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ABSTRACT

Motivation: Gene activity is mediated by site-specific transcription
factors (TFs). Their binding to defined regions in the genome
determines the rate at which their target genes are transcribed.
Results: We present a comprehensive computational model of
the search process of TF for their genomic target site(s). The
computational model considers: the DNA sequence, various TF
species and the interaction of the individual molecules with the DNA
or between themselves. We also demonstrate a systematic approach
how to parametrize the system using available experimental data.
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Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Originally, it was believed that transcription factors (TFs) find their
target sites only through 3D diffusion and the association rate would
follow the Smoluchowski limit. Riggs et al. were the first to observe
that the rate at which the lac repressor locates its target site is
much faster than the rate predicted by the Smoluchowski limit and
hypothesized that a different mechanism was involved in this process
(Riggs et al., 1970).

In their seminal work, von Hippel et al. (Berg et al., 1981;
Winter et al., 1981) thoroughly investigated this process from
both a theoretical and experimental perspective and concluded that
TF molecules use the facilitated diffusion mechanism to locate
their target sites. This facilitated diffusion mechanism assumes a
combination between 3D diffusion in the cytoplasm and an 1D
random walk on the DNA. This leads to reduction of dimensionality
in the search process and, consequently, speeds up the search. In
addition, three main types of movements on the DNAwere proposed:
(i) sliding, (ii) hopping and (iii) jumping (Berg et al., 1981). Sliding
and hopping are both mechanisms of 1D random walk, but the
difference between them is that during hopping the molecules lose
contact with the DNA, whereas during sliding the molecules keep
contact with the DNA. On the other hand, jumping is a mechanism
which assumes that the molecules do not only lose contact with the
DNA for a short time interval (as in the case of hopping), but they
completely release into the cytoplasm where they spend a longer
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time until they bind to the DNA uncorrelated with respect to the
unbinding position.

The existence of the 1D random walk in vivo was recently
confirmed by Elf et al. (2007). The authors of that study used
fluorescent lac repressor tetrameters and visualize their movement
in a live Escherichia coli cell, confirming that the molecules spend
90% of the time bound to the DNA.

There are still missing pieces in our understanding of the
facilitated diffusion mechanism. One approach to address these
questions consists of building a computational tool able to simulate
the relevant molecules in a cell and the entire DNA sequence.
This type of approach can address several questions, e.g. how
crowding can influence the search process at genome-wide level,
in a dynamical context (Chu et al., 2009) and not as static barriers
(Li et al., 2009). In addition, one could investigate systems with
real affinity landscapes, which is not possible through analytical
tools (Berg et al., 1981).

In this article, we present a computational model for stochastic
simulation of the search process of TFs for their target sites on the
DNA. The model considers each TF molecule as an independent
object, which can move freely in the bacterial cytoplasm, but which
also can bind to the DNA and perform an 1D random walk. The
DNA molecule is modelled as a string of nucleotides, which leads
to specific affinity between a TF molecule and DNA at the position
where the molecule is bound. We also go through the literature and
systematically infer each microscopic parameter of the model from
experimentally macroscopic measurements.

Finally, we developed an implementation of the proposed model,
which is available in Zabet and Adryan (2012).

2 MODEL
One strategy to stochastically model the TF search process for their
target sites consists of designing a hybrid system combining agent-
based modelling and stochastic simulation techniques (Gillespie,
1977). In this model, each TF molecule is represented as an agent
able to perform certain actions and the DNA molecule as a string
of the nucleotides: a, t, c or g. The model can assume reflecting
boundaries (TFs that reach the boundary can only go back), periodic
boundaries (the DNA is assumed to be in a closed loop) or
absorbing boundaries (TFs that reach the boundary will unbind from
the DNA).

In this setting, the TF molecules can be either free in the cytoplasm
or bound on the DNA at a certain position. A free TF molecule has
only one action available, namely, to bind to the DNA.
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2.1 Binding event
We assume that the bacterial cytoplasm is a perfectly mixed reservoir
from where the free TF molecules bind to the DNA. The 3D diffusion
of TF molecules in the cytoplasm is not modelled explicitly, but
rather, the molecules that are free in the cytoplasm have a certain
association rate to the DNA. To simulate 3D diffusion we use the
Direct Method implementation of Gillespie Algorithm (Gillespie,
1977) which generates a statistically correct trajectory of the Master
Equation.

The rate at which a TF molecule of species x will bind to the DNA
is computed as

kbind
x =kassoc

x ·TFfree
x · Acurrent

x
Amax

x
(1)

where kassoc
x is the reaction probability rate constant for species x,

TFfree
x the number of free TF molecules of species x and the last

fraction (Acurrent
x /Amax

x ) is the proportion of free positions where a
molecule can bind. A comprehensive list of all parameters used in
this article can be found in the Supplementary Material.

