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This study aims to determine the epigenetic mechanism regulating
Kiss1 gene expression in the anteroventral periventricular nucleus
(AVPV) to understand the mechanism underlying estrogen-positive
feedback action on gonadotropin-releasing hormone/gonadotropin
surge. We investigated estrogen regulation of the epigenetic status
of the mouse AVPV Kiss1 gene locus in comparison with the arcuate
nucleus (ARC), in whichKiss1 expression is down-regulated by estro-
gen. Histone of AVPV Kiss1 promoter region was highly acetylated,
and estrogen receptor αwas highly recruited at the region by estro-
gen. In contrast, the histone of ARC Kiss1 promoter region was
deacetylated by estrogen. Inhibition of histone deacetylation up-
regulated in vitro Kiss1 expression in a hypothalamic non–Kiss1-
expressing cell line. Gene conformation analysis indicated that estro-
gen induced formation of a chromatin loop between Kiss1 promoter
and the 3′ intergenic region, suggesting that the intergenic region
serves to enhance estrogen-dependent Kiss1 expression in the
AVPV. This notion was proved, because transgenic reporter mice
with a complete Kiss1 locus sequence showed kisspeptin neuron-
specific GFP expression in both the AVPV and ARC, but the deletion
of the 3′ region resulted in greatly reduced GFP expression only in
the AVPV. Taken together, these results demonstrate that estrogen
induces recruitment of estrogen receptor α and histone acetylation
in the Kiss1 promoter region of the AVPV and consequently enhan-
ces chromatin loop formation of Kiss1 promoter and Kiss1 gene en-
hancer, resulting in an increase in AVPV-specific Kiss1 gene expres-
sion. These results indicate that epigenetic regulation of the Kiss1
gene is involved in estrogen-positive feedback to generate the go-
nadotropin-releasing hormone/gonadotropin surge.
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The gonadotropin-releasing hormone (GnRH) surge is well
established as the cause of the luteinizing hormone (LH) surge

(1). The continuous release of GnRH might be caused by the
continuous excitation ofGnRHneurons triggered by the estrogen-
positive feedback action on the brain. Recently, investigations of
kisspeptin, a neuropeptide encoded by the Kiss1 gene, shed light
on the mechanism mediating GnRH/LH surges (2–7). One of the
major kisspeptin neuronal populations in rodents is found in the
anteroventral periventricular nucleus (AVPV) (8, 9), which has
been suggested as the brain region involved in the surge genera-
tion in rodents (10). GnRH neurons express GPR54, a kisspeptin
receptor (11). Preovulatory and estrogen-induced LH surges are
blocked by the infusion of anti-kisspeptin antibody in rats (8, 12).
Therefore, the estrogen-induced increase in Kiss1 gene expression
in the AVPV might be closely associated with the induction of
GnRH/LH surges in rodents. Primates may have a surge-gener-
ating mechanism different from that in rodents. The mediobasal
hypothalamus might play a crucial role in surge induction (13, 14).

Estrogen signals responsible for the positive feedback are me-
diated by estrogen receptor (ER) α, because the LH surge is
evoked by exogenous estrogen in ERβ-KO mice but not in ERα-
KO mice (15–17). Kisspeptin neurons in the AVPV express ERα,
and estrogen positively regulates kisspeptin expression (8, 9, 18),
suggesting that the AVPV kisspeptin neurons would be a target of
the estrogen action exerting a positive feedback effect on GnRH/
LH release. On the other hand, estrogen negatively regulates
kisspeptin expression in another population of kisspeptin neurons
that are located in the arcuate nucleus (ARC) and coexpress ERα
(8, 19). The molecular mechanism involved in these opposite
effects of estrogen on AVPV and ARC kisspeptin neurons should
be clarified to understand the estrogen-positive feedback mecha-
nism more clearly.
Epigeneticmodification of genomic DNA and histones has been

tightly linked to chromatin organization and transcriptional reg-
ulation. Histone acetylation in gene promoter/enhancer regions
generally is correlated with transcriptional activation (20–22). On
the other hand, in mammals, genomic DNA is methylated at cy-
tosine residues predominantly in CG dinucleotides (CpGs) (23).
Methylation of DNA is essential for mammalian development and
is associated with gene silencing in conjunction with histone core
modifications, probably through chromatin remodeling (20, 22, 24,
25). These epigenetic mechanisms reportedly mediate estrogen
actions in the brain. For example, estrogen decreased levels of
histone deacetylase (HDAC) protein and increased DNA meth-
yltransferase expression in the dorsal hippocampus, leading to
impaired formation of hippocampal-dependent memory (26).
Furthermore, the histone acetylation status during the early
postnatal period plays a critical role in sexual differentiation of the
brain, because masculinization of sexual behavior and the volume
of the nucleus of the bed nucleus of the stria terminalis, a sexual
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dimorphic nucleus, were blocked by neonatal administration of
HDAC inhibitors (27, 28).
The present study aims to determine the epigenetic regulatory

