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Abstract
Cardiovascular diseases are among the leading causes of death in the developed world.
Developing novel therapies for diseases like heart failure is crucial, but this is hampered by the
high attrition rate in drug development. The withdrawal of drugs at the final hurdle of approval is
mostly due to their unpredictable effects on normal cardiac rhythm. The advent of cardiac
computational modeling in the last six decades has significantly aided the understanding of heart
function. Recently, these models have been increasingly applied towards designing and
understanding therapies for cardiac disease. This article will discuss how cellular models of
electrophysiology, cell signaling and metabolism have been used to investigate pharmacological
therapies for cardiac diseases including arrhythmia, ischemia and heart failure.
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I. Introduction
Computational modeling has played an important role in understanding heart physiology and
pathology since the first model of the cardiac action potential 50 years ago (1). These
models have been invaluable in understanding an organ whose function is the result of a
complex system of nonlinear feedback loops that span single ion channels, cardiac cells and
the whole heart (2). Despite its remarkable robustness, the heart is afflicted by various
diseases that are complex and multifaceted (3). Heart disease remains the leading cause of
premature death in developed societies. Approximately 2300 Americans die of
cardiovascular disease each day, an average of one death every 38 seconds (4). The failure
of many therapies targeting cardiac arrhythmia (5), contrasted with the success of counter-
intuitive therapies like beta blockers in heart failure (6), highlights the difficulty in
developing therapies for cardiovascular disease. A common causes of drug withdrawal from
the market is due to their propensity to cause fatal cardiac arrhythmia (7) resulting in
significant financial loss (8) and complicating new drug development (9).

Computational modeling can serve as a useful tool both for developing new therapies and
evaluating current treatment of cardiovascular diseases and drugs with cardiovascular
consequences. This idea is beginning to gain traction with the formation of the preDICT
project, a consortium of pharmaceutical companies and academic institutions charged with
the mission to model, simulate and predict the impact of pharmacological compounds on
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heart rhythm (10). Computational modeling has also been identified as a key component of
the Critical Path Initiative, a project launched by the US Food and Drug Administration to
improve drug and medical device development (11). The Critical Path Initiative lists six
broad areas where innovation is needed including harnessing bioinformatics. Clinical trial
simulation using in silico disease models was identified as a specific scientific opportunity
to aid in this endeavor (12). This represents a shift in the drug approval process from
requiring only empirical evidence to an increased emphasis on mechanistic understanding of
drug action (13).

Models now exist for many aspects of cellular cardiac biology including electrophysiology,
metabolism and signaling networks. These processes do not function in isolation, and there
are significant efforts to integrate these models to simulate heart function in increasing detail
(14). This review will discuss how models at cellular and tissue scales of cardiac biology
can be used to assess current therapies, test therapies in development and suggest new
targets (Table 1).

II. Therapies targeted against arrhythmias
Modeling the electrical activity of the heart (cardiac electrophysiology) is perhaps the most
advanced area of cardiac computational biology, and it has been the most successful in drug
development (15). The role of cardiac electrophysiology is to coordinate the mechanical
pumping of the heart in a process called excitation-contraction coupling (16). The key
emergent property of cellular electrophysiology is the action potential, which reflects an
intricate interplay between an array of ion channels (Figure 1). Fast activating sodium
channels in the cell membrane are the first to open when a cardiac myocyte is slightly
depolarized above a threshold. Increased sodium current (INa) strongly depolarizes the
membrane, which activates L-type calcium channels (LCC) to increase calcium current
(ICa). This influx of calcium induces ryanodine receptors to release an even larger amount of
calcium from the sarcoplasmic reticulum, specialized calcium stores, into cytosolic space; a
process called calcium-induced calcium release (CICR). It is this rise in cytosolic calcium
that activates a myocyte’s contractile machinery (Figure 2). Relaxation occurs when calcium
is re-sequestered into the sarcoplasmic reticulum by the sarcoplasmic reticulum calcium
ATPase (SERCA) and the cell’s membrane potential is repolarized by potassium currents.

There are multiple channels with different properties that carry the repolarizing potassium
current including the transient outward potassium current (Ito), which influences the early
repolarization phase, and the delayed rectifier potassium currents (i.e. IKs and IKr.)
Alterations in the orchestrated changes in ion flow can cause severe pathology. One such
example is Long QT syndrome (LQTS), a family of diseases (LQT1-8) characterized by
prolonged action potential duration (APD), which is measured as an increased QT interval
on an electrocardiogram (17). LQTS is caused predominantly by either a reduction of
potassium current or an increase in sodium current. This can occur due to genetic mutations
or drugs acting on channels that carry both currents. Without treatment, 13% of individuals
carrying gene mutations that cause LQTS will suffer cardiac arrest or sudden death due to
the development of ventricular tachycardia (18). Understanding the mechanistic bases of
arrhythmias and applying such knowledge to improve therapy is a great challenge in cardiac
electrophysiology (19).