Note, that after each 1D move, the number of available positions
on the DNA for a TF to bind can change and, consequently, the
association rate needs to be updated often. An approximate system
would consider that the binding of TF molecules is affected by
occupancy, but the update is performed only when a molecule
binds/unbinds and not when any other event (sliding or hopping)
would lead to change in the number of available binding sites on the
DNA. In the Supplementary Material, we show that the difference
between this approximation and the exact system is negligible and,
thus, one can use this approximate system to increase simulation
speed.

When a molecule binds to the DNA it will occupy a number of
consecutive base pairs on the DNA and no other molecule will be
able to bind to the DNA at that position. The size on the DNA of
each TF molecule is computed as the sum of the number of base
pairs of the DNA binding motif, the number of obstructed base pairs
on the left side of the molecule and the number of obstructed base
pairs on the right side (Fig. 1).

TFsize
x =TFmotif

x +TFleft
x +TFright

x (2)

Note that this feature (TF can cover base pairs to the left or to the
right side of the DNA binding motif) has not been considered in this
type of simulations, but is biologically plausible.

We mark all base pairs covered by the TF molecule as being
unavailable, but we record the left-most base pair covered by the
TF molecule as the position at which a TF molecule is bound to the
DNA. This does not affect the results in any way, but is just a choice
of internal representation of the binding.

Fig. 1. TF binding to the DNA. TF molecules bind to the DNA and mark
several nucleotides as covered (grey) on: the DNA binding motif (3 bp in our
example), the obstructed left side (1 bp) and the obstructed right side (2 bp).
Volume exclusion is implemented, in the sense that two TF molecules cannot
cover the same base pair on the DNA. The green positions on the DNA mark
the positions where the free TF molecule can bind.

In addition, previous simulators did not take into account TF
orientation on the DNA (Barnes and Chu, 2010; Chu et al., 2009).
The orientation of TFs affects the affinity of the TF for a specific
position on the DNA, i.e. a molecule bound in one orientation can
have a totally different affinity compared with being bound in the
opposite orientation at the same position.

Finally, since transcription and translation are co-localized in
prokaryotic systems, a TF molecule has a higher probability to bind
initially near the DNA region where it was released, and if the target
site is within a sliding length distance, the entire search process can
be reduced to one sliding step. We consider the possibility of an
initial binding region on the DNA in our model, in the sense that
each TF molecule has a user-specified probability to bind for the
first time within the user-defined region on the DNA, but only if
there are free spots in that region.

2.1.1 Implementation of the binding event Barnes and Chu
(2010) observed that, in the case of crowded DNA, locating a
free position on the DNA where TF molecules can bind can be a
bottleneck. In the Supplementary Material, we present a new method
to significantly enhance the simulation speed. This method assumes
the creation and maintenance of an array list of boolean values for
each TF species (x), which specifies whether a TF molecule of type
x is allowed to bind at position j, A[x][j]. This has the purpose to
eliminate the need to check if sufficient nucleotides (TFsize

x ) in the
right side of the selected position are not covered by other molecules.

Furthermore, to increase the speed of locating a position, we store
the current number of free positions for each species, Acurrent

x , and
when we look for a free position we draw a random number z
in the interval [0,Acurrent

x ) which will represent the z-th available
position on the DNA. This method guarantees that a free position is
found using only one random number, which represents a significant
enhancement of the simulation speed. To further increase the search
speed from M/2 to

√
M, we keep total counts of available positions

in a different array (see Supplementary Material).

2.2 TF affinity for DNA
Once bound to the DNA, TF molecules will spend a certain time
bound to a position until they make any type of movement. The
time spent at any position on the DNA is determined based on the
binding energy between the molecule DNA binding domain and the
sequence under the molecule. The average waiting time at a position
is given by (Gerland et al., 2002)

τ
j
x =τ0

x exp
[
β
(
−Ej

x

)]
(3)

where x represents the TF species, j is the position on the DNA, τ0
x

is the average waiting time when bound specifically and Ej
x is the

binding energy at position j. Note that the τ0
x term is similar to the

τ0exp
(
Ens

)
term in Gerland et al. (2002). The binding energies are

measured in β−1 =KBT (where KB is the Boltzmann constant and
T the temperature), which will leave just the value of the binding
energy in the exponential term.

To reduce memory usage, we will break the TF species into two
classes: (i) non-cognate TFs and (ii) cognate TFs. The cognate ones
are the TFs that are of interest and that we can follow, whereas the
non-cognate ones main purpose is to simulate the ‘other’ proteins
on the DNA, which might interfere with the search process of the
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cognate TFs. For efficiency reasons, we pre-calculate the affinities
of each TF species, both cognate and non-cognate, and store them
in individual arrays. The non-cognate binding energy is randomly
generated using a Gaussian distribution with the mean and variance
provided as inputs for each non-cognate species.