mechanism underlying the effect of estrogen-positive feedback on
Kiss1 gene expression in the AVPV. We first identified the Kiss1
gene promoter functioning in the mouse hypothalamus. To in-
vestigate the effect of estrogen on epigenetic status in the Kiss1
promoter, the histone acetylation and DNA methylation status of
the Kiss1 gene locus in the mouse AVPV were analyzed in com-
parison with that in the ARC. A chromatin immunoprecipitation
(ChIP) assay with ERα antibody was used to investigate if ERα is
recruited at the AVPV Kiss1 promoter region in the presence of
estrogen. Further, we investigated the effect of estrogen on the
interaction between the Kiss1 promoter region and intergenic
DNA regions of the Kiss1 locus by a gene conformational analysis
to obtain the candidate(s) for the AVPV-specific Kiss1 enhancer
region. Finally, we generated transgenic (Tg) mice carrying DNA
containing the GFP-labeled Kiss1 gene locus with or without
a candidate 3′ intergenic region to determine whether the Kiss1
gene 3′ intergenic region, an enhancer candidate locus, functions
as an estrogen-dependent AVPV-specific Kiss1 enhancer.

Results
Determination of the Core Promoter Region Driven In Hypothalamic
Cells. The AVPV and ARC express two splice variants that were
identified in the present study (DNAData Bank of Japan, EMBL,
and Genbank nucleotide database, accession nos. AY707858 and
AY182231) (Fig. 1 A and B and Fig. S1). Representative splice
variants including the kisspeptin amino acid sequence within the
ORF derived from University of California, Santa Cruz database
(http://genome.ucsc.edu/) are shown in Fig. S1A. The RT-PCR
analysis for AVPV and ARC tissues showed the same positive
bands in both brain regions (Fig. 1B). Kiss1 mRNA were highly
expressed in the AVPV of the ovariectomized (OVX) mice

implanted with estradiol-17β (E2) (the OVX+E2 model) and in
theARCofOVXmicewithout E2 implantation (theOVXmodel).
The variants were the products of alternative splicing from the
same transcription start site (TSS), but their functional relevance
is unknown.
To determine the region for epigenetic analyses, the Kiss1 pro-

moter was analyzed with luciferase reporter assays using the N7
cell line, a mouse hypothalamic immortalized neuronal cell line.
All the constructs containing the Kiss1 region upstream of −5198
(pGL4-A), −2630 (pGL4-B), −1089 (pGL4-C), and −180 (pGL4-
D) showed a significant increase in luciferase activity compared
with controls (pGL4-mock) (Fig. 1C). The D sequence region had
the strongest promoter activity, and a sequence with repressive
effects was located in the upstream region of D. E2 treatment did
not affect promoter activity, although ERα was expressed in
the cells.

Induction of in Vitro Kiss1 Gene Expression in Hypothalamic Cell Lines
by Treatment with Reagents Affecting Epigenetic Status. Fig. 1D
shows the effects of trichostatin A (TSA), an inhibitor of histone
deacetylation, and/or 5-aza-2′-deoxycytidine (5-aza-dC), an in-
hibitor of DNA methylation, on Kiss1 expression in N6 cells,
a mouse hypothalamic cell line that does not express Kiss1mRNA
(Fig. S2). TSA induced Kiss1 expression in the cell line, but 5-aza-
dC alone had no effect on Kiss1 gene repression.

