur mainly in former
Laurasian continents (Fig. 1 Lower, B), whereas Callitroideae are
endemic to fragments of Gondwana (30) (Fig. 1 Lower, B). African
Cupressoideae apparently derived from a series of southward
expansions during the middle and late Tertiary (Fig. 1). Un-
ambiguous fossils (with reproductive organs) of Cupressoideae are
known only from former Laurasia and those of Callitroideae from
Gondwana (33). Overland connections between Laurasian and
Gondwanan continents were severed from the Late Jurassic until
themiddleTertiary,when India connectedwithEurasia, followedby
the subsequent reconnection of Africa to Eurasia and South
America with North America (1, 3). It is clear from our results that
the divergence between Cupressoideae andCallitroideae correlates
with the break-up of Pangea (Fig. 1) and most likely was caused by
it, as shown in the likelihood AARs (Fig. 2B).
In the remaining five subfamilies, we further inferred three

intercontinental disjunctions between the Northern and Southern
Hemispheres (Fig. 2 and Fig. S4). The most recent involves the
extinct Austrosequoia and its extant sister lineage, comprising
Sequoia and Sequoiadendron (Fig. 2 C–E and Fig. S4). Austro-
sequoia dispersed from North America (via South America) to
Australia around 94–100 Ma, as judged from the mid-Cretaceous
(Cenomanian) fossil remains in Australia (33, 52). The second
disjunction involves Athrotaxis and its putative sister species
Athrotaxites berryi (53) (Fig. S5I). Athrotaxis currently is endemic
to Australia (30) but is known from fossils in Argentina (Athro-
taxis ungeri) (54), and Athrotaxites berryi is known from the Aptian
(ca. 111–126 Ma) (48) of North America (53). The Gondwanan
taxon Athrotaxis probably originated from a southward expansion
from North America, as suggested by likelihood AARs (Fig. 2 C–
E). The third inferred intercontinental disjunction involves the
extinct Austrohamia, with one species (Austrohamia minuta) from
the Jurassic of southern Argentina (34) and the other (Austro-
hamia acanthobractea) from the late Jurassic of northern China
(36). The South American A. minuta might have arrived there
following dispersal from the Laurasian North America, as sug-
gested by likelihood AAR (Fig. 2 C–E). These three instances of
intercontinental disjunctions all involve north-to-south expan-
sion. We found no instance of range expansion from the Southern
to the Northern Hemisphere but detected a clear signal of dis-
persal or overland expansion among the Southern Gondwanan
continents themselves (Fig. S4).
Previous studies of gymnosperm radiations mostly have inferred

Oligocene-age crown groups (14–26), and a recent meta-analysis
found a median crown age for gymnosperm genera of 32 Ma,
younger than that found for angiosperm genera (25). Our dating of
those genera with more than one species in the Cupressaceae
similarly suggests relatively recent diversifications (Fig. S2B). The
young ages of most living gymnosperm clades probably reflect
rediversification following extinction. In Cupressaceae, the evi-
dence for widespread extinction and range shrinkage is particularly
strong (as visualized in Fig. S6). For example, Cunninghamioideae
(Fig. S6A) and Taiwanioideae (55) were widely distributed in the
Northern Hemisphere during the Cretaceous but now are re-
stricted to Asia. Sequoioideae and Taxodioideae were widespread
in the Northern Hemisphere in the Cretaceous and Early Tertiary,

Table 1. Divergence times for the Cupressaceae obtained under
a Bayesian relaxed clock as implemented in the program BEAST

Node Node description

Ages (Ma)*

Uniform priors
(P, subset VND)†

Lognormal priors
(P, subset VND)‡

Uniform priors (subset NVND)

1 Stem lineage of Cupressaceae 245 (209–282) 242 (194–293)
2 Crown lineage of Cupressaceae 219 (184–254) 211 (168–259)

(Stem of Cunninghamioideae)
3 Stem of Taiwanioideae 204 (170–238) 195 (157–240)
4 Stem of Athrotaxoideae 190 (157–224) 182 (145–222)
5 Stem of Sequoioideae 183 (150–215) 174 (139–213)
6 Stem of Taxodioideae 170 (140–201) 159 (128–194)
7 Divergence between