The binding energy of cognate TFs is computed using two
techniques: (i) mismatch energy (Gerland et al., 2002) and (ii)
position frequency matrix (PFM; Berg and von Hippel, 1987;
Stormo, 2000). In both scenarios, we assume that each position in
the DNA binding motif is approximately independent and additive
(Berg and von Hippel, 1987; Gerland et al., 2002; Stormo, 2000).

First, in the case where there is a single high-affinity binding site,
one can use the mismatch energy approach, which assumes that for
each mismatch between the consensus Sx for species x and current
DNAposition, the binding energy is penalized by a fixed value called
the mismatch energy:

Ej
x =

L∑
k=0

ε
j
x(k) (4)

where L is the length of the motif and ε
j
x(k) is the mismatch

penalty at position k. The mismatch penalty is equal to ε
j
x(k)=0

if Sk
x =DNAj+k and ε

j
x(k)=ε∗

x otherwise. It was estimated that
ε∗

x ∈[1,3] KBT (Gerland et al., 2002) and, in our simulations, we
will consider that ε∗

x =2·KBT . For example, if the binding motif is
atcg and between positions j and j+4 on the DNA we have the

sequence acct, then Ej
x =ε∗

x ×(0+1+0+1)=2·ε∗
x . Note that if

there is a match between the nucleotide of the motif sequence and
the one of the DNA sequence we put a value of 0 whereas for a
mismatch we put a value of ε∗

x .
Second, for multiple high-affinity binding sites (experimentally

determined using methods such as ChIP, SELEX and PBM) we will
use the PFM. Instead of penalizing when there is a mismatch, the
PFM approach has a weighted mismatch which penalizes the energy
by

ε
j
x(k)=ε∗

x ln

(
nx

0,k +ζ

nx
j,k +ζ

)
(5)

If at position (j+k) on the DNA we have nucleotide x, then the
number of occurrences of this nucleotide at position k in all known
high-affinity binding sites is denoted by nx

j,k and the highest number
of occurrences of any nucleotide at position k in all known high-
affinity binding sequences of species x, by nx

0,k . ζ is a pseudo-count
term which ensures that the fraction in the logarithm is never zero.
In addition, we also scale the binding energy by a fixed value, ε∗

x .
The equation proposed by Berg and von Hippel (1987) was said to

describe with good accuracy the energy based on the PFM, but only
for unbiased genomes (Stormo, 2000). Stormo (2000) proposed an
information-based approach on determining the binding energy to a
DNA sequence, which would be valid for both biased and unbiased
genomes. This resulted in the following mismatch penalty:

ε
j
x(k)=ε∗

x ln

(
νx

j,k

νj+k

)
(6)

where νx
j,k represents the frequency of occurrences of the nucleotide

(j+k) at position k in all known high-affinity binding sites and
ν(j+k) the frequency of the nucleotide (j+k) in the entire genome.

To ensure that the frequency in the motif is non-zero we insert a
pseudo-count term ζ when computing the frequency in the PFM.

νx
j,k =

nx
j,k +ζ ·ν(j+k)∑

u∈{a,c,g,t}nx
u,k +ζ

(7)

Note that the binding energies computed by the three methods for
the lac repressor and the E.coli K-12 genome are highly correlated
and they follow a Gaussian distribution (see Supplementary
Material).

2.3 One-dimensional random walk
The TF molecule will reside at its current position on the DNA
for a random amount of time, which is exponentially distributed

with a mean τ
j
x . Once a TF molecule was selected to perform an

action from its current position on the DNA, the molecule has to
chose stochastically between one of the following three actions:
(i) unbind from the DNA (with the possibility to re-bind fast),
(ii) slide left on the DNA and (iii) slide right on the DNA. The
probability to perform any of these actions (Punbind, Pleft and Pright)
is independent of position, but it is specific to each TF species,
i.e. each TF species has its own values for the probabilities to
perform these actions (Px

unbind, Px
left and Px

right for species x) and

a molecule of type x has the same probabilities independent of
the position on the DNA (Px

unbind[j]=Px
unbind, Px

left[j]=Px
left and

Px
right[j]=Px

right, ∀j, where j is the position on the DNA). Note

that, to make the notation simple, we will drop the superscript x
from the these parameters, but, whenever we refer to these action
probabilities, it is understood implicitly that they are specific to each
TF species. Furthermore, in this article, we assume an unbiased
random walk (for a discussion on this aspect see Section 5) and this
means that the probabilities to slide left or right are equal at any
position on the DNA, Pleft[j]=Pright[j],∀j (where j is the position
on the DNA).