The earliest computational model of cardiac electrophysiology by Noble was based on the
Hodgkin-Huxley model for the neuron action potential, predating the discovery of the
calcium current (1). The first ventricular cell model, developed using experimental data
from a variety of mammals, was published in 1977 by Beeler and Reuter and included the
effect of intracellular calcium dynamics on the action potential (20). Luo and Rudy
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subsequently developed biophysically detailed models of a guinea pig ventricular myocyte
by taking advantage of improved measurement of ionic currents from patch clamping (21,
22). By replacing the description of the calcium current in the Luo-Rudy models with
detailed models of the L-type calcium channel and ryanodine receptor, Jafri et al. (23) were
able to mechanistically represent calcium-induced calcium release. A notable feature of the
Jafri-Rice-Winslow model was the inclusion of Markov state models of the L-type calcium
channel and ryanodine receptor. This is a departure from Hodgkin and Huxley’s approach
which used phenomenological descriptions of ion channel function (24). Ion channels are
composed of protein subunits whose conformational changes “gate” ionic currents, causing
shifts between inactive, closed or open states (25). The probability of a channel being in a
certain state often depends on the previous state (26). Experimental observations of channel
gating and aspects of channel structure can be replicated by modeling this channel property
as a probabilistic Markov process (27).

Markov models can simulate the molecular basis of arrhythmias caused by mutations in ion
channels and the effect of pharmaceutical compounds (27). There is evidence that drug
binding affinity is often determined by the conformational state of the ion channel (28). This
level of drug-channel interaction is important when developing drugs for patients suffering
from LQT3, the most lethal subtype of LQTS (29). LQT3 is caused by mutations in the gene
SCN5A, which encodes the α-subunit for the sodium channel. One such mutation results in
deletion of three amino acid residues in the channel protein (ΔKPQ mutants) which causes a
small persistent current during the plateau phase of the action potential, delaying
repolarization (30). Clancy et al. (31) examined the mechanisms of drug block of the sodium
channel by modifying Markov models of both the wild type and the ΔKPQ mutant channels
(32). The ΔKPQ channel model was able to simulate the experimentally observed faster
recovery from inactivation compared to the wild-type channel. By including additional
model states for drug binding, they investigated the drugs mexiletine (an open state blocker)
and lidocaine (an inactivation state blocker). The model predicted that lidocaine induces a
rightward shift in voltage-dependent sodium channel availability, consistent with
experimental data. The Markov models for SCN5A were then integrated with the Luo-Rudy
model of the ventricular action potential. Simulations suggested that low doses of mexiletine
can shorten the action potential duration in LQT3 without affecting the peak sodium current,
which underlies the action potential upstroke. Conversely, lidocaine was predicted to have a
lesser effect on action potential duration but blocked the peak current at high doses. This
study illustrated how the specific mechanisms of drug action can have a significant impact
on cellular physiology.

Electrophysiology models have now been developed for a variety of animal species,
allowing representation of species-specific propensity for arrhythmia and other aspects of
pathophysiology (24). The scarcity of human data, due to the lack of non-invasive
techniques, increases the need for computational models of the human heart to gain further
insight into cardiac disease (33). Models of the human ventricular myocyte have been
developed by Priebe et al. (34), ten Tusscher et al. (35), Iyer et al. (36) and Grandi et al.(37).
Like most models in biology, these models are constrained by limited available experimental
data and each has specific applications for which its use is appropriate. The ten Tusscher-
Noble-Noble-Panfilov (TNNP) model has the advantages of being based mostly on data
obtained from human ventricular myocytes and is less complex due to the use of Hodgkin-
Huxley-type equations for ion channels (38). Fredj et al. (39) replaced the sodium channel
equations in the TNNP model with the Clancy-Rudy SCN5A Markov model (32) to
investigate the potential therapeutic effect of ranolazine, an antianginal drug, on LQT3
human patients with ΔKPQ mutant sodium channels. In vitro experiments with a cell line
expressing mutant channels confirmed their hypothesis that ranolazine is a use-dependent
blocker that reduces sustained sodium current without affecting peak current. Simulations
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with the model containing the mutant ΔKPQ sodium channel showed a decrease in
ventricular cell action potential duration in the presence of ranolazine. This suggests its
potential as a treatment for LQT3 arrhythmias.