Estrogen-Induced Brain Region-Specific Alteration of the Histone
Acetylation Status of the Kiss1 Gene Locus. To determine the
brain region-specific alteration of estrogen-induced change in the
histone acetylation status at the Kiss1 locus, ChIP assays with anti-
acetylated histoneH3 antibody were performed using three sets of
primers across the Kiss1 gene locus (Fig. 2A): a further region
upstream of theKiss1 gene (5′ region,−17588 to−17242), a region
upstream of the Kiss1 promoter (−707 to −270), and an intergenic
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region downstream of theKiss1 gene (3′ region, +9238 to +9670).
Estrogen treatment significantly increased H3 acetylation at the
Kiss1 promoter region in the AVPV (Fig. 2B), but significantly
decreased H3 acetylation of the same promoter region in the
ARC. Estrogen treatment also significantly increased and de-
creased ARC histone acetylation at 5′ and 3′ regions, respectively.
ChIP assays using anti-ERα antibody further showed that estrogen

treatment increased ERα binding within the Kiss1 promoter in the
AVPV but not in the ARC (Fig. 2C). Kiss1 expression was up-
regulated by estrogen in the AVPV and was down-regulated by
estrogen in the ARC (Fig. 2D). Furthermore, the histone acety-
lation status within the AVPV Kiss1 promoter was significantly
higher during proestrus than during diestrus (Fig. 2E), whereas
histones of the ARC Kiss1 promoter were significantly higher
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during diestrus than during proestrus. Histones of the 5′ and 3′
regions of both the AVPV and ARC were more highly acetylated
during diestrus than during proestrus (Fig. 2E).

DNA Methylation Status of Kiss1 Core Promoter in Vivo and in Vitro.
Kiss1 neurons visualized by in situ hybridization were isolated
from the AVPV and ARC sections by microdissection (Fig. 3A).
Bisulfite sequencing analysis of the Kiss1 upstream region har-
boring strong promoter activity (−180 to +29) revealed that the
CpGs upstream of the TSS (Fig. 3B) appeared hypermethylated
in all samples examined (Fig. 3C). No apparent difference was
found between Kiss1-expressing cells (AVPV, ARC, N7, and
differentiated trophoblast stem cells) and non–Kiss-expressing
cells (cortex and N6 cells) (Fig. S2).

Effects of Estrogen on Chromatin Loop Formation in AVPV and ARC
Kiss1 Loci. We analyzed the effects of estrogen on chromatin
conformation of the Kiss1 locus in the AVPV and ARC by
a chromatin conformation capture (3C) assay using 3C primers as
indicated in Fig. 4A. PCR for loading control showed no differ-
ence in the amount of samples among groups (Fig. 4B). The 3C
assay with AVPV tissue showed that estrogen treatment increased
3′ PCR products with H2F–H4F primers, but no band was
detected without estrogen treatment (Fig. 4C). These results in-

dicate that estrogen enhances the formation of the chromatin loop
between the promoter and the 3′ intergenic region. The assay also
showed an estrogen-dependent decrease in 5′ PCR products
(H2F–H1F) in the AVPV, indicating the presence of another
association between the promoter region and the 5′ region at the
Kiss1 locus in the AVPV.
The 3C assay of the ARC showed a pattern of loop formation

within Kiss1 locus different from that seen in the AVPV. In the
ARC, the 5′ region (H2F–H1F) and 3′ proximal region (H2F–
H3F) were associated with a promoter region regardless of E2
treatment. Furthermore, an extensive range of the 3′ region
(H2F–H3R, H2F–H4F, and H2F–H4R) was associated with the
promoter region after E2 treatment (Fig. 4C).

In Vivo Reporter Assay to Confirm the Candidate Estrogen-Dependent
AVPV-Specific Enhancer Region in Tg Mice. Two lines of Tg mice
were generated using DNA constructs, the 22-kb upstream and
10- kb downstream sequence from the Kiss1 gene TSS (Tg-1) and
the same sequence without the 3′ region of the third exon (Tg-2)
(Fig. 5A). Dual-labeling immunohistochemistry revealed that
GFP-positive neurons are located in two predicted nuclei, the
AVPV and ARC. Photomicrographs show kisspeptin and GFP
immunoreactivity in the AVPV (Fig. 5B) and ARC (Fig. 5C) of
representative Tg-1 and Tg-2 mice. Fig. 6 shows the integrated
density of fluorescence values for kisspeptin and GFP determined
by Image J software in each nucleus. Tg-1 mice showed E2-en-
hanced GFP immunoreactivity in the AVPV (Fig. 6), most of
which overlapped with kisspeptin immunoreactivity (Fig. 5B and
Fig. S3). GFP immunoreactivity was greatly reduced, even with E2
treatment, in Tg-2 mice (which lacked the 3′ region) as compared
with Tg-1 mice (Figs. 5B and 6 and Fig. S3). In the ARC, E2 re-
duced kisspeptin expression but did not cause an obvious re-
duction in GFP expression (Figs. 5B and 6 and Fig. S3).