First, if the molecule ‘decides’ to unbind, it will have a high
probability to re-bind fast (van Zon et al., 2006). Theoretical
studies computed that a TF re-binds on average between six times
(Wunderlich and Mirny, 2008) and up to a few hundred times
(DeSantis et al., 2011). The model allows for each species to have
two unbinding probabilities: (i) the unbinding probability (with
the possibility to re-bind fast) (Punbind) and (ii) the probability
to completely release from the DNA once unbound (Pjump). The
former controls the number of sliding steps the TF performs before
it unbinds, whereas the latter controls the ratio between the number
of hops and the number of complete dissociations from the DNA.

We should mention that we do not distinguish explicitly between
jumps and long hops. In particular, a disassociated molecule can re-
bind to a position which is Gaussian distributed around its previous
position and with variance σ 2

hop =1bp (Wunderlich and Mirny,

2008). Thus, long hops are allowed as long as the re-binding is
fast. In addition, if the TF molecules have orientation, then during
hopping, the orientation of a TF can change. For slow re-binding
the TF molecules are released into the cytoplasm and they will have
chances to re-bind similar to all free molecules.

2.3.1 Implementation of the 1D random walk There are two
strategies to implement the 1D random walk (see Supplementary
Material). First, we can consider all molecules as independent agents
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that stay at their current position for a certain amount of time. Then,
we store the time when each molecule will attempt to make a new
action in a sorted structure (such as PriorityQueue in Java). This list
is kept updated and sorted after each 1D or 3D random walk event.
When selecting the next event to execute, we pop the head of this
structure. We call this method the First Reaction (FR) method.

Second, we keep the waiting times in a fixed size array and extract
the next molecule that is bound to the DNA and that will perform an
action. This is based on the Direct Method version of the Gillespie
algorithm (Gillespie, 1977) and, thus, we call this the Direct Method.

2.4 Cooperativity
Our model allows cooperative behaviour between TF molecules and
this can be either mediated by DNA or represented as direct TF–TF
interaction. First, the DNA-mediated cooperative behaviour assumes
that once a TF molecule from a specific species binds to a certain site
on the DNA in the correct orientation, the waiting time of a molecule
of the same (or a different) TF species at another site changes. For
example, binding of a molecule of species x at position j means a
change in the waiting time of a molecule of species y at position j′
of cy,j′

x,j as follows

τ̂
j′
y =τ

j′
y ·cy,j′

x,j (8)

The cooperativity can be reversible, in the sense that once the
TF molecule of species x located at site j moves away, the waiting
time of a molecule of type y at the position j′ reverts to the original

value, τ
j′
y . Nevertheless, the cooperativity can be irreversible, and

the waiting time of a molecule of type y at the position j′ can be

kept at the value τ̂
j′
y until molecule y leaves position j′.

Alternatively, two molecules (x and y) that physically interact and
are cooperative can increase their waiting times by a factor cy

x using
one of the following equations

τ̂
j′
y =τ

j′
y ·cy

x, τ̂
j
x =τ

j
x ·cy

x, (9)

τ̂
j′
y =τ

j′
y +cy

x, τ̂
j
x =τ

j
x +cy

x or (10)

τ̂
j′
y =τ

j′
y +cy

x ·τ j
x, τ̂

j
x =τ

j
x +cy

x ·τ j
y (11)

when j′ = j+TFsize
x or j′ = j−TFsize

y . The first equation addresses
the case of multiplicative cooperativity, the second equation the
case of fixed additive cooperativity and the third equation the case
of variable additive cooperativity. This allows both positive and
negative cooperativity, i.e. two molecules that touch can also reduce
their waiting times on the DNA.

Equations (8) and (9) were already discussed in Chu et al. (2009).
In addition, Equations (10) and (11) represent new hypotheses of
how to model cooperativity that are mathematically possible and
which we would like to further investigate for their biological
relevance. In the case of Equation (9), we assumed that the residence
time will increase with a fix value independent of where two TF
molecules are on the DNA. Although this might represent a good
approximation, there is no clear evidence that the increase in affinity
is not dependent on the strength of the binding between TFs and
DNA. Equation (11) provides a way to model direct TF–TF co-
operativity which depends on the strength of the TF-DNA binding.
This type of interaction has not been investigated previously, but

the framework that we present here aims to propose several new
hypothesis that could be further tested.

3 ESTIMATING MODEL PARAMETERS
The model requires a series of microscopic parameters. Next, we will
systematically show how to estimate these parameters in our system
from macroscopic parameters that were measured experimentally.
We consider the lac repressor and E.coli as an example system, due
to the fact that it is a well-studied system with some available data.
Note that unless mentioned otherwise, we will use the genome of
E.coli K-12, which has M ≈4.6 Mbp (Riley et al., 2006).