The rapid delayed rectifier potassium current (IKr) is encoded by the Human Ether-a-go-go
Related Gene (hERG) and its mutations cause LQT2 (40). Drugs that inhibit this
repolarizing potassium current prolong action potential duration and the QT interval
(causing acquired LQTS), which can increase the risk to develop arrhythmia (41). hERG
channels can exist as heteromers consisting of hERG 1a and 1b or as homomers of hERG1a.
Despite evidence that the hERG 1a/b heteromers underlie the cardiac repolarizing current
(42), little is known about how hERG hetero/homomers differ and how the hERG 1b subunit
influences channel properties (especially in the context of pharmaceutical channel block).
In-vitro experiments by Sale et al. showed that hERG heteromers have a quicker transition
to an open state than hERG homomers (43). This suggests that an open channel blocker
should be more effective against hERG heteromers but paradoxically, experimental results
showed that hERG homomers were more inhibited by open channel block. To explain this
mechanistically, the authors turned to the TNNP model, replacing the original IKr model
with a Markov model that represents both hERG heteromers and homomers. They
discovered that the additional channel gating mode of hERG 1a homomers results in more
complete block by the open channel blocker E-4031, thus increasing the risk for acquired
LQTS.

One of the challenges of understanding arrhythmia and developing effective therapies is
linking molecular mechanisms from single cell to tissue levels (33). A cross-section of the
ventricular wall reveals at least three different cell types: epicardial, endocardial and
midmyocardial (44). These cells have different electrophysiological characteristics due to
the differential expression of various channel proteins (45) including the repolarizing
potassium currents (46). This heterogeneity results in tissue level characteristics including
delay of repolarization across the ventricular wall or transmural dispersion of repolarization
(47). Drugs that delay repolarization produce a substrate for reentrant arrhythmias (44). The
electrical signal measured transmurally across the wall reflects properties of the whole body
electrocardiogram with respect to QT interval and T wave morphology (3). This tissue
heterogeneity can be modeled in its most basic form by using a 1D cable electrophysiology
model. This consists of a string of cells with changes made to channel expression in order to
simulate the different ventricular cell types (3). Brennan et al.(48) used a 1D fiber model to
investigate sotalol, an anti-arrhythmic drug that targets IKr. They developed a Markov model
of human hERG to represent the binding kinetics of sotalol (49), which was then included in
the TNNP human myocyte model. Single cell simulations indicated that sotalol prolongs
action potential duration, similar to experimental data obtained from human ventricular
tissue, and is thus pro-arrhythmic. By inserting the modified ventricular models into a fiber
model, the authors showed that sotalol increased T-wave dispersion and amplitude (all pro-
arrhythmia markers), linking molecular properties of sotalol with observed tissue level
phenomena. A similar approach was used by Pietersen et al. to investigate NS1643, a hERG
channel opener (50). NS1643 causes an increase in channel conductance (51) and a
depolarizing shift in voltage dependency of inactivation (52) which is anti-arrhythmic at the
cellular level. Predicting whether NS1643 can be pro-arrhythmic at the tissue level or which
of its effect on channel conductance and inactivation is crucial is difficult. Using simulations
of a string of 100 human ventricular cells, the authors determined that NS1643 can be pro-
arrhythmic at the tissue level (by increasing the vulnerable window for reentry) with the
effect on channel inactivation having a larger contribution. However, simulations suggest
that at low external potassium concentrations, the effect on channel conductance is more
pronounced and increases the drug’s anti-arrhythmic properties by causing a greater
reduction of the action potential duration. This indicates a specific condition (hypokalemia)
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in which the drug would be more beneficial in preventing arrhythmia and illustrates how
models can be used to explain drug effects in different experimental conditions.
Electrophysiology models can also be used in screening lead compounds as demonstrated by
Mirams et al. who use a variety of ventricular action potential models to predict the
arrhythmic risk of 31 drugs (53). Using drug IC50 values and therapeutic concentrations to
calculate channel properties under drug influence, the authors were able to identify
simulation of action potential duration prolongation as an improved measure of potential
risk for Torsade-de-Pointes arrhythmias. The study is also a good example of the utility of
collaboration between academia and industry in leveraging computational modeling for drug
discovery.