Cupressoideae and
Callitroideae

153 (124–183) 143 (114–175)

8 Crown lineage of Callitroideae 128 (98–159) 121 (92–152)
9 Stem lineage of Widdringtonia

(endemic in southern Africa)
65 (42–92) 62 (40–86)

10 Crown lineage of Cupressoideae 134 (104–164) 123 (93–154)

The nodes are numbered as in Fig. 1 (144-taxon dataset: 144 taxa and
7,171 nucleotides).
*Million year ranges in parentheses denote the 95% HPD.
†BEAST run 1 as described in SI Text and Fig. S3 in which uniform priors were
applied to calibration P, subset VND (C, D, H, I, M, N, and O) and subset
NVND (A, B, E, F, G, J, K, and L).
‡BEAST run 7 as described in SI Text and Fig. S3 in which lognormal priors
were assigned to calibration P and subset VND, whereas uniform priors were
retained for subset NVND; see SI Text for a full explanation of all runs.
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with Sequoioideae also found in Australia, but now are reduced
to two species each in southern North America and one and two
species, respectively, in East Asia (Fig. 2 C–E and Fig. S6 B and

C). Athrotaxidoideae were present in both North and South
America during the Cretaceous (53, 54) but today consist of
three species in Australia (Fig. 2 C–E). Finally, the genera
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Austrocedrus (56), Calocedrus (57), Chamaecyparis (58), Fitzroya
(59), Papuacedrus (60), and Tetraclinis (61) all had wider dis-
tributions in the past. The ice ages of the past 2 million years
further contributed to population extinction and reductions in
species range, as inferred from our diversification modeling,
which indicated a downturn in Cupressaceae diversification rates
at 1.37 Ma. Relatively few Cupressaceae lineages have adapted
to the strongly seasonal and semiarid habitats that became more
widespread with the global cooling during the Oligocene/Miocene
(30). Those that did, such as Juniperus, experienced a diversifi-
cation burst during the Miocene (19).
Besides throwing light onto the diversification of a Triassic/

Jurassic Pangean spermatophyte lineage, our findings confirm
and illustrate the power of incorporating fossils directly into
AARs, rather than using them only for molecular-clock calibra-
tion (62, 63). Specifically, it was the incorporation in the AARs of
up to 29 fossil taxa (groups) (Fig. S4 and Table S5), most from
areas where the respective lineage no longer occurs, that provided
insights about range changes, but with the direction of range ex-
pansion (predominantly north-to-south) being inferred less from
the fossil record than the molecular topology.

Materials and Methods
Plant Material, DNA Isolation and Sequencing, and Sequence Alignment. Table
S1 lists all plant materials used in this study, with species name and author,
geographic provenance, herbarium voucher and deposition, and GenBank
accession numbers. A total of 290 sequences were newly produced. Phylo-
genetic and dating analyses were conducted on two datasets. The 56-taxon
dataset comprised 35 ingroup species, 21 outgroups, and 10,472 aligned
nucleotides from 10 DNA regions (see below). The 144-taxon dataset com-
prised 122 ingroup species, 22 outgroups, and 7,171 aligned nucleotides from
six plastid DNA regions. The ingroup species represented all 32 Cupressaceae
genera; outgroups represented the other conifer families, Cycas, Ginkgo, and
a basal angiosperm for rooting purposes. We sequenced the mitochondrial
regions atpA and cox1, the nuclear regions 18S and 26S, and the plastid
regions matK, rbcL, psbB, petB-D, rps4, and trnL-F (for primer sequences, see
refs. 19 and 64). For DNA extraction, PCR, and sequencing procedures, see
Mao et al. (19). The sequences produced were aligned using ClustalX version
1.83 (65), followed by manual adjustments in Mega4 (66).