First, if we know that the observed sliding length is sobs
l and that

the random walk is unbiased, then during a sliding event we will

need Nobs
se =

(
sobs
l

)2
/2 sliding events to cover sobs

l base pairs of

DNA (Wunderlich and Mirny, 2008).
Since, currently there is no method to clearly distinguish between

a slide and a hop, the actual number of sliding events (Nse) will
differ from the observed one Nobs

se . The relationship between these
two parameters is given by

Nse
1

Pjump
=Nobs

se ⇒ Nse =
(

sobs
l

)2 ·Pjump

2
(12)

where (1/Pjump) represents the number of slides separated by micro-
dissociations from the DNA before the molecule completely releases
into the cytoplasm. Wunderlich and Mirny (2008) estimated that the
jump probability is Pjump =0.1675, which leads to six slides before
a jump.

For a high number of random walk events during a slide, we can
estimate the unbinding probability as the inverse of the number of
binding events (Halford and Marko, 2004).

Punbind = 1

Nse
= 2(

sobs
l

)2 ·Pjump

; (13)

The actual sliding length can also be estimated from the observed
one using the average number of hops performed before a jump.

sl =
√

2·Nse =

√√√√
2

(
sobs
l

)2 ·Pjump

2
=sobs

l

√
Pjump (14)

This means that the actual sliding is ∼2.5 times smaller than the
observed one (taking into account that on average we have six slides
before a jump).

Elf et al. (2007) estimated that the observable sliding length can
be ∼90 bp, which leads to sl =37 bp. This value is in the range
estimated by Halford et al. (Gowers et al., 2005; Halford and Marko,
2004). Furthermore, we can estimate the unbinding probability and
the number of events per slide as

Punbind ≈1.47e−3, Nse ≈700 and Nobs
se ≈4000 (15)

We assume that the random walk is unbiased (Blainey et al., 2006)
and, thus, the probabilities to slide left or right are equal

Pleft =Pright = 1−Punbind

2
(16)
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Given the value of the unbind probability computed above
(Punbind ≈1.47e−3) the two sliding probabilities are Pleft =Pright =
0.4992.

Furthermore, if we know the residence time tR (the time a
molecule spends on the DNA before it unbinds during jumping),
then we can compute the average waiting time to be

〈τx〉= tR

Nobs
se

= 2tR(
sobs
l

)2

Finally, using the average of exponential binding energy of the TF
(〈exp(−Ex)〉), the specific waiting time can be computed as

τ0
x = 〈τx〉

〈exp
(−Ex

)〉 = 2·tR(
sobs
l

)2 ·〈exp
(−Ex

)〉 (17)

Note that 〈exp(−Ex)〉 �=exp(−〈Ex〉) and, consequently, we need to
compute the mean of the exponential and not the mean of the binding
energy.

To determine the association constant, we first need to estimate
the dissociation rate. The dissociation rate can be estimated as the
inverse of the residence time.

kdissoc = 1

tR
(18)

For tR =5 ms the dissociation rate can be approximated by kdissoc ≈
200 s−1.

At steady state, the binding flux will equal the unbinding flux.

kassoc
x ·TFfree

x · Acurrent
x
Amax

x
=kdissocTFbound

⇒ kassoc
x = 1

tR

TFbound

TFfree
· Amax

x
Acurrent

x
(19)

where TFbound represents the abundance of bound TF.
Usually, the number of non-cognate molecules is much higher

than the one of cognate molecules (TFnc ∼104 
TFlacI ∼101) and
consequently, the relative amount of occupied DNA can be written
as (TFnc ·fnc ·TFsize

nc /M). Flyvbjerg et al. (2006) estimated that the
relative occupied DNA in E.coli lies in the interval.

TFnc ·fnc ·TFsize
nc

M
∈[0.1,0.5] (20)

For long DNA strands, which is the case of E.coli genome, one could
approximate the relative free DNA by the ratio between the number
of free positions to bind and the maximum number of free positions
to bind.

1− TFnc ·fnc ·TFsize
nc

M
≈ Acurrent

x
Amax

x
⇒ Acurrent

x
Amax

x
∈[0.5,0.9] (21)

Note that this is just an estimate and in some extreme cases
(high-DNA occupancy) the estimate for the free sites on the DNA
(Acurrent

x /Amax
x ) might display lower accuracy. In those cases, the

most viable solution is to test several values, until the optimal one
is found.