III. Therapies targeted against ischemia and metabolic disorders
Computational models of cardiac metabolism have been built to investigate the changes in
the metabolic state of a myocyte during pathological conditions like myocardial ischemia
(54) and heart failure (55), and its effect on cardiac electrophysiology. Deficiencies in
energy input and waste removal results in alterations to the cardiac action potential,
contributing to failure of contraction (56). This condition is most pronounced during
ischemia, the block of blood flow to the heart, and is a major trigger for arrhythmias (57).
The heart consumes more energy than any other organ (58). To acquire this energy, it uses
fatty acids and glucose to produce adenosine triphosphate (ATP) in the mitochondria, which
is then shuttled to the contractile machinery through the utilization of creatine (59). When
ischemia occurs after complete cessation of blood flow, the concentration of oxygen drops
drastically (anoxia) resulting in decreased production of ATP (60). This is accompanied by
elevated extracellular potassium concentration and increased blood acidity (61).
Electrophysiological changes during the initial stages of ischemia are extremely rapid,
making it difficult to study experimentally (54). The large number of simultaneous
perturbations to the ischemic myocyte and the difficulty developing in vitro models of
ischemia also emphasize the need for computational models in this area.

Expanding on the Luo-Rudy model, Shaw et al. (60) studied the ionic mechanisms
underlying changes in the action potential in acute ischemia. By increasing the extracellular
potassium concentration and changing the channel properties of the ATP sensitive potassium
current, L-type calcium current and the sodium current, the authors were able to replicate the
shortened action potential and conduction failure seen experimentally during ischemia.

The ATP-sensitive potassium channel plays a key role in the effects of ischemia on the heart
(62). The effects of potassium channel openers in ischemia are controversial with conflicting
views on whether they are protective or arrhythmogenic (63, 64). Trenor et al.(65) used a
model of the ATP-sensitive potassium channel (66), incorporating the effect the potassium
channel opener pinacidil, and integrating it with the Luo-Rudy model. The single cell model
was able to replicate the experimentally observed reduction in action potential duration due
to pinacidil. To study the effects of pinacidil in acute regional ischemia, the authors
implemented a two-dimensional virtual heart tissue model. They noticed that the effect of
pinacidil was strongly dose-dependent and had a strong anti-arrhythmic effect at high doses.

Ch’en et al. (67) opted to concentrate on the effects of acidosis and ATP depletion in
ischemia. They incorporated equations describing ATP hydrolysis and intracellular pH into
the DiFrancesco-Noble action potential model (68). The combined model, despite its limited
scope, was able to correctly simulate ischemia-induced sodium overload (due to activation
of the sodium-hydrogen exchanger, which causes calcium overload through activation of the
sodium-calcium pump) seen experimentally. From their simulations, the authors suggested
that cardiac arrhythmia can be attenuated by blocking the sodium-hydrogen exchanger. The
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cardiac action potential is also influenced by a late sodium current which is small but may
contribute significantly to sodium/calcium overload during ischemia. Simulations performed
by Noble et al. (69) suggest that blocking the late sodium current in conditions where the
action potential is prolonged (e.g. with drugs affecting hERG) would be protective against
arrhythmia.

The link between metabolism and calcium handling in a myocyte was modeled by
Michailova et al.(70). Specifically, they investigated the effect of calcium and magnesium
buffering by ATP and ADP and included ATP regulation of ion transporters. However, they
did not explicitly simulate mitochondrial activity (71). An integrated cardiac cell model that
linked electrophysiology and contraction with mitochondrial energy generation was
developed by Cortassa et al. (72). This model was composed of an earlier model of cardiac
mitochondrial metabolism which matched experimental data obtained from rat mitochondria
(73). Another biophysically detailed model of cardiac mitochondria was developed by Beard
et al.(74) and was used by Wu et al. (75) to investigate the evolution of the metabolic state
in pathological hypertrophy, a precursor to heart failure. Heart failure, the inability of the
heart to supply the body with enough blood (76), is characterized by a complex blend of
changes to normal function including reduced mitochondrial ATP synthesis (55). The model
is able to correctly predict the drop in cytoplasmic inorganic phosphate concentration seen in
moderate left ventricular hypertrophy. They explored possible metabolic therapies by
changing levels of creatine, adenine and exchangeable phosphate and discovered that
altering levels of creatine alone was not sufficient, consistent with experimental studies (77).
Their simulations suggest elevating levels of all three metabolites could be a beneficial
metabolic therapy.