Discussion
This study demonstrates that epigenetic regulation of Kiss1 is
involved in the up-regulation of Kiss1 expression in the AVPV in
response to estrogen. Histone H3 acetylation in the Kiss1 pro-
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moter region in the AVPV, which is increased by estrogen, is
closely associated with an increase in Kiss1 expression in the
AVPV. Indeed, histone H3 acetylation in the Kiss1 promoter
region of the AVPV was much higher in proestrous animals than
in diestrous animals. These results suggest that estrogen in the
AVPV causes the Kiss1 promoter region to switch from an in-
active to an active, open chromatin structure. In support of this
idea, in vitro Kiss1 expression in hypothalamic cell lines was in-
duced by TSA, an inhibitor of histone deacetylation, indicating
that histone acetylation is involved in Kiss1 expression. Impor-
tantly, the present study demonstrates that the 3′ intergenic re-

gion of Kiss1 is essential for activation of the estrogen-induced
Kiss1 promoter in the AVPV. This requirement is demonstrated
clearly by the present in vivo reporter assay. Tg-1 mice, with the
complete sequence of Kiss1 locus, showed GFP expression in
kisspeptin neurons in both the AVPV and ARC, but the deletion
of the 3′ region in Tg-2 mice greatly reduced estrogen-induced
GFP expression in the AVPV, indicating that the 3′ region of the
Kiss1 gene functions as an estrogen-responsive enhancer. The 3C
assay showed interaction between the promoter and 3′ region of
Kiss1 via a chromatin loop in the AVPV in the presence of es-
trogen, indicating that the 3′ region enhances the induction of
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estrogen-dependent AVPV Kiss1 promoter activity. Taken to-
gether, these results demonstrate that estrogen induces histone
acetylation in the region of the Kiss1 promoter in the AVPV and
consequently enhances the formation of a chromatin loop in the
Kiss1 promoter, resulting in an increase in the estrogen-de-
pendent, AVPV-specific expression of Kiss1. Functional in vivo
data would be ultimately needed to completely demonstrate the
role of histone acetylation in generating GnRH/LH surges.
The present study shows that, in the presence of estrogen,

ERα is highly recruited at the region of the Kiss1 promoter in the
AVPV (Fig. 2C), suggesting that the estrogen–ERα complex
recruited to the region may be responsible for the histone
acetylation at the Kiss1 promoter region and the subsequent
expression of Kiss1 in the AVPV. Indeed, a potential estrogen-
responsive element half-site was located within the predicted
promoter region. The present finding is consistent with previous
studies showing that ERα has a critical role in transcriptional
activation of Kiss1 in the AVPV (8, 17, 18, 29). Furthermore,
previous studies using knockin mice expressing a mutant form of
ERα lacking a functional estrogen-responsive element-binding
domain also suggesed that estrogen-positive feedback is medi-
ated via the classical estrogen receptor pathway, whereas estro-
gen-negative feedback is mediated via the nonclassical pathway
(30, 31). An increase in estrogen-induced ERα binding in the
Kiss1 promoter region in the AVPV might recruit some histone
acetyl-transferases (HATs) and other transcription regulators
within the Kiss1 promoter in the AVPV. Indeed, the previous
study using the human pS2 promoter as a model indicates that
liganded ERα induced transcriptional activation of pS2 involving
an orchestrated recruitment of components of basal transcrip-
tional machinery and intermediate factors, such as HATs and the
ATP-dependent chromatin remodeling complex, concomitant
with an alteration in local chromatin structure (32). In vitro re-
porter analysis showed that E2 treatment failed to enhance Kiss1
promoter activity even in the presence of ERα (Fig. 1C). This
result is consistent with the 3C and Tg analyses indicating that
the 3′ region is a possible enhancer region.