If we consider that TFs spent 90% of the time bound to the DNA
(f ≈0.9 relative time bound to the DNA Elf et al., 2007), then,

at any time point, on average 90% of the molecules will be bound
to the DNA (TFbound/TFfree =9). In this scenario, the association
rate is somewhere in the interval kassoc

x ∈[2000,3600]s−1.
Finally, knowing the average number of non-cognate molecules

(TFnc ∼104), the DNA occupancy (TFnc ·fnc ·TFsize
nc /M ∈[0.1,0.5])

and the length of the (DNA M =4.6 Mbp), we can estimate that the
average number of base pairs covered by a non-cognate molecule is
TFsize

nc =46 bp. For 10 000 non-cognate molecules (each covering
46 bp) 460 000 bp of the DNA will be covered by non-cognate
molecules, which represents 10% of the entire DNA. In the other
extreme, for 50 000 molecules, 2 300 000 bp of the DNA will
be covered by non-cognate molecules, which represents 50% of
the entire DNA. Similarly, one could use TFsize

nc =23 bp and the
non-cognate abundance in the interval [20000,100000].

4 VALIDATING THE MODEL
Next, we will show some simple tests we conducted to visualize
the behaviour of the system, under different conditions. First, we
want to demonstrate how the molecules move on the DNA during
a simulation run. Figure 2 shows an example of a random walk
performed by 1 or 3 molecules on a 250 bp randomly generated DNA
sequence. The molecules alternate the 1D movements (high-density
regions in Fig. 2) with 3D excursions or hops (low-density regions
in Fig. 2).

One simple test consists of plotting the normalized affinity versus
the normalized occupancy for each position on the DNA after the
simulator is run for a long-time interval. The top graph in Figure 3
shows that there is a strong positive correlation between occupancy-
bias on the DNA and affinity, in the case of 1 TF molecule in the
system.

Furthermore, in the case of multiple molecules of the same TF
species, the affinity and occupancy have a strong correlation, but
not as good as in the case of 1 molecule (see middle plot of Fig. 3).
This suggests that in the case of crowding and competition for
DNA space, the affinity between TF molecules and DNA is not the
sole determinant of the occupancy-bias. Inverting this statement, we
could say that occupancy-bias is not necessarily equivalent to the
affinity landscape, in the sense that regions that are occupied most
of the time are not necessarily the highest affinity ones. However,
this was observed at 1 bp resolution and it might be averaged out
on larger sectors of DNA.

Finally, we would like to mention that in the Supplementary
Material, we systematically investigated the quality of our approach
to estimate model parameters. The results showed that setting the
model parameters using our approach leads to negligible errors
between the desired system behaviour and the measured one in the
simulations.

5 CONSIDERATIONS ON THE MODEL
One question that one might ask is whether our coarse-grained model
of 3D diffusion will capture all the details of a real 3D particle
simulator. van Zon et al. (2006) observed that the zero-dimensional
Chemical Master Equation can accurately model the association rate
between TF molecules and the DNA, as long as the model considers
fast re-binding in close proximity after an unbinding event. Since
we implemented fast re-binding in our model (through hops), we
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A

B

Fig. 2. Dynamic behaviour of TF molecules. We consider a random 250 bp DNA and TF molecules which can bind/unbind, hop, jump, slide left/right.
(A) 1 TF molecule (B) 3 TF molecules. The position of the molecules is represented on y-axis and the time on the x-axis. The grey line on the y-axis represents
the affinity at that position for a TF. Note that after a complete dissociation of a TF from the DNA the line that follows the position is broken as opposed to a
line connecting two dense regions which describes a hop or a correlated jump.

conclude that the 3D diffusion model employed in this contribution
reliably represents the 3D diffusion of TFs in the cytoplasm.

Furthermore, we did not consider the 3D shape of the DNA in
our model. Nevertheless, the shape of the DNA is likely to affect
only two variables in the model, namely: (i) the average number of
re-bindings [because it is expected that once trapped in dense DNA
areas, the TF molecules will find it more difficult to escape the DNA
(Bancaud et al., 2009)] and (ii) the areas of the DNA where a TF will
hop [hopping is more likely to lead to small 1D displacement, but
in the case of close 3D proximity, this might result in more jumping
(Lomholt et al., 2009)]. Both of these parameters are fine-tunable
within our model, so by increasing the hopping lengths and the
number of fast re-bindings, 3D effects could be integrated in the
model.

In addition, we also make the assumption that the 1D random walk
is unbiased. However, some previous models of sliding considered
that the 1D random walk is biased, in the sense that depending
on the left or right side affinities from the current position a TF
molecule might have different probabilities to slide in one or the
other direction (Slutsky and Mirny, 2004). This was supported by
the fact that the affinity landscape of RNAp seems to increase when
moving towards the transcription start site (TSS) and consequently
the RNAp can be directed towards the TSS (Weindl et al., 2007).