IV. Therapies targeted against signaling disorders
Modeling of disorders of cell signaling networks in myocytes is still in its infancy (33)
despite the fact that drugs targeting cardiac signaling pathways are among the most heavily
prescribed (78). Intracellular signaling pathways manage cellular processes like cell growth
and contractility (79). A unifying feature of some signaling pathways in myocytes is the
ubiquity of calcium as a second messenger (80). In addition to its role in contraction,
calcium can also signal through Ca/calmodulin dependent protein kinase (CaMKII), a
serine/threonine protein kinase, which is activated when bound by the calcium/calmodulin
complex (Figure 3). CaMKII regulates cardiac gene expression through phosphorylation of
transcription factors like CREB and HDAC (81) but also has an important role in calcium
mobilization through phosphorylation of proteins like ion channels (82). By modeling the
influence of CaMKII on calcium handling, Livshitz et al. (83) were able to show its potential
effect on T wave alternans. T wave alternans are beat-to-beat variations in the amplitude of
the T wave of the electrocardiogram and is associated with dispersion of repolarization,
ventricular arrhythmia and sudden death (83). This is hypothesized to originate from
variation in action potential duration at the cellular level coupled with variation in calcium
transient amplitude. Livshitz et al. reformulated the CICR kinetics in the Hund-Rudy model
(84), a canine ventricular action potential model that includes the CaMKII regulatory
pathway. Their model was able to reproduce the experimentally observed frequency-
dependent activation of CaMKII and the effect of CaMKII inhibition on calcium transients.
Futher simulations showed that increased CaMKII activity causes increased alternans. They
identify combined CaMKII inhibition and modulation of repolarizing currents as a possible
intervention for suppressing T wave alternans.

CaMKII can auto-phosphorylate in order to retain kinase activity in the absence of calcium
(85). Oxidation can also cause persistent activation independent of auto-phosphorylation
(86). Levels of reactive oxygen species, hydrogen peroxide and superoxide are elevated
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following myocardial infarction resulting in increased levels of oxidated CaMKII. In order
to ascertain the impact of oxidative activation of CaMKII following a myocardial infarct,
Christensen et al. (87) used the Hund-Rudy model with the inclusion of an oxidized active
state for CaMKII in addition to the calcium and autophosphorylation-mediated active states.
Their cardiac fiber model described two regions of the epicardium: the normal and the
border zone. The border zone of a myocardial infarct is the region of the epicardium that
survives a transmural infarct and is often the site of reentrant excitation, which causes
ventricular tachycardia (88). Enhanced CaMKII activity was predicted to increase recovery
from inactivation of the sodium channel which promotes reduced conduction velocity, a
marker for increased risk of arrhythmia (89). Based on their simulations, one may anticipate
that inhibition of CaMKII or upstream redox pathways in the infarct border zone could
reduce re-entrant arrhythmia and ventricular tachycardia. Indeed, overexpression of a
CaMKII inhibitor in mice has been shown to protect from cardiac remodeling following
myocardial infarction (90).

Extracellular stimuli for essential processes reach the cell via primary messengers, including
catecholamines and hormones, and activate a diverse array of cellular receptors on the
plasma membrane (79). These include β-adrenergic receptors, a family of G-protein coupled
receptors found predominantly in cardiac, airway smooth muscle and adipose tissue.
Binding of the catecholamines epinephrine or norepinepherine results in the coupling of the
receptor to the guanine nucleotide binding protein Gs, with the subsequent release of the Gsα
subunit following hydrolysis of guanosine triphosphate. Gsα then activates adenylate cyclase
resulting in the production of cyclic AMP. Cyclic AMP causes the dissociation of the
regulatory and catalytic subunits of protein kinase A (PKA). This allows PKA’s catalytic
subunit to phosphorylate various protein targets including L-type calcium channel,
phospholamban (inhibitor of SERCA), ryanodine receptor (RyR) and troponin. The key
result of classical β-adrenergic receptor activation in the heart is increased cardiac output
(91). Saucerman et al. (92) developed a model describing the β1-adrenergic receptor
pathway, the most dominant receptor isoform, integrated with the Luo-Rudy model and
modified for the rat ventricular myocyte. The model was able to reproduce the
experimentally observed temporal response to β1-adrenergic stimulation including cAMP,
PKA activity and phospholamban phosphorylation. It then served as a platform for
investigating possible therapeutics for heart failure where desensitization of the β-adrenergic
receptor system occurs (93). Their model predicted that adenylate cyclase overexpression,
which can be achieved through gene therapy, increased the generation of cyclic AMP which
in turn increased the β1-adrenergic response with minimal side effects compared with β1-
adrenergic receptor or Gs overexpression. They also suggested that a hypothetical drug that
increases the affinity of Gsα and adenylyl cyclase could be effective.