Phylogenetic Analyses. Phylogenetic relationships were reconstructed using
parsimony, Bayesian, and maximum likelihood inference. Parsimony analyses
relied on PAUP version 4.10b (67) and the University of Oslo Bioportal (http://
www.bioportal.uio.no) (68) using heuristic searching, starting trees obtained via
stepwise addition, tree-bisection-reconnection branch swapping, steepest de-
scent, and the MulTrees and Collapse options in effect, with no upper limit for
the number of trees held in memory; support values for all nodes (on a 50%
majority rule bootstrap tree) were calculated with the same settings as above
for 1,000 replicates; 10 searches with random taxon additions were conducted
for each replicate, and the strict consensus tree of all shortest trees were saved.
Bayesian analysis relied onMrBayes version 3.1.2 (69) and the GTR+I+Gmodel as
suggested byMrModeltest version 2.3 (70).We used the default of one cold and
three heated Markov chain Monte Carlo chains, starting from random initial
trees, and chains were run for 6,000,000 generations, sampling every 200th. The
default options in MrBayes were used for chain heating and mixing. We dis-
carded a burn-in of the first 2,000,000 generations and used 20,000 trees from
the posterior distribution to obtain a majority rule consensus tree. Maximum
likelihood analyses relied onGarli version 1.0 (71) with the GTR+I+G substitution

model, starting from random trees and using 5,000,000 generations per search;
30 independent searches were performed, and the best tree was saved.

Separate phylogenetic analyses of the nuclear, plastid, and mitochondrial
datasets did not yield statistically supported (>75% likelihood bootstrap
support) topological contradictions (data available upon request). Therefore
we combined the three data partitions in the 56-taxon dataset.

Molecular-Clock Models and Calibration. A likelihood ratio test in PAUP 4.10b
(67, 72) suggested that the 56-taxon and 144-taxon datasets reject a strict
molecular clock (P < 0.01), and we therefore used relaxed molecular-clock
approaches: Bayesian coestimation of branch lengths and topology with un-
correlated lognormally distributed rates in BEAST 1.5.3 (43), Bayesian esti-
mation with an input phylogeny in MULTIDIVTIME (46), and penalized
likelihood rate smoothing in R8S (44, 45). In each case, genetic distances were
transformed into absolute time (in million years) by using 16 fossil calibration
points, of which 12 were within Cupressaceae (Fig. S2 and Table S4). Fossils
were assigned to the stem of their most closely related lineages; Table S4 lists
the morphological features used for each fossil taxonomic assignment. For
BEAST analyses, we used uniform prior distributions for minimum constraint
(calibration points A–O), with the younger bound set by the youngest date of
the respective fossil and the older bound set to 366.8 Ma (maximum constraint
for calibration point P place near the root) (Table S4). Calibration point P was
restricted to fall between 306.2 and 366.8 Ma (Table S4). We tested the effects
of other time intervals at calibration point P, calibrations with different sub-
sets of fossils, and different distribution prior for calibrations by carrying out
eight additional BEAST runs (SI Text and Fig. S3). BEAST analyses were run on
the Cyberinfrastructure for Phylogenetic Research (CIPRES) Science Gateway
(http://www.phylo.org/portal2) (73). For MULTIDIVTIME and penalized likeli-
hood, constraints were as in BEAST, except that these programs do not allow
specific prior distributions on fossil constraints.

Ancestral Area Reconstructions (AAR). AAR relied on the likelihood dispersal-
extinction-cladogenesis approach implemented in LAGRANGE (49). The
matrix of migration probabilities among continents in LAGRANGE (SI Text
and Table S6) allowed dispersal between six operational geographic areas: E,
Europe, north Africa, and northern Arabia; A, Asia; N, North America, Ca-
ribbean, and Central America; S, South America; F, south to middle Africa and
southern Arabia; and U, Australia, New Guinea, New Caledonia, and New
Zealand (see Fig. 2A). Boundaries between A, E, and F were defined to min-
imize the number of species that fell in two areas. The northern boundary
between A and E was defined by the Ural Mountains, which is the conven-
tional boundary between European Russia and Asian Russia. The boundary
between E and F is the Tropic of Cancer, which runs along the middle of
a broad belt of very low precipitation (<100 mm y−1) stretching across all of
North Africa and most of Arabia (74); this belt of low precipitation is a sig-
nificant biogeographic barrier for Cupressaceae (30).

For details on the selection of fossils, the inference of calibration fossils’
phylogenetic position, cross validation of calibration fossils (Fig. S7), Ances-
tral Area Reconstructions, and diversification modeling, see SI Text.
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