Barbi et al. (2004) showed that in the case of bias, the random
walk displays initially a sub-diffusive behaviour which can last
significantly long. However, Blainey et al. (2006) did not observe
any anomalous 1D diffusion when a hOgg1 protein would perform
a random walk on the DNA in vitro, but rather concluded that the
random walk is unbiased. Since there is no strong experimental
evidence for the fact that biased random walk is a general mechanism
in the search process, we considered in this contribution that the
random walk is unbiased.

Finally, in comparison to a different implementation strategy,
the memory model proposed by (Barnes and Chu, 2010),
our implementation strategy showed an increase in speed (see
Supplementary Material). The disadvantage of our strategy is that
creating an array with the same size as the DNA for each TF
species, will result in larger memory requirements compared with
the memory model of (Barnes and Chu, 2010). For the entire
genome of E.coli (4.6 Mbp) and two TF species, a non-cognate and a
cognate one, the simulator will require approximately 2 GB of RAM.
Although the simulator permits to specify input several species of
TF, extra care should be taken when adding new species into the
simulator due to the extra memory usage. Each new TF species
added to this system (E.coli) will increase the required memory by
a few hundred MB (≈300 MB) for a DNA sequence of 4.6 Mbp.
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A

B

C

Fig. 3. Affinity vs occupancy. We consider a random 1000 bp DNA strand and TF molecules which can bind/unbind, hop, jump, slide left/right. In (A) we
show the normalized affinity and normalized occupancy for 1 molecule and in (B) for 10 molecules. In (C) we plot the ratio between occupancy and affinity,
which should be ∼1 for highly correlated values. The Pearson, coefficient of correlation between the the affinity and occupancy slightly drops from 0.999 (in
the case of 1 molecule) to 0.998 (in the case of 3 molecules) and, further, to 0.979 (in the case of 10 molecules).

However, we consider our strategy as a good compromise in cases
were simulation speed is essential.

6 DISCUSSION
Previously, facilitated diffusion was modelled mainly analytically
(e.g. Berg et al., 1981; Mirny et al., 2009). Although these
types of models brought new insights into the mechanism, they
mainly lack the capability to integrate real DNA sequence (a non-
uiniform TF affinity ‘landscape’; Mirny et al., 2009) and/or dynamic
crowding (mobile ‘roadblocks’; Flyvbjerg et al., 2006; Li et al.,
2009). Nevertheless, computational models are able to surpass these
shortcomings.

Stochastic simulations have revolutionized the way theoretical
biologists can nowadays deal with problems that are not easily
amenable to experimental measurements. TF target finding belongs
to a class of spatio-temporal problems that, in a first approximation,
may be addressed with tools that simulate 3D diffusion, e.g. Smoldyn
(Andrews et al., 2010). However, due to the particular behaviour
of DNA-binding proteins and the proposed facilitated diffusion
mechanism, the Smoluchowski limit is overcome. For a meaningful
outcome from any simulation experiment, a more detailed model is

therefore required. In order to produce results in a relatively short
time, previous computational models of facilitated diffusion were
limited by size of the analyzed system or level of details included
in the model. For example, the work of (Das and Kolomeisky,
2010) and (Wunderlich and Mirny, 2008) did not consider specific
affinities between TF and DNA, while more detailed models as the
one presented by (Chu et al., 2009) could consider at most 40 kbp
per DNA strand.

Our model includes new features that were not previously
considered in this type of modelling, such as TF orientation on
the DNA and the fact that TF can cover more base pairs than
the actual DNA binding domain. In addition, we also suggested
an implementation strategy that allows for genome-size DNA
sequences to be simulated, a clear advantage over previous tools
there were limited to few thousands base pairs (Chu et al., 2009).

Not only does our work proposes a detailed model of
the facilitated diffusion mechanism with a highly efficient
implementation strategy, but also presents a systematic and
comprehensive assessment of crucial parameters in this system. As
an example, we use (Elf et al., 2007) measurements of the lac
repressor system in E.coli. In particular, we show that using our
comprehensive parameter estimation, our model displays similar
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behaviour as in (Elf et al., 2007), i.e. residence time of tR =5 ms,
actual sliding lengths of sobs

l =90 bp, the relative time the molecules
stays bound to the DNA of f =0.9 and the 1D diffusion coefficient
of 0.046 μm2s−1.

It can therefore be concluded that for future studies on TF target
finding in prokaryotic systems, our model represents an ideal entry
point for stochastic simulations.

ACKNOWLEDGEMENTS
We would like to thank Robert Foy and Robert Stojnic for useful
discussions and comments on the manuscript.

Funding: Medical Research Council [G1002110 to N.R.Z.] and
Royal Society [to B.A.].

Conflict of Interest: none declared.