CaMKII is overexpressed in heart failure (94) and its activity appears to contribute to some
aspects of β-adrenergic signaling (95). Soltis et al. (96) investigated the consequences of
integrated β-adrenergic and CaMKII signaling by developing a combined model of both
pathways and their regulation of excitation-contraction coupling. The model was validated
against key experimental readouts including CaMKII-mediated phosphorylation of the
ryanodine receptor and phospholamban and effects of CaMKII on Ca dynamics such as ICa
facilitation and acceleration of relaxation. Their model predicted that increased CaMKII
expression coupled with β-adrenergic stimulation is pro-arrythmogenic due to a synergy of
PKA and CaMKII effects on ICa, RyR, and phospholamban. CaMKII-mediated increase in
RyR phosphorylation played a key role and was necessary to predict spontaneous delayed
after-depolarizations during β-adrenergic signaling. Thus blocking the ability of CaMKII to
phosphorylate the RyR could be a potential therapy in such conditions.
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Patients with LQT1 are susceptible to sudden cardiac death during β-adrenergic stimulation
due to mutations in KCNQ1, a gene that encodes the repolarizing potassium current IKs (17).
One particular KCNQ1 mutation observed clinically is KCNQ1-G589D, which disrupts the
channel’s ability to form a signaling complex with PKA and phosphatase 1, mediated by the
scaffolding protein yotiao (97). Saucerman et al. (98) investigated the whole-cell and tissue-
level consequences of this disruption by integrating the Saucerman-McCulloch model of β-
adrenergic signaling with a model of the rabbit ventricular myocyte integrated into a
heterogenous 3D ventricular wedge model. The functional consequences of β-adrenergic
signaling predicted by the model agreed with literature from rabbit ventricular myocytes
including kinetics and dose response to isoproterenol, enhanced current through the KCNQ1
channel, and decreased action potential duration. Single cell model simulations suggested
that the KCNQ1 mutation promotes early after depolarization (triggers for arrhythmia) only
in the context of β-adrenergic stimulation. This effect was amplified at the tissue level with
the appearance of T-wave abnormalities in simulated ECG’s, including dispersion of
repolarization and T-wave inversion. Thus these simulations helped explain the in vivo
consequences of KCNQ1 mutation and why β-blockers are effective for LQT1 patients.
Indeed, a subsequent clinical report illustrated remarkably similar “Himalayan” T-waves in
an LQT1 patient, who was subsequently treated with a β-blocker and implantation of a
cardioverter-defibrillator (99).

In another subtype of the LQT syndrome, LQT3, it is unclear whether activation of the β-
adrenergic system is beneficial or deleterious (100). In order to investigate this discrepancy,
Ahrens-Nicklas et al. (101) incorporated a description of the human SCN5A-ΔKPQ
mutation associated with LQT3 into a modified version of the Luo-Rudy (102)and used the
Saucerman-McCulloch model of β-adrenergic signaling to predict phosphorylation levels of
channels for IKs and ICa. This allowed the investigation of the pharmacology of LQT3
mutant channels in the context of a human-like action potential. The tissue effect of the
various pharmacological agents was observed by performing transmural fiber simulations. In
order to model the effects of β-blockade, decreased phosphorylation of IKs and ICa channels
were predicted based on the decreased cyclic AMP production seen with the β-blocker
propranolol. In addition, the authors incorporated the separate sodium channel blocking
effects of propranolol into a Markov model of the ΔKPQ sodium current. Computational
modeling allowed the authors to investigate various β-blocker levels and pacing protocols
that have produced apparently contradicting results in published experiments. Isoproterenol
decreased action potential duration and suppressed early after depolarization for all 3
ventricular cell types (endocardial, midmyocardial and epicardial). The fiber simulations
showed that transmural dispersion of repolarization was decreased in the model following
isoproterenol stimulation consistent with in vivo observations (100). An important
observation was that this beneficial effect of isoproterenol was pacing–pattern dependent,
explaining the discrepancies observed in vivo. Low doses of propranalol increased
transmural dispersion and action potential duration, worsening the LQT3 phenotype.
However, the high doses of propranolol had the opposite effect on the LQT3 phenotype
which suggested to the authors that this beneficial effect was due to increased late sodium
current blockage.