An interesting issue in the mechanism of Kiss1 regulation in
the hypothalamus is the opposite responses to circulating es-
trogen in kisspeptin neurons in the ARC and AVPV (8, 33).
Here, we show that, in the AVPV, estrogen increased the histone
H3 acetylation level in the Kiss1 promoter as correlated with the
estrogen-dependent transcriptional activation of Kiss1. In con-
trast, estrogen decreased the histone acetylation level in the
ARC, where estrogen negatively regulates Kiss1 expression. In-
deed, the acetylation level of the Kiss1 promoter in the AVPV
was higher during proestrus than during diestrous, whereas the
level in the ARC was higher during diestrus than during pro-
estrus (Fig. 2E). Unlike the AVPV, the histone H3 acetylation
level in the ARC also was affected by estrogen in the 5′ and 3′
regions of Kiss1 (Fig. 2 B and E). It is possible that estrogen
induces a broad range of changes in the Kiss1 locus in the ARC.
We detected formation of an ARC-specific chromatin loop
within the 3′ region of the Kiss1 locus after E2 treatment, sug-
gesting that the 3′ region is involved in the suppression of Kiss1
expression in the ARC. Therefore, we speculate that the tran-
scriptional cofactors that control Kiss1 gene expression could be
different in the AVPV and ARC. Interestingly, we detected ERα
binding to the Kiss1 promoter region taken from the ARC of
OVX mice without E2 treatment (Fig. 2C), suggesting that
unliganded ERα may have a role in Kiss1 regulation, as pre-
viously reported (34–36). The ligand-independent ERα activity
was increased by phosphorylation at specific serine residues in
the N-terminal domain as activated by the growth factor pathway
(37, 38). Furthermore, ERα is known to interact with other
transcription factors, such as Sp1 and AP-1, and it may use the
constitutive transcriptional function of these factors (39, 40).
Thus, unliganded ERα may play a role in regulating basal Kiss1
transcription in the ARC. Estradiol reduced kisspeptin expres-
sion in the ARC but did not cause an obvious reduction of GFP
expression in the ARC (Figs. 5C and 6 and Fig. S3). The long
half-life of conventional GFP may prevent the repression of re-
porter expression. Another possibility is that the cis element
regulating the action of estrogen-negative feedback in the Kiss1
expression in the ARC might not be included within the trans-
gene. The precise mechanism involved in the down-regulation of
Kiss1 in the ARC by estrogen should be clarified in the future.
In the present study, we put more emphasis on the regulation

of the Kiss1 gene by histone acetylation than by DNA methyla-
tion. In vitro Kiss1 expression was not affected by 5-aza-dC, an
inhibitor of DNAmethylation, in N6 hypothalamic cell lines. The
Kiss1 promoter region was hypermethylated even in the Kiss1-
expressing cells microdissected from both AVPV and ARC
regions. However, we could not exclude the possibility that DNA
methylation is involved in Kiss1 gene regulation. Our DNA
methylation analysis did not cover the entire region of the Kiss1
locus, and transient cyclical change of DNA methylation status in
the pS2 promoter in MCF-7 cells has been reported (41, 42).
Further studies will be needed to elucidate the involvement of
DNA methylation in regulating the Kiss1 gene.
In conclusion, the present study demonstrates an epigenetic

mechanism underlying the estrogen regulation of AVPV Kiss1
expression to mediate estrogen positive feedback action to induce
GnRH/LH surges. Our results suggest that estrogen stimulates
ERα recruitment on the Kiss1 promoter region to induce histone
H3 acetylation and the formation of a chromatin loop between the
Kiss1 promoter and the 3′ enhancer region, leading to Kiss1 up-
regulation in the AVPV. This notion suggests that epigenetic
regulation of Kiss1 is involved in the estrogen-positive feedback
generating the GnRH/gonadotropin surge.

Materials and Methods
Animals and tissue preparation, cell culture, RNA analyses, transient trans-
fection, luciferase assays, and immunohistochemistry, including validity of
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Fig. 6. Expressions of kisspeptin (Kp) and GFP in the AVPV and ARC of Tg-1
and Tg-2 mice with or without E2 replacement. Integrated density of fluo-
rescence in each microscopic field was determined by Image J software. Each
bar represents the mean value, and solid circles indicate individual values.
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the current E2 treatment (Fig. S4) and specificity of anti-kisspeptin antibody
(Fig. S5), are described in detail in SI Materials and Methods.

Microdissection of Kiss1-Expressing Cells from Hypothalamus. To dissect out
Kiss1-positive cells, Kiss1 mRNA was visualized by in situ hybridization in
coronal sections (20-μm thickness) of the hypothalamus taken from OVX or
OVX+E2 mice as previously described (8, 43). Briefly, the hypothalamic tis-
sues were sectioned on a cryostat. Digoxigenin (DIG)-labeled antisense and
sense cRNA probes for mouse Kiss1 were synthesized by in vitro transcription
from the cDNA clones. Hybridization with DIG-labeled cRNA probes was
carried out at 60 °C overnight, and hybridized probes were detected using
an alkaline phosphatase-conjugated anti-DIG Fab fragment (Roche Diag-
nostics) and 5-Bromo-4-chloro-3-indolyl phosphate/Nitro blue tetrazolium
chloride (Roche Diagnostics). Signal-positive cells were taken from the sec-
tions with the PALM MicroBeam System (Carl Zeiss Microimaging) according
to the manufacturer’s instructions. About 100 cells for each nucleus were
pooled and stored at −80 °C until used for DNA extraction.