REFERENCES
Andrews,S.S. et al. (2010) Detailed simulations of cell biology with smoldyn 2.1. PLoS

Comput. Biol., 6, e1000705.
Bancaud,A. et al. (2009) Molecular crowding affects diffusion and binding of nuclear

proteins in heterochromatin and reveals the fractal organization of chromatin.
EMBO J., 28, 3785–3798.

Barbi,M. et al. (2004) A model of sequence-dependent protein diffusion along DNA.
J. Biol. Phys., 30, 203–226.

Barnes,D.J. and Chu,D.F. (2010) An efficient model for investigating specific
site binding of transcription factors. In 2010 4th International Conference on
Bioinformatics and Biomedical Engineering (iCBBE). IEEE Xplore, Chengdu,
China, pp. 1–4.

Berg,O.G. and von Hippel,P.H. (1987) Selection of DNA binding sites by regulatory
proteins statistical-mechanical theory and application to operators and promoters.
J. Mol. Biol., 193, 723–750.

Berg,O.G. et al. (1981) Diffusion-driven mechanisms of protein translocation on nucleic
acids. 1. models and theory. Biochemistry, 20, 6929–6948.

Blainey,P.C. et al. (2006) A base-excision DNA-repair protein finds intrahelical lesion
bases by fast sliding in contact with DNA. PNAS, 103, 5752–5757.

Chu,D. et al. (2009) Models of transcription factor binding: sensitivity of activation
functions to model assumptions. J. Theor. Biol., 257, 419–429.

Das,R.K. and Kolomeisky,A.B. (2010) Facilitated search of proteins on DNA:
correlations are important. Phys. Chem. Chem. Phys., 12, 2999–3004.

DeSantis,M.C. et al. (2011) Protein sliding and hopping kinetics on DNA. Phys. Rev.
E, 83, 021907.

Elf,J. et al. (2007) Probing transcription factor dynamics at the single-molecule level
in a living cell. Science, 316, 1191–1194.

Flyvbjerg,H. et al. (2006) Strong physical constraints on sequence-specific target
location by proteins on DNA molecules. Nucleic Acids Res., 34, 2550–2557.

Gerland,U. et al. (2002) Physical constraints and functional characteristics of
transcription factor-DNA interaction. PNAS, 99, 12015–12020.

Gillespie,D.T. (1977) Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem., 81, 2340–2361.

Gowers,D.M. et al. (2005) Measurement of the contributions of 1d and 3d pathways to
the translocation of a protein along DNA. PNAS, 102, 15883–15888.

Halford,S.E. and Marko,J.F. (2004)How do site-specific DNA-binding proteins find
their targets? Nucleic Acids Res., 32, 3040–3052.

Li,G.-W. et al. (2009) Effects of macromolecular crowding and DNA looping on gene
regulation kinetics. Nat. Phys., 5, 294–297.

Lomholt,M.A. et al. (2009) Facilitated diffusion with DNA coiling. PNAS, 106,
8204–8208.

Mirny,L. et al. (2009) How a protein searches for its site on DNA: the mechanism of
facilitated diffusion. J. Phys. A Math. Theor., 42, 434013.

Riggs,A.D. et al. (1970) The lac represser-operator interaction: iii. kinetic studies.
J. Mol. Biol., 53, 401–417.

Riley,M. et al. (2006) Escherichia coli k-12: a cooperatively developed annotation
snapshot - 2005. Nucleic Acids Res., 34, 1–9.

Slutsky,M. and Mirny,L.A. (2004) Kinetics of protein-DNAinteraction: facilitated target
location in sequence-dependent potential. Biophys. J., 87, 4021–4035.

Stormo,G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics,
16, 16–23.

van Zon,J.S. et al. (2006) Diffusion of transcription factors can drastically enhance the
noise in gene expression. Biophys. J., 91, 4350–4367.

Weindl,J. et al. (2007) Modeling DNA-binding of escherichia coli σ70 exhibits a
characteristic energy landscape around strong promoters. Nucleic Acids Res., 35,
7003–7010.

Winter,R.B. et al. (1981) Diffusion-driven mechanisms of protein translocation on
nucleic acids. 3. the escherichia coli lac repressor–operator interaction: kinetic
measurements and conclusions. Biochemistry, 20, 6961–6977.

Wunderlich,Z. and Mirny,L.A. (2008) Spatial effects on the speed and reliability of
protein-DNA search. Nucleic Acids Res., 36, 3570–3578.

Zabet,N.R. and Adryan,B. (2012) GRiP: a computational tool to simulate transcription
factor binding in prokaryotes. Bioinformatics.

1524


	A comprehensive computational model of facilitated diffusion in prokaryotes
	1 Introduction
	2 Model
	3 Estimating Model Parameters
	4 Validating The Model
	5 Considerations on the model
	6 Discussion