Timothy syndrome is a form of long QT syndrome (LQT8) caused by a mutation in the
CACNA1C gene that encodes for the α1C-subunit of the L-type calcium channel (17). This
mutation eliminates voltage-dependent inactivation of the channel, thus leaving it open (17).
The resulting susceptibility to arrhythmia is ultimately deadly and patients rarely survive
past 3 years (103). Sung et al. (104) investigated the influence of β-adrenergic stimulation
on arrythmogenesis in Timothy Syndrome by making modifications to a Markov model of
the L-type calcium channel in a modified version of the Luo-Rudy model (105). β-
adrenergic modulation of various ion channels was simulated by changing channel
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parameter values to mimic saturating concentrations of a β-adrenergic agonist. The authors
discovered that β-adrenergic stimulation, when combined with CACNA1C mutation,
increases the occurrence of alternans, delayed after-depolarizations and early after-
depolarizations (all triggers for arrhythmia). These predictions help validate the use of β-
blockers as treatment for Timothy syndrome patients. Further simulations identified
reduction of the L-type calcium current as the most effective target for reducing β-
adrenergic-stimulated arrhythmia. The authors also identified reduction of SERCA-mediated
Ca uptake as another potential target.

Several signaling pathways have been implicated in pathological hypertrophy, the abnormal
growth that often leads to heart failure (106), including the inositol-4-5-biphosphate (IP3)-
calcineurin pathway (107). IP3 is produced in response to the activation of members of the
Gq family of G-protein coupled receptors including the α-adrenergic, endothelin and
angiotensin receptors. Activation of these receptors results in liberation of Gqα which
activates phospholipase C. Phospholipase C causes hydrolysis of phosphatidyl inositol-4-5-
biphosphate to form the second messenger IP3. IP3 is thought to contribute to activation of
the phosphatase calcineurin, which causes changes in cardiac gene expression through its
effect on the transcription factor NFAT (108). In order to understand the control
mechanisms underlying pathway activation, a computational model of the IP3 pathway
described above was developed by Cooling et al. (109). Model parameters were fit to match
the relatively fast kinetics of IP3 in response to endothelin-1 seen experimentally. Then, by
changing only the parameters for receptor activation, the model was able to predict the
experimentally-observed slower kinetics in response to angiotensin. Global sensitivity
analysis suggested that the most sensitive parameter controlling the IP3 transient was the
rate constant for phosphorylation of the active receptor. Despite both agonists stimulating
IP3 production via an identical signal transduction pathway, the IP3 responses are
remarkably distinct. From their simulation results, an effective strategy at combating
pathological hypertrophy influenced by IP3 can be achieved by targeting the receptors for
endothelin-1 and angiotensin II. This could be more successful than attempts at attenuating
hypertrophy with calcineurin inhibitors(110), especially since G-protein coupled receptors
are among the most druggable protein targets(111). Indeed, angiotensin converting enzyme
(ACE) inhibitors and angiotensin receptor blockers are widely used for heart failure.

V. Future directions
The rate of attrition in drug discovery represents one of the most serious challenges to the
pharmaceutical industry (9). A main reason is the difficulty in extrapolating pre-clinical data
to predict clinical efficacy (9). Computational modeling can help bridge this gap at various
stages in the drug discovery pipeline (112). Species-specific models of the cellular cardiac
action potential allows the quantification of properties of potential drugs in various species
and, with the help of human models, gain further insight into how the drugs might function
in a clinical setting (33). In addition, the further integration of electrophysiology, signaling
and metabolic models will allow the accurate simulation of complex diseases like heart
failure with multiple etiologies.

Improvement of current signaling and metabolic models and the development of disease-
specific models will require the integration of data made available by the recent emergence
of cardiac specific proteomic (113) and metabolic (114) data sets. For example, data on
expression levels of calcium handling proteins in heart failure myocytes (115) was used by
Winslow et al. (116) to develop a heart failure ventricular cell model. By changing the
expression levels of four proteins, namely SERCA, sodium-calcium exchanger, inward
rectifying potassium channel and the calcium independent transient outward potassium
channel, they were able to simulate the observed changes in calcium transients and action
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potential duration seen in failing cardiac cells (117). These approaches will need to be
extended further, because for example in dilated cardiomyopathy, one of the leading causes
of heart failure, over 100 proteins are differentially expressed in humans (118).

Unraveling the complexity of disease states will require development of new systems
modeling approaches that leverage the breadth of available ‘omics data (15). For example,
Berger et al. (119) combined protein-protein interaction and drug databases to identify a
signaling network consisting of 1629 gene products that regulates ion channels involved in
LQTS. Comprehensive cardiac models such as these may help predict off-target effects and
unexpected connections. Simulation of multi-target treatment can also be achieved (as
opposed to the identification of a single “silver bullet”), to overcome disease network
properties like redundancy, crosstalk and robustness (120). This has led to the development
of successful drug therapies for complex diseases affecting other organ systems including
cancer and depression (121).