Sodium Bisulfite Sequencing. The conditions for using the bisulfite reaction to
determine DNA methylation status have been described previously (22). The
DNA fragment covering the 5′-flanking sequence of the Kiss1 gene was
amplified by PCR using the forward primer GGGTATTGAGGAGTTTTTGGGT-
TAGATTGT and the reverse primer ACCTACTTCTCCAAACCCTCCCTAAAT-
CAA. The PCR products were cloned into pCR2.1 TOPO (Invitrogen), and six
clones randomly picked from each of two independent PCRs were se-
quenced using the BigDye Terminator v.3 System (Applied Biosystems) and
an ABI3100 sequencer (Applied Biosystems).

ChIP Assay. TheChIPassaywasperformedwith10mgofpunched-out tissueper
assay using the ChIP Assay Kit (Millipore) according to the manufacturer’s
instructions. Fixed tissues were homogenized, lysed, and sonicated until
chromatin fragments became 200–1,000 bp in size. Antibody against acety-
lated histone H3 (Millipore) or ERα (Millipore) was used for immunoprecipi-
tation.Mouse nonimmunized IgG (Millipore) was used as a negative control to
check the specificity of immunoprecipitation. After immunoprecipitation, re-
covered chromatin samples were subjected to PCR with the primers TACAG-
CACCAGGAAAGTTGAGA and GAAGAATCCGAGACTGCAGAAC for 5′ region,
promoter CAACCACCCAGGAGGTAGAA and GAAGAGAAAGTGGCTGAGCAG
for the promoter region, and GAGCTAGTGTACCCGCTTCTGT and GAAGT-
GACTCAAAGGTCCTGCT for the 3′ region. The PCR products were run on
agarose gel, and the intensity of each band was measured using ImageJ soft-
ware v. 1.40G (National Institutes of Health). Results from two independent
experiments performed in triplicate were quantified and averaged.

3C Assay. The3Cassaywas conductedasdescribedbyDekkeretal. (44)with some
modification. Crosslinked chromatin was digested with 500 U of HindIII (Roche)
overnight at 37 °C, andwas ligated in 6mLof 1× ligation buffer. The 3C products
were extracted by phenol/chloroform, precipitated by ethanol, and dissolved in
Tris-EDTA buffer. The Kiss1 locus contains four HindIII sites; the primers flanking
HindIII sites were designated as H1F (GCAGCTGGTGACATCAAGAA), H1R (CAC-
CGACAGTCCAAGTTCAA), H2F (CAGGGCTTATCTGAGCCTTTC), H3F (GAGACTT-
CCCTTCTTTCCTGGT), H3R (GTTCGGGATGATTACAAAGAGC), H4F (AACATGTTT-
GGGCAGTAGTGTG), and H4R (AACTAGGGATGCACTTGGTTG). The Kiss1 chro-
matin loopwas detected using primer H2F in combinationwith one of the other
primers. A region serving as a loading control was amplified with GTTGTTTGG-
GGTGGAATGAGTC and TGGCTCCTGGGCTTACTCTA. Each PCR was performed
under the following conditions: 95 °C for 5 min; 35 cycles of 95 °C for 30 s, 60 °C
for 1 min, and 72 °C for 1 min; final extension 72 °C for 10 min. PCR products
were analyzed by agarose gel electrophoresis.

Generation of Transgenic Mice. To generate transgenic mice, the two types of
DNA construction shown in Fig. 5A were subcloned from BAC clone RP24-
299J2 (BACPAC Resources). All final constructs were verified by sequencing.
The linearized DNA fragments were purified by precipitation with ethanol
and injected into fertilized eggs of the B6D2F1 mouse strain. Manipulated
eggs were transplanted into foster mothers. We generated two types of Tg
mice containing the Kiss1 locus sequence, Tg-1 and Tg-2. Tg-1 includes the
sequences 22-kb upstream and 10-kb downstream from the Kiss1 TSS. Tg-2
also has a 22-kb upstream sequence but lacks the downstream sequence of
the third exon. Both Tg mice contained the AcGFP sequence within the
second exon of the Kiss1 gene. Mouse ear DNA was screened by PCR to check
the presence of the transgenes using primers for the DNA sequence of
AcGFP, AAGTTCATCTGCACCACCG and CCTGGGTATCTCTCAAGTGCAGAAA.
F1 and F2 mice were identified by PCR analysis.
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