Cardiac phenomena like arrhythmias depend on changes at the molecular and cellular level
but they are fatal because of their effect on whole organ function (122). In addition to 1D
fiber, 2D sheet and 3D ventricular wedge models, whole heart models have been developed
to examine the role of heart anatomy on arrhythmia (3). Multiscale electromechanical
models of the heart have also been developed (123) and, if coupled with molecularly-
detailed ion channel and signaling models, present a unique opportunity to explore drug
intervention for conditions associated with structural remodeling such as myocardial
infarction and hypertrophy. A limiting feature of multiscale models is the high
computational requirements, with the simulation of one cardiac cycle in a human whole-
heart model developed by Potse et al.(124) requiring approximately 2 days on 32 processors.
Future advances in CPU performance and the use of alternative tools including GPU-aided
simulations (125) will make multi-scale computational models more feasible, presenting an
opportunity to merge tissue modeling with physiologically based pharmacokinetic models
(126). Pharmacokinetics, which determines how rapidly and for how long a drug is available
at a particular organ (127), is crucial for predicting clinical efficacy (128). Integrating multi-
scale models with pharmacokinetic models will result in a modeling platform that is as close
to clinical trials as possible. A recent example of the utility of this strategy is provided by
Wu et al.(129) who use a multi-scale tissue model to investigate soluble VEGF receptor’s
potential as an anti-angiogenic therapeutic.

It is important not to underestimate the challenges involved in applying computational
models to drug discovery and development. A key step in every model’s development is the
choice of the appropriate level of mechanistic detail. Most models are carefully optimized to
address a particular set of biological questions or applications, often employing Albert
Einstein’s advice to “make everything as simple as possible, but not simpler.” But when
repurposing a model for drug discovery or integrating models to tackle multi-scale
phenomena, one must carefully re-evaluate the underlying model assumptions and revalidate
for the new experimental system. Parameter selection is particularly difficult when
integrating multiple models, as most models are based on data from a range of experimental
systems and animal species (10, 129). And as modeling efforts are generally data-limited,
the majority of models described above were validated only under a limited set of available
experimental conditions. While fully comprehensive model validation is not feasible, a key
challenge is to identify the extent of validation that builds sufficient confidence in new
model predictions to guide the next experimental or clinical phase. Systematic efforts to
validate fundamental aspects of myocyte physiology across a range of models are likely to
help in this regard (130).
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Despite these challenges, cellular computational modeling has already informed the
development of several drugs including ranolazine and ivabradine (10). Such modeling
approaches have until recently been primarily used in academia. For the goals of FDA’s
Critical Path Initiative to be realized, it will require increased collaboration between
academia and industry to harness the potential of cardiac computational modeling for drug
discovery and development. The rewards of this collaboration should help reduce the
clinical burden of cardiovascular disease.
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Figure 1.
Cardiac ventricular action potential and electrocardiogram. Predominant ion fluxes at
different phases of the action potential are indicated. APD, action potential duration.
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Figure 2.
Schematic of cardiac electrophysiology and contraction. Targets of computational models
are indicated with blunt arrows (references in parenthesis). INa(f,l), late sodium current;
IK-ATP, ATP dependent potassium current; PLB, phospholamban; NCX, sodium-calcium
exchanger.
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Figure 3.
Schematic of β-adrenergic, α-adrenergic and Ang receptor signaling network. Targets of
computational models are indicated with blunt arrows (references in parenthesis). AC,
adenylate cyclase; CaM, calmodulin; CaN, calcineurin; ET; endothelin; NE,
norepinepherine; IP3R, IP3 receptor; Iso, isoproterenol.
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Table 1

Examples of cardiac computational models used to investigate the effect of drugs and therapies.

Target Pathology Drug/Treatment Reference

INa LQT3 mexiletine 31

INa LQT3 ranolazine 39

IKr acquired LQTS E-4031 43

IKr LQTS sotalol (pro-arrhythmic) 48

IKr LQTS NS1643 50

IK-ATP ischemia pinacidil 65

INa-H ischemia blocker of Na-H exchanger 67

INa(f,L) ischemia blocker of late sodium channel 69

Cr,Adenine, Pi heart failure elevating all 3 pools 75

CaMKII T-wave alternans CaMKII inhibitor 83

CaMKII myocardial infarct CaMKII inhibitor 87

AC heart failure AC overexpression 92

CaMKII heart failure inhibition of CaMKII phosporylation of RyR 96

β-adrenergic receptor LQT1 β-adrenergic receptor blocker 98

β-adrenergic receptor LQT3 propranalol 101

LCC LQT8 reduction of LCC current 104

α-adrenergic receptor pathological hypertrophy α-adrenergic receptor blocker 109